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HARMONIC MEASURE AND HYPERBOLIC DISTANCE
IN JOHN DISKS

KIWON KIM and NAVAH LANGMEYER

1. Introduction.

Suppose that D is a domain in the complex plane C. Let D* = C\ D be the
exterior of D in C and let B(z,r) = {¢: | —z| < r} for z € C and r > 0.

In this paper, we find several characterizations of John disks which have
analogues in the class of quasidisks. John disks can be thought of as “one-
sided quasidisks”. For example, a Jordan domain D C C is a quasidisk if and
only if D and D* are John disks. Also, every quasidisk is a John disk [GM3].
The results presented here are likewise one-sided versions of characteriza-
tions of quasidisks. These characterizations involve the conformal invariants
harmonic measure and hyperbolic distance.

A simply-connected bounded domain D C C is said to be a c-John disk if
there exist a point zyg € D and a constant ¢ > 1 such that each point z; € D
can be joined to zy by an arc v in D satisfying

((y(z1, 2)) < ¢(z,0D)

for each z € v, where ¢((zj, z)) is the euclidean length of the subarc of ~y
with endpoints z;, z. We call zy a John center, ¢ a John constant and vy a c-
John arc. We say that D is John if it is ¢-John disk for some c.

A bounded domain D C C is John if and only if each pair of points
z1, zo € D can be joined by an arc v which satisfies

(L1) min¢(1(z;, 2)) < ¢ (z,0D)
J=1
for all z € v. We call v a double c-cone arc. This definition can be used to

define the unbounded John disks D C C as well [NV, 2.26].
A domain D C C is said to be c-uniform if there is a constant ¢ > 1 such
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that each pair of points zy, z; € D can be joined by an arc v C D which sa-
tisfies (1.1) and

Uy) < clzi — za].

We say that D is uniform if it is c-uniform for some ¢ > 1.

We say that a domain D C C is a K-quasidisk, 1 < K < oo, if it is the im-
age of the unit disk B under a K-quasiconformal self mapping of C = C U cc.
A Jordan domain D C C is uniform if and only if it is a quasidisk [MS].

In section 2, we show that a bounded Jordan domain D C C satisfies a
harmonic doubling condition if and only if D is a John disk. This is a one-
sided analogue of a characterization for quasidisks due to Jerison and Kenig
[JK]. It is also a one-sided version of a characterization for quasidisks due to
Krzyz who compares the harmonic measures of adjacent arcs on the
boundary when considered from inside and outside the domain [Kr].

In section 3, we characterize John disks D in terms of various properties of
the hyperbolic geodesics in D; in particular, the position of the euclidean
midpoint of the geodesic or the quasiextremal distance property in D with
respect to the geodesic. The first of these leads to a third characterization in
terms of the Holder continuity of analytic functions in D similar to a well-
known theorem of Hardy and Littlewood [HL]. Finally, we characterize un-
bounded Jordan John disks in terms of the hyperbolic geodesics in their ex-
teriors.

In section 4, we characterize John disks in terms of a euclidean estimate
for the hyperbolic distance between points of D. This is again a one-sided
analogue of a theorem due to Gehring and Osgood [GO], who showed that a
domain D is uniform if and only if it satisfies

kD(Zl, 22) < CjD(Z1, 22) +d

for all z;, z, € D and some constants ¢ and d, where kp is the quasihyper-
bolic metric in D and

12 ' Cgg( 2L (B2l )

(12) jp(z1, 2) =3 Og(dist(zl,aD) ) \d@istz,om) t

Our result replaces the euclidean distance |z; — z,| with the inner distance
between these points and yields an analogous estimate for /ip(z1,z2), the hy-

perbolic distance between z; and z,.
We will repeatedly use a result of Gehring and Hayman.

LemMMA 1.3 [GH, Theorem 2], [Ja]. Suppose that D is a simply connected
domain in C. If 7y is a hyperbolic geodesic in D and if « is any curve which joins
the endpoints of vy in D, then
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U(y) < kl(a),

where k is an absolute constant, 4.5 < k < 17.5.

2. Harmonic measure in John disks.

A bounded Jordan domain D C C is said to satisfy a harmonic doubling
condition if for some zy € D and some constant ¢y > 0,

2.1) w(z0, 0 D) < cow(zo, B; D)

for each pair of consecutive arcs a, S on 9D with dia(«a) < 2dia(f5), where
w(zo,7; D) is the harmonic measure of v at the point zy with respect to D.

REMARK 2.2. If D satisfies (2.1) for some zy € D, then it satisfies (2.1) for
every z; € D with a constant ¢; which depends on ¢y, z¢ and z;.

Proor. Fix z; € D and fix consecutive arcs «a,( C 0D with dia(a) <
2dia(f). Since w is nonnegative and harmonic,

CU(Z],(X;D) w(ZOaﬂ;D)
— — K
sea) =F ™ SE D) =

where k = (071 (See, for example, [H, Theorem 6].) Thus by hypothesis
we have

w(zy,a; D) w(zo, ;D)
w(zhﬁ;D) W(ZOaﬂ;D)
and hence (2.1) holds for every z; € D with ¢; = ¢ (e”D(ZO*Z’))z.

K2 < C()k2 =

IN

THEOREM 2.3. A4 bounded Jordan domain D C C is a c-John disk if and only
if it satisfies a harmonic doubling condition.

To prove Theorem 2.3 we need a lemma.

LeMMA 2.4. Suppose that D is a bounded Jordan domain in C and let zy € D.
Then the following conditions are equivalent, where the constants in each con-
dition need not be the same but depend on each other:

(1) Dis a c-John disk.

(2) There exist constants ¢ and 6 > 0 such that

dia(ay) w(zo, 13 D)\’
(2.5) dia(a) = c<w(20701;D))

for all arcs oy C o C OD.
(3) There exists a constant ¢ > 1 such that

(2.6) w(zo, a; D) < cw(zp, aq; D)
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for all ares oy C a C 9D with dia(a) < 2dia(ay).

Proor. The equivalence of (1) and (2) is proved in [P, Theorem 1]. To
prove the equivalence of (2) and (3), we first assume that (2) holds and let
aj C a be arcs on 0D with dia(a) < 2dia(a). Then

w(Zo,Ozl;D) 7% dia(al) % _%
w(zo, a; D) =¢ (dia(a)) > (2¢)

and hence we have (2.6) with a constant (2c)%. Next suppose that (3) holds.
Then by induction it is not difficult to show that

(2.7) w(zo, a5 D) < " w(zg, ar; D)

for all arcs oy C o C 9D with dia(«) < 2"dia(a) and for each integer n > 0.
Now given any arcs o C o C 9D, there exists an integer n > 0 such that

(2.8) 2" dia(ay) < dia(a) < 2"dia(o).
Then by (2.7) we have

(2.9) w(zo, a5 D) < "w(zp, a1; D).

Let § = 22 Then by (2.8) and (2.9) we obtain
w(zo, a; D) 111 N dia(«) 3
T < o = 25 — mn 5 < .
w(zo,a1;D) — ¢ =c(2) (2 )= dia(ay)

Hence we get (2.5) with a constant ¢°.

PrOOF OF THEOREM 2.3. For the necessity suppose that a harmonic dou-
bling condition does not hold for D. Then for j=1,2,... there are con-
secutive arcs «;, 3; on 9D such that
(2.10) dia(a;) < 2dia(5) and w(zo, aj; D) > ¥ w(zo, Bj; D).

Thus dia(e; U §;) < 3dia(f;) and hence by Lemma 2.4 (2) and by (2.10)
3 . o . 5 )
S dla‘(ﬁj) < < UJ(Z(),@,D) ) S C(UJ(Z(],,@,D)) S C(3_‘l)5

. sC —
dia(oj U f3;) w(zo, ;U Bj; D) w(zo, a;; D)

W=

which yields a contradiction as j — oc.

For the sufficiency, by Lemma 2.4 it suffices to show that D satisfies (2.6).
Let ) C « be arcs of 9D with dia(«) < 2dia(a;).

Suppose first that aj,« have a common endpoint. Then dia(a\ a;) <
2dia(ay) and hence by (2.1), w(zo,a\ a1;D) < cow(zp,a1; D) for some
zo € D. Thus
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(2.11) w(zo,a; D) < (co + 1) w(zo, a1; D).

Next suppose that o\ o consists of two disjoint subarcs «;, a3. Then for
Jj=2,3 dia(aq Uq;) <2dia(a;) and hence w(zo,oq Uaj;D) < (co+1)
w(zo, a1; D) by what was proved above. Thus
(2.12) w(zo, ;D) < 2(co + 1) w(zo, a1; D).

Therefore by (2.11) and (2.12) D satisfies (2.6) with ¢ = 2(co + 1).

3. Hyperbolic geodesics in John disks.

We say that a domain D C C is a M-quasiextremal distance or M-QED do-
main with respect to E C D, 1 < M < oo, if for each pair of disjoint continua
F,FbLCE

(3.1 mod(I") < M mod(Ip),

where I and I'p are the families of curves joining F| and F; in C and in D,
respectively.

THEOREM 3.2. Suppose that D is a bounded simply connected domain in C.
Then the followings are equivalent:

(1) Dis a c-John disk.

(2) There exists a constant ¢ > 0 such that for each hyperbolic geodesic
yCD

(3.3) t(y) < ¢(20,0D),

where zq is the euclidean midpoint of ~.
(3) There exists a constant ¢ > 0 such that if f is analytic with

(3.4) ') <1
in D, then for all z), zy € D
(3.5) If (z1) — f(z2)| < cdist(zg,0D),

where zg is the euclidean midpoint of the hyperbolic geodesic v C D joining z,
to z.

(4) D is a M-QED domain with respect to all hyperbolic geodesics in D with
a given point zog € D as an endpoint.

Here the constants in each condition need not be the same but depend on
each other. In particular, from (4) we obtain a John constant ¢ in (1), which
depends on M and a given point z.

PROOF OF EQUIVALENCE OF (1) AND (2). Let D C C be a bounded c¢-John
disk and let zyp be the euclidean midpoint of a hyperbolic geodesic v with
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endpoints z; and z; in D. By [GHM, 2.16 Lemmal], there exists a crosscut «
of D containing zy which separates the components of v\ {zy} in D and

(3.6) l(a) < ¢ dist(zg, OD),

where ¢; 1s an absolute constant. Next since D is a ¢-John disk, there exists a
John center xy, a c-John arc ; from z; to xy, and a ¢-John arc 5, from z, to
X0.

If xo is in the component of D\ a which contains z,, then by (3.6) there
exists a point w in o N F; such that

L(B1(z1,w)) < cdist(w,0D) < cl(a) < ccy dist(zo, D).

Since Bi(z1,w) Ua(zg,w) is a curve which joins z; to zp in D and since
v(z1,20) is a hyperbolic geodesic in D with z; and zy as its end points, Lem-
ma 1.3 and (3.6) imply that

0(y) = 28(~(z1,20)) <2k (U(B1(z1,w)) + (a(zp,w))) = 2kei(c + 1) dist(zg, OD)

where k is an absolute constant. If x is in the component of D\ a which
contains z;, then the above argument applied to the arc 3, yields the desired
inequality. Finally if xy € «, then by Lemma 1.3 and (3.6),

0(y) =24(v(z1,20)) < 2k (U(B1) + £(a(x0,20)))
< 2k(cdist(xg, OD) + ¢ dist(zo, OD)).
Since « joins xg to 0D,
0(y) < 2k(cl(a) + c1 dist(zg, 0D)) < 2kei(c + 1) dist(zo, OD) .

Conversely, suppose that (2) holds and let L = sup £(y), where the supre-
mum is taken over all possible hyperbolic geodesics v with endpoints in D.
Then there exist two points zi, z, € D such that £(y) = £, where ~ is the hy-
perbolic geodesic joining z; to z; in D. Let zy be the euclidean midpoint of ~.
Then by (3.3),

1 1
(3.7) dia(D) > dist(zp,0D) > " Uv) = % L

Now fix a point z € D and let wy be the euclidean midpoint of the hyper-
bolic geodesic « joining z to zy in D. If x € a(wy, z), then we can find a point
x1 € a(x,zy) with £(a(z,x)) = ¢(a(x,x1)) and by (3.3) applied to a(z,x;),

(3.8) Uolz,x)) =L la(z,x)) < % dist(x, D).

If x € a(zo,wo), then we can find a point x» € a(x,z) with (a(x,z)) =
£(a(x7,x)). Then again by (3.3) applied to a(zg, x2) and by (3.7),
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(3.9)  l(a(z,x)) < L < 2c¢dist(zg,0D) < 2¢ (€(ax(x2,20)) + dist(x,dD))
< 2¢(c+ 1) dist(x, dD).
Hence by (3.8) and (3.9) D is a ¢;-John disk with ¢; = 2¢(c+ 1).

PROOF OF EQUIVALENCE OF (2) AND (3). First suppose that D satisfies (2).
Then D is a b-John disk, where b depends only on ¢. Let f be analytic and
satisfy

(3.10) If'(2)| < dist(z,0D)* "

for some 0 < a < 11in D. Fix z1, z; € D, and let ¥ be the hyperbolic geodesic
joining z; to z; in D. Next let s denote arclength measured along ~ from zi,
let z(s) denote the corresponding representation for «, and set g(s) = f(z(s)).
Then

while
min(s, / —s) < by dist(z(s),dD) , 1=4(v),

where by > 1 is a constant depending only on b, by [GHM, Theorem 4.1].
Thus

min(s, / — s))al

1¢/(5)] < dist(=(s),8D)"" < ( -

for 0 < s </, and hence

(3.11) f(z1) =/ (z2)] = lg(l) - £(0)]
! 5
g/o g (s)] ds §2b117”’/0 s ds

_ Zbll_a

(%

N e . u
(5) ggldlst(zo,aD) )
where ¢; = by c. If f satisfies (3.4) in D, then f satisfies (3.10) with a = 1.
Hence, f satisfies (3.11) with @ = 1, i.e. f satisfies (3.5).

Now suppose that (3.5) holds for any analytic function f on D which sa-
tisfies (3.4). By [KW, Theorem 1] with k =1, for zy, z, € D

i%f/g ld¢| < e S?p If (z1) = f(22)I,

where the infimum is taken over all Jordan arcs 3 in D joining z; to zj, ¢ 18
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an absolute constant, and the supremum is taken over all analytic functions
f on D with |[f’(z)] < 1. Thus by Lemma 1.3,

Uy) <k i%fﬂ(ﬁ) <kec st;p If (z1) = f(z2)| < ke cdist(zg, OD)

for an absolute constant k, where v is the hyperbolic geodesic joining z; to z;
in D and zj is the euclidean midpoint of ~.

REMARK 3.12. Note that this proof shows that if (3.4) implies (3.5), then
D satisfies (2) and hence

If'(2)| < dist(z, 8D)" "
in D implies
¢ ] «
[f(21) = f(22)] < — dist(z), 0D)

forany 0 < a < 1.

In order to prove the equivalence of (1) and (4), we need a lemma which
shows that each hyperbolic line in D which joins two points on 0D lies in the
middle of D. See [R, Lemma 4.13] and [PR, Theorem 3.3].

LeEmMA 3.13. Suppose that D is a simply connected proper subdomain in C
and that v C D is a hyperbolic line joining wy,w, € 0D and dividing D into
disjoint subdomains D and D,. Then

1 dist(z, )

- < < =
PSSty S P=3TR2

forall z € ~, where a;j = 0D; \ 7, j = 1,2.

PROOF OF EQUIVALENCE OF (1) AND (4). Suppose that D C C is a bounded
c-John disk with fixed John center zy. Fix z; € D and let «y be the hyperbolic
geodesic joining zy to z; in D. Fix two disjoint continua Fi, 5 of . Then by
[K, Theorem 2.1] and the construction on [GO, pp. 67-68], there is a K-
quasidisk G; in D such that v € G|, where K depends only on ¢. Thus by
[GM3, Remark 2.23], G| is M-QED with respect to G for some constant M,
1 < M < oo, which depends only on K, and hence only on ¢. Therefore, since
FG] Cc Ip,

mod(I") < Mmod(Ig,) < Mmod(Ip),

where I', I, I'p are the families of curves which join F; and F> in C, Gy, D,
respectively.
Suppose next that zj is a point in D and that D is M-QED with respect to
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all hyperbolic geodesics in D which have z; as an endpoint. Fix z; € D,
z1 # zo and let v be the hyperbolic geodesic joining zy to z; in D.
We show first that for some constant @« > 1 and for all z € ¢

(3.14) min(|zo — z|, |z — z1]) < adist(z, 9D).

Suppose otherwise. Then for each constant a > 1, there is a point z € v such
that min(|zg — z|, |z — z1|) > adist(z,0D). Fix a constant « >1 and let
b =3 +2v/2. Then for a constant ab > 1 there is a point z € 5 such that

min(|zg — z|, |z — z1|) > abdist(z, dD).

Consider the hyperbolic line in D which contains v and which has the end-
points wy,wy; € 0D and let aj,a, be as described in Lemma 3.13. Then
dist(z,0D) = minj—; , dist(z,a;). Thus we may assume that dist(z,0D) =
dist(z, a;) and hence by Lemma 3.13

(3.15) dist(z, ) < bdist(z,0D).

Let r = bdist(z,0D). By means of a preliminary similarity mapping we may
assume that z = 0. Then zy,z; ¢ B(0,ar). Let 4 = B(0,ar) \ B(0,+/ar). For
Jj=0,1, let F; denote a component of 4N~(0,z;) which joins the two
boundary circles of 4. Then by [V, Theorem 10.12],

(3.16) mod(I") > mod(I'y) = > log v/a,
™
where I, I'y are the families of curves joining Fy and F} in C and in A4, re-

spectively. Now  let B = B(0,+/ar) \ B(0,r), E = 0B(0,r), and
F = 0B(0,+/ar). Then by (3.15), I'p is minorized by I's and hence by [V, 7.5]

(3.17) mod(I'p) < mod(I') = 2 (log ‘/fr) - 10;:/6,

where ' is the family of curves joining £ and F in B and I is the family of

curves joining Fy and F; in D. Then by the hypothesis, (3.16) and (3.17)

2 oM
—1 < <M I'p) <
108 Va < mod(I) < Mmod(1) < 25

and hence

M> <1°g\/‘7>2.

™

This holds for each constant a > 1 and it leads a contradiction, which es-
tablishes (3.14).
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Next to show that D is a c¢-John disk, by [NV, Lemma 2.10] we need to
prove that for some constant ¢ > 1 and for all z €

(3.18) |z — z1] < cdist(z,0D).
For this let L = max{|zo —z| : z € 9D}, k = giop; and ¢ = max(a, k). If

|z — z1] < |z — zo|, then by (3.14)
(3.19) |z — z1]| < adist(z, D).
If |z — z;| > |z — zo|, then |zg — z;| < L and (3.14) give

zZ—Z Z— Z 0 — Z
==l =zl 20—

o P B < dist(z,0D) + dist(zp, 9D)

< |z —zo| + 2dist(z,0D) < (a + 2)dist(z, D).
Hence
(3.20) |z — z1] < ¢1(a+ 2) dist(z,dD).

Therefore by (3.19) and (3.20) we obtain (3.18) with ¢ = ¢;(a + 2), which
depends on M and z.

Note that in the proof of equivalence of (1) and (4) in Theorem 3.2, what
we get from (4) is the John condition on all hyperbolic geodesics with a given
point zy as an end point and a fixed constant ¢ = ¢(zy, M). If ¢ were in-
dependent of zy, we are in the uniform domain case as follows.

COROLLARY 3.21. Suppose that D is a bounded finitely connected domain in
C. Then D is c-uniform if and only if D is a M-QED domain with respect to all
hyperbolic geodesics in D. Here ¢ and M depend only on each other.

PrROOF. Suppose that D is c-uniform. Then by [GM3, Theorem 2.22], D is
a M-QED domain with respect to D, M = M(c), and hence with respect to
all hyperbolic geodesics in D. For the sufficiency, let z;, zo be two disjoint
points in D and let « be the hyperbolic geodesic in D with endpoints zj, z;.
Then by an argument similar to that for the proof of (3.14)

(3.22) min(|z; — z|, |z — z2|) < adist(z,dD)

for all z € v and for some constant a > 1. Also by the same argument as the
proof of [GM3, Lemma 2.7]

(3.23) Uy) <klz1 — z2],

where k, 1 <k < 0o, is a constant depending only on M. Therefore [NV,
Theorem 2.16], (3.22) and (3.23) imply that D is c-uniform with
¢ = max(a, k), which depends only on M.
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Next we characterize unbounded Jordan John disks with co € 9D in terms
of the hyperbolic geodesics in their exteriors.

Lemma 3.24 [GHM], [NV], [R]. 4 Jordan domain D C C is a c-John disk if
and only if each pair of points z|, z € D* can be joined by a continuum E C D*
with

dia(E) < ¢ |z1 — z2]-
Here the constants ¢ and ¢; depend only on each other.

THEOREM 3.25. A4 Jordan domain D C C with oo € 9D is a c-John disk if
and only there is a constant cy > 1 such that for each hyperbolic geodesic =y in
D*

(3.26) dia(y) < colz1 — z2],
where zy,z; are the endpoints of . Here ¢ and ¢y depend on each other.

To prove this we need a lemma which gives the diameter version of the
Gehring-Hayman inequality in Lemma 1.3. See [R, Lemma 3.22] and [PR,
Theorem 3.2].

LEMMA 3.27. Suppose that « is a hyperbolic geodesic in a simply connected
proper subdomain D C C and that « is an arc which joins the endpoints of v in
D N B(zy,r) for zo € C. Then

v C B(zo,br),  b=3+2V2.

Proor oF THEOREM 3.25. Suppose first that a Jordan domain D C C is a
c-John disk with co € dD. Then by Lemma 3.24 for each pair of points
71, zz € D* there exists a continuum E C D* such that dia(E) < ¢|z; — z2|.
Thus by [NV, Lemma 4.3], £ can be replaced by an arc o C D* with
dia(a) < 3|21 — 2| for any ¢; > ¢;. Next let v be the hyperbolic geodesic
joining z; and z; in D*. Then « is an arc which joins the endpoints of 7. Now
choose a point zy € a such that |z; — zg| = |z2 — zo| and let r = dia(«). Thus
o C D*N B(z,r), while v C B(zy,br) with b=3+2y2 by Lemma 3.27.
Hence

dia(y) < 2br = 2bdia(a) < 2bcy |z1 — 22|

and this shows (3.26) with ¢y = 2bc¢;.
Suppose next that (3.26) holds. Then by Lemma 3.24, D is a ¢-John disk.
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4. Hyperbolic distance in John disks.

We define a one-sided analogue of the function jp in (1.2) as follows:

) Ap(z1,22) Ap(z1,22)
Jp(z1,22) =308 (dlst(zl,aD) ) \d@siz,op) )
where A\p is the inner distance on D,

Ap(z1,22) = igfﬁ(v),

and the infimum is taken over all paths v C D with z; and z; as endpoints.
The main result of this section relates /ip and j,, in John disks. As mentioned
in the introduction, this is a one-sided analogue of a characterization of
quasidisks due to Gehring and Osgood [GO]. Their two-sided version char-
acterizes uniform domains, regardless of connectivity, when the hyperbolic
metric is replaced by the quasihyperbolic metric.

THEOREM 4.1. A simply connected proper subdomain D C C is a c-John disk
if and only if there exists a constant b > 1 such that

(4.2) hp(z1,22) < bjp(z1,22)
for all zy, zp € D. Here the constants ¢ and b depend only on each other.
We will use the following inequality, which is easily derived.
LeEMMA 4.3. For any ¢ > 1 and x > 0,
log(ex+1) < clog(x+1).

PROOF OF NECESSITY. Suppose that D is a c-John disk. Then by [GHM,
Theorem 4.1] each z;, z; € D can be joined by a hyperbolic geodesic vy in D
such that for all z € ~

(4.4)

n}gé(y(zj, z)) < ¢ dist(z,0D)
=1,

for some constant ¢; depending only on ¢. Choose zy €~ so that
£((z0,21)) = £(y(20,22)). Then by the triangle inequality it is sufficient to
show that

(4.5) ho(z), 20) < b 1og( Ap(z1, zz)) N 1)

dist(z;, 0D

for j =1, 2, where b = (3¢; +2)k and k is an absolute constant. By sym-
metry we may assume that j = 1.
Suppose first that
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c .
(4.6) L(y(z1,20)) < - 41_ 1dlst(zl,aD).
Then z € B(zl,ﬁdist(zl,(‘)D)). If z € [z1, z¢], then
1
dist(z,0D) > dist(z1,0D) — |z1 — z| > o ldist(zl,aD)
1

and hence
|z1 — z| + dist(z1,0D) < ¢ dist(z,0D) + (¢; + 1) dist(z, D)
< (2¢; + 1)dist(z,9D) .

If pp(z) is the hyperbolic density in D, then the Schwarz lemma and the
Koebe distortion theorem give the inequalities

1 1
—_— < </
T disiz,oD) = 29 = Gz oy

Thus Lemma 1.3 and Lemma 4.3 yield

ds
h < —
p(z1,%0) < /[:1,20] dist(z, dD)

- /ZIZ°| (2c1 + 1) ds
) s+ dist(z;,0D)

< (2¢; 4+ 1) 10g<ﬁ?)€ﬂ))+ 1)

Ap(z1,22)
+ 1).

< (2¢1 + 1)k log (dist(21 3D

where k is an absolute constant. This implies (4.5).
Next suppose that (4.6) does not hold and choose y; € v(z1, z9) so that

c .
£(y(z1, 1)) = ﬁ dist(z1,9D).
If z € y(y1, 20), then
1
dist(z,0D) > C—E(’y(zl, 7))
1

by (4.4) and hence again
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a1+ 14(y(z1, 20))
¢y dist(z;,0D)

c+1 £(v)
<
=a log( ¢y dist(z;,0D) +1

Ap(z1, 22)
dist(z1,0D) 1) '

hp(v1, 20) < ¢ log(

<(c+ l)klog<
We also have

Ap(z1, 11)
h < (2 Dklog| ————~+1
plen ) < (e + Dklog( G220
by what was proved above. Then (4.5) follows from the triangle inequality.

PROOF OF SUFFICIENCY. Suppose that (4.2) holds. Fix z;, z; € D and let
be the hyperbolic geodesic joining z; to z; in D. We may assume that
dist(zy, 0D) > dist(z,, dD).

Suppose first that

(47) 2)\D(21, 22) < dist(zl,é)D)
Then |z; — z;| < dist(z;,0D)/2 and hence

i D
Z GB(ZI,dISt(Zzl’a)> Cc D.

Thus Ap(zi, z2) = |z1 — z2| and since euclidean disks in D are convex with
respect to the hyperbolic geometry in D [Jg],

- (z1+ 2> |Zl—22‘ diSt(Zl,aD)
B Fmnl) o, Som)

Then by Lemma 1.3

(4.8) m

}I%K(w(zj, z)) < U(y) < k|z1 — 22| < kdist(z,0D)

for all z € v and k is an absolute constant.
Next suppose that (4.7) does not hold. By compactness there exists a point
zg € v with

dist(zp, D) = supdist(z, dD).

zey
Let m denote the largest integer for which
2"dist(zy,0D) < dist(zg, OD)

and let y be the first point of v(z;, zo) with
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dist(yo, D) = 2"dist(zy, D)
as we traverse  from z; towards zy. Clearly
(4.9) dist(yo, D) < dist(zp,dD) < 2dist(yg, ID).

Let y; = z; and choose points ya, ..., V1 € (21, 2o) so that y; is the first
point of y(zy, z9) for which

(4.10) dist(y;, 0D) = 2"~ dist(y,, D)

as we traverse « from z; towards zy. Then y,,.1 = yo and let y,,.2 = zp.
We show first that fori=1,,m+1

hp(yi, yir1) <2 B
(y(yi, yis1)) <27 - B dist(y;, OD)..

Fix i € {1,,m+ 1} and set

(4.11)

Ly(yi, Yie1))

~ dist(y;, D)
If z € v(y;, yi+1), then by (4.9), (4.10)
dist(z,9D) < dist(y;41,0D) < 2dist(y;, OD)

and hence

2
N - < 8hp(yi, yis1) -
/v(yf,}m) dist(y;, 0D) +1)

Since

. )\D(yi yi+1)
! (viy yinq) < log (22074 1) < 1),
JpWis yis1) < Og(d1st(y,-,3D)+ <log(t+1)

(4.2) implies that
hp(viy yir1) < blog(t+1) < b (r+ 1)
If t > 1, then
£ < 8hp(yi, yis1) < 8b (1 + 1)/ < 8b (21)"/2
which implies
<27 p?

and hence

hp(yi, yin1) <b(2-27- B2 =24 b,
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Thus we obtain (4.11). If £ < 1, then # < 27 - b*> and again we obtain (4.11).
This completes the proof of (4.11).

Now [GP, Lemma 2.1] and (4.11) imply that for z €y (y;,yit1),
i=1,....m+1

diSt(yi-H ) 8D)

<4 i) <4 iy Vi 20, p? =
Tst(z,0D) < 4o yin) < 4ho(yi, yin) <2 B2 =y

and thus
(4.12) dist(y;11, OD) < e“dist(z, D).

If z € y(z1,20), then z € v [pi, Vio+1] for some iy € {1,,m + 1} and hence by
(4.10), (4.11) and (4.12)

i

(413)  minf(1(z,2) < £(21,2) <D A D visa)
: i=1

io
<2¢ Y dist(y;, D) = 2¢o (2" — 1)dist(y1,0D)
i=1

< 2c¢odist(y;, 41, OD) < 2¢ge® dist(z,dD).

Likewise, if z € y(z2,29), then we also have (4.13). Therefore by (4.8) and
(4.13) D is a c-John disk with ¢ = 2 ¢y e®.

REMARK 4.14. Theorem 4.1 is easily translated into a result for the quasi-
hyperbolic distance in D, kp. If we assume that quasihyperbolic geodesics
are double c-cone arcs in D, the result for kp can be generalized to finitely
connected domains in the plane, and to domains in R"” which are quasi-
conformal images of uniform domains. In the quasihyperbolic case, the
proof of sufficiency of Theorem 4.1 shows that in a domain D C C satisfying

kp(zi,22) < bjp(z1,22),

quasihyperbolic geodesics are double c-cone arcs, where ¢ depends only on b.
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