HARMONIC MEASURE AND HYPERBOLIC DISTANCE IN JOHN DISKS

KIWON KIM and NAVAH LANGMEYER

1. Introduction.

Suppose that D is a domain in the complex plane C. Let $D^* = C \setminus \overline{D}$ be the exterior of D in C and let $B(z,r) = \{\zeta : |\zeta - z| < r\}$ for $z \in C$ and r > 0.

In this paper, we find several characterizations of John disks which have analogues in the class of quasidisks. John disks can be thought of as "onesided quasidisks". For example, a Jordan domain $D \subset C$ is a quasidisk if and only if D and D^* are John disks. Also, every quasidisk is a John disk [GM3]. The results presented here are likewise one-sided versions of characterizations of quasidisks. These characterizations involve the conformal invariants harmonic measure and hyperbolic distance.

A simply-connected bounded domain $D \subset C$ is said to be a *c-John disk* if there exist a point $z_0 \in D$ and a constant $c \ge 1$ such that each point $z_1 \in D$ can be joined to z_0 by an arc γ in D satisfying

$$\ell(\gamma(z_1, z)) \le c(z, \partial D)$$

for each $z \in \gamma$, where $\ell(\gamma(z_1, z))$ is the euclidean length of the subarc of γ with endpoints z_1 , z. We call z_0 a *John center*, c a *John constant* and γ a *c*-*John arc*. We say that D is *John* if it is *c*-John disk for some c.

A bounded domain $D \subset C$ is John if and only if each pair of points $z_1, z_2 \in D$ can be joined by an arc γ which satisfies

(1.1)
$$\min_{j=1,2} \ell(\gamma(z_j, z)) \le c(z, \partial D)$$

for all $z \in \gamma$. We call γ a *double c-cone arc*. This definition can be used to define the unbounded John disks $D \subset C$ as well [NV, 2.26].

A domain $D \subset C$ is said to be *c*-uniform if there is a constant $c \ge 1$ such

Received May 23, 1996.

that each pair of points $z_1, z_2 \in D$ can be joined by an arc $\gamma \subset D$ which satisfies (1.1) and

$$\ell(\gamma) \le c \, |z_1 - z_2|.$$

We say that *D* is *uniform* if it is *c*-uniform for some $c \ge 1$.

We say that a domain $D \subset C$ is a *K*-quasidisk, $1 \leq K < \infty$, if it is the image of the unit disk B under a *K*-quasiconformal self mapping of $\overline{C} = C \cup \infty$. A Jordan domain $D \subset C$ is uniform if and only if it is a quasidisk [MS].

In section 2, we show that a bounded Jordan domain $D \subset C$ satisfies a harmonic doubling condition if and only if D is a John disk. This is a one-sided analogue of a characterization for quasidisks due to Jerison and Kenig [JK]. It is also a one-sided version of a characterization for quasidisks due to Krzyż who compares the harmonic measures of adjacent arcs on the boundary when considered from inside and outside the domain [Kr].

In section 3, we characterize John disks D in terms of various properties of the hyperbolic geodesics in D; in particular, the position of the euclidean midpoint of the geodesic or the quasiextremal distance property in D with respect to the geodesic. The first of these leads to a third characterization in terms of the Hölder continuity of analytic functions in D similar to a well-known theorem of Hardy and Littlewood [HL]. Finally, we characterize unbounded Jordan John disks in terms of the hyperbolic geodesics in their exteriors.

In section 4, we characterize John disks in terms of a euclidean estimate for the hyperbolic distance between points of D. This is again a one-sided analogue of a theorem due to Gehring and Osgood [GO], who showed that a domain D is uniform if and only if it satisfies

$$k_D(z_1, z_2) \le c j_D(z_1, z_2) + d$$

for all $z_1, z_2 \in D$ and some constants c and d, where k_D is the quasihyperbolic metric in D and

(1.2)
$$j_D(z_1, z_2) = \frac{1}{2} \log \left(\frac{|z_1 - z_2|}{\operatorname{dist}(z_1, \partial D)} + 1 \right) \left(\frac{|z_1 - z_2|}{\operatorname{dist}(z_2, \partial D)} + 1 \right).$$

Our result replaces the euclidean distance $|z_1 - z_2|$ with the inner distance between these points and yields an analogous estimate for $h_D(z_1, z_2)$, the hyperbolic distance between z_1 and z_2 .

We will repeatedly use a result of Gehring and Hayman.

LEMMA 1.3 [GH, Theorem 2], [Ja]. Suppose that D is a simply connected domain in C. If γ is a hyperbolic geodesic in D and if α is any curve which joins the endpoints of γ in D, then

$$\ell(\gamma) \le k \,\ell(\alpha),$$

where k is an absolute constant, $4.5 \le k \le 17.5$.

2. Harmonic measure in John disks.

A bounded Jordan domain $D \subset C$ is said to satisfy a harmonic doubling condition if for some $z_0 \in D$ and some constant $c_0 > 0$,

(2.1)
$$\omega(z_0, \alpha; D) \le c_0 \, \omega(z_0, \beta; D)$$

for each pair of consecutive arcs α, β on ∂D with $\operatorname{dia}(\alpha) \leq 2 \operatorname{dia}(\beta)$, where $\omega(z_0, \gamma; D)$ is the harmonic measure of γ at the point z_0 with respect to D.

REMARK 2.2. If *D* satisfies (2.1) for some $z_0 \in D$, then it satisfies (2.1) for every $z_1 \in D$ with a constant c_1 which depends on c_0 , z_0 and z_1 .

PROOF. Fix $z_1 \in D$ and fix consecutive arcs $\alpha, \beta \subset \partial D$ with dia $(\alpha) \leq 2$ dia (β) . Since ω is nonnegative and harmonic,

$$rac{\omega(z_1, lpha; D)}{\omega(z_0, lpha; D)} \le k \quad ext{and} \quad rac{\omega(z_0, eta; D)}{\omega(z_1, eta; D)} \le k$$

where $k = e^{h_D(z_0, z_1)}$. (See, for example, [H, Theorem 6].) Thus by hypothesis we have

$$\frac{\omega(z_1, \alpha; D)}{\omega(z_1, \beta; D)} \le \frac{\omega(z_0, \alpha; D)}{\omega(z_0, \beta; D)} k^2 \le c_0 k^2 = c_1$$

and hence (2.1) holds for every $z_1 \in D$ with $c_1 = c_0 (e^{h_D(z_0, z_1)})^2$.

THEOREM 2.3. A bounded Jordan domain $D \subset C$ is a c-John disk if and only if it satisfies a harmonic doubling condition.

To prove Theorem 2.3 we need a lemma.

LEMMA 2.4. Suppose that D is a bounded Jordan domain in C and let $z_0 \in D$. Then the following conditions are equivalent, where the constants in each condition need not be the same but depend on each other:

- (1) D is a c-John disk.
- (2) There exist constants c and $\delta > 0$ such that

(2.5)
$$\frac{\operatorname{dia}(\alpha_1)}{\operatorname{dia}(\alpha)} \le c \left(\frac{\omega(z_0, \alpha_1; D)}{\omega(z_0, \alpha; D)}\right)^{\delta}$$

for all arcs $\alpha_1 \subset \alpha \subset \partial D$.

(3) There exists a constant c > 1 such that

(2.6)
$$\omega(z_0, \alpha; D) \le c \,\omega(z_0, \alpha_1; D)$$

for all arcs $\alpha_1 \subset \alpha \subset \partial D$ with dia $(\alpha) \leq 2$ dia (α_1) .

PROOF. The equivalence of (1) and (2) is proved in [P, Theorem 1]. To prove the equivalence of (2) and (3), we first assume that (2) holds and let $\alpha_1 \subset \alpha$ be arcs on ∂D with dia $(\alpha) \leq 2 \operatorname{dia}(\alpha_1)$. Then

$$\frac{\omega(z_0,\alpha_1;D)}{\omega(z_0,\alpha;D)} \ge c^{-\frac{1}{\delta}} \left(\frac{\operatorname{dia}(\alpha_1)}{\operatorname{dia}(\alpha)}\right)^{\frac{1}{\delta}} \ge (2c)^{-\frac{1}{\delta}}$$

and hence we have (2.6) with a constant $(2c)^{\frac{1}{6}}$. Next suppose that (3) holds. Then by induction it is not difficult to show that

(2.7)
$$\omega(z_0,\alpha;D) \le c^n \, \omega(z_0,\alpha_1;D)$$

for all arcs $\alpha_1 \subset \alpha \subset \partial D$ with $\operatorname{dia}(\alpha) \leq 2^n \operatorname{dia}(\alpha_1)$ and for each integer n > 0.

Now given any arcs $\alpha_1 \subset \alpha \subset \partial D$, there exists an integer n > 0 such that

(2.8)
$$2^{n-1} \operatorname{dia}(\alpha_1) \le \operatorname{dia}(\alpha) \le 2^n \operatorname{dia}(\alpha_1)$$

Then by (2.7) we have

(2.9)
$$\omega(z_0,\alpha;D) \le c^n \omega(z_0,\alpha_1;D).$$

Let $\delta = \frac{\log 2}{\log c}$. Then by (2.8) and (2.9) we obtain

$$\frac{\omega(z_0,\alpha;D)}{\omega(z_0,\alpha_1;D)} \le c^n = c \left(2^{\frac{1}{b}}\right)^{n-1} = c (2^{n-1})^{\frac{1}{b}} \le c \left(\frac{\operatorname{dia}(\alpha)}{\operatorname{dia}(\alpha_1)}\right)^{\frac{1}{b}}.$$

Hence we get (2.5) with a constant c^{δ} .

PROOF OF THEOREM 2.3. For the necessity suppose that a harmonic doubling condition does not hold for D. Then for j = 1, 2, ... there are consecutive arcs α_j, β_j on ∂D such that

(2.10)
$$\operatorname{dia}(\alpha_j) \leq 2 \operatorname{dia}(\beta_j)$$
 and $\omega(z_0, \alpha_j; D) \geq 3^j \omega(z_0, \beta_j; D).$

Thus dia($\alpha_i \cup \beta_i$) $\leq 3 \operatorname{dia}(\beta_i)$ and hence by Lemma 2.4 (2) and by (2.10)

$$\frac{1}{3} \le \frac{\operatorname{dia}(\beta_j)}{\operatorname{dia}(\alpha_j \cup \beta_j)} \le c \left(\frac{\omega(z_0, \beta_j; D)}{\omega(z_0, \alpha_j \cup \beta_j; D)}\right)^{\delta} \le c \left(\frac{\omega(z_0, \beta_j; D)}{\omega(z_0, \alpha_j; D)}\right)^{\delta} \le c \left(3^{-j}\right)^{\delta}$$

which yields a contradiction as $j \to \infty$.

For the sufficiency, by Lemma 2.4 it suffices to show that *D* satisfies (2.6). Let $\alpha_1 \subset \alpha$ be arcs of ∂D with dia $(\alpha) \leq 2 \operatorname{dia}(\alpha_1)$.

Suppose first that α_1, α have a common endpoint. Then dia $(\alpha \setminus \alpha_1) \leq 2 \operatorname{dia}(\alpha_1)$ and hence by (2.1), $\omega(z_0, \alpha \setminus \alpha_1; D) \leq c_0 \omega(z_0, \alpha_1; D)$ for some $z_0 \in D$. Thus

(2.11)
$$\omega(z_0,\alpha;D) \le (c_0+1)\,\omega(z_0,\alpha_1;D).$$

Next suppose that $\alpha \setminus \alpha_1$ consists of two disjoint subarcs α_2, α_3 . Then for j = 2, 3 dia $(\alpha_1 \cup \alpha_j) \le 2$ dia (α_1) and hence $\omega(z_0, \alpha_1 \cup \alpha_j; D) \le (c_0 + 1)$ $\omega(z_0, \alpha_1; D)$ by what was proved above. Thus

(2.12)
$$\omega(z_0, \alpha; D) \le 2(c_0 + 1) \, \omega(z_0, \alpha_1; D)$$

Therefore by (2.11) and (2.12) *D* satisfies (2.6) with $c = 2(c_0 + 1)$.

3. Hyperbolic geodesics in John disks.

We say that a domain $D \subset C$ is a *M*-quasiextremal distance or *M*-QED domain with respect to $E \subset D$, $1 \leq M < \infty$, if for each pair of disjoint continua $F_1, F_2 \subset E$

(3.1)
$$\operatorname{mod}(\Gamma) \leq M \operatorname{mod}(\Gamma_D),$$

where Γ and Γ_D are the families of curves joining F_1 and F_2 in C and in D, respectively.

THEOREM 3.2. Suppose that D is a bounded simply connected domain in C. Then the followings are equivalent:

(1) D is a c-John disk.

(2) There exists a constant c > 0 such that for each hyperbolic geodesic $\gamma \subset D$

(3.3)
$$\ell(\gamma) \le c(z_0, \partial D),$$

where z_0 is the euclidean midpoint of γ .

- (3) There exists a constant c > 0 such that if f is analytic with
- $(3.4) |f'(z)| \le 1$

in D, then for all $z_1, z_2 \in D$

$$(3.5) |f(z_1) - f(z_2)| \le c \operatorname{dist}(z_0, \partial D),$$

where z_0 is the euclidean midpoint of the hyperbolic geodesic $\gamma \subset D$ joining z_1 to z_2 .

(4) *D* is a *M*-QED domain with respect to all hyperbolic geodesics in *D* with a given point $z_0 \in D$ as an endpoint.

Here the constants in each condition need not be the same but depend on each other. In particular, from (4) we obtain a John constant c in (1), which depends on M and a given point z_0 .

PROOF OF EQUIVALENCE OF (1) AND (2). Let $D \subset C$ be a bounded *c*-John disk and let z_0 be the euclidean midpoint of a hyperbolic geodesic γ with

endpoints z_1 and z_2 in *D*. By [GHM, 2.16 Lemma], there exists a crosscut α of *D* containing z_0 which separates the components of $\gamma \setminus \{z_0\}$ in *D* and

(3.6)
$$\ell(\alpha) \le c_1 \operatorname{dist}(z_0, \partial D),$$

where c_1 is an absolute constant. Next since *D* is a *c*-John disk, there exists a John center x_0 , a c-John arc β_1 from z_1 to x_0 , and a *c*-John arc β_2 from z_2 to x_0 .

If x_0 is in the component of $D \setminus \alpha$ which contains z_2 , then by (3.6) there exists a point w in $\alpha \cap \beta_1$ such that

$$\ell(\beta_1(z_1, w)) \le c \operatorname{dist}(w, \partial D) \le c \,\ell(\alpha) \le cc_1 \operatorname{dist}(z_0, \partial D).$$

Since $\beta_1(z_1, w) \cup \alpha(z_0, w)$ is a curve which joins z_1 to z_0 in D and since $\gamma(z_1, z_0)$ is a hyperbolic geodesic in D with z_1 and z_0 as its end points, Lemma 1.3 and (3.6) imply that

$$\ell(\gamma) = 2\,\ell(\gamma(z_1, z_0)) \le 2k\,(\ell(\beta_1(z_1, w)) + \ell(\alpha(z_0, w))) = 2kc_1(c+1)\,\operatorname{dist}(z_0, \partial D)$$

where k is an absolute constant. If x_0 is in the component of $D \setminus \alpha$ which contains z_1 , then the above argument applied to the arc β_2 yields the desired inequality. Finally if $x_0 \in \alpha$, then by Lemma 1.3 and (3.6),

$$\ell(\gamma) = 2 \ell(\gamma(z_1, z_0)) \le 2k \left(\ell(\beta_1) + \ell(\alpha(x_0, z_0))\right)$$
$$\le 2k(c \operatorname{dist}(x_0, \partial D) + c_1 \operatorname{dist}(z_0, \partial D)).$$

Since α joins x_0 to ∂D ,

$$\ell(\gamma) \leq 2k(c\,\ell(\alpha) + c_1\operatorname{dist}(z_0,\partial D)) \leq 2kc_1(c+1)\operatorname{dist}(z_0,\partial D)$$
.

Conversely, suppose that (2) holds and let $L = \sup \ell(\gamma)$, where the supremum is taken over all possible hyperbolic geodesics γ with endpoints in D. Then there exist two points $z_1, z_2 \in D$ such that $\ell(\gamma) = \frac{L}{2}$, where γ is the hyperbolic geodesic joining z_1 to z_2 in D. Let z_0 be the euclidean midpoint of γ . Then by (3.3),

(3.7)
$$\operatorname{dia}(D) \ge \operatorname{dist}(z_0, \partial D) \ge \frac{1}{c} \ell(\gamma) = \frac{1}{2c} L.$$

Now fix a point $z \in D$ and let w_0 be the euclidean midpoint of the hyperbolic geodesic α joining z to z_0 in D. If $x \in \alpha(w_0, z)$, then we can find a point $x_1 \in \alpha(x, z_0)$ with $\ell(\alpha(z, x)) = \ell(\alpha(x, x_1))$ and by (3.3) applied to $\alpha(z, x_1)$,

(3.8)
$$\ell(\alpha(z,x)) = \frac{1}{2} \ell(\alpha(z,x_1)) \le \frac{c}{2} \operatorname{dist}(x,\partial D).$$

If $x \in \alpha(z_0, w_0)$, then we can find a point $x_2 \in \alpha(x, z)$ with $\ell(\alpha(x, z_0)) = \ell(\alpha(x_2, x))$. Then again by (3.3) applied to $\alpha(z_0, x_2)$ and by (3.7),

(3.9)
$$\ell(\alpha(z,x)) \le L \le 2c \operatorname{dist}(z_0, \partial D) \le 2c \left(\ell(\alpha(x_2, z_0)) + \operatorname{dist}(x, \partial D)\right)$$
$$\le 2c(c+1) \operatorname{dist}(x, \partial D).$$

Hence by (3.8) and (3.9) D is a c_1 -John disk with $c_1 = 2c(c+1)$.

PROOF OF EQUIVALENCE OF (2) AND (3). First suppose that D satisfies (2). Then D is a b-John disk, where b depends only on c. Let f be analytic and satisfy

$$|f'(z)| \le \operatorname{dist}(z, \partial D)^{\alpha - 1}$$

for some $0 < \alpha \le 1$ in *D*. Fix $z_1, z_2 \in D$, and let γ be the hyperbolic geodesic joining z_1 to z_2 in *D*. Next let *s* denote arclength measured along γ from z_1 , let z(s) denote the corresponding representation for γ , and set g(s) = f(z(s)). Then

$$|g'(s)| = |f'(z(s))|$$

while

$$\min(s, l-s) \le b_1 \operatorname{dist}(z(s), \partial D) , \qquad l = \ell(\gamma)$$

where $b_1 \ge 1$ is a constant depending only on b, by [GHM, Theorem 4.1]. Thus

$$|g'(s)| \le \operatorname{dist}(z(s), \partial D)^{\alpha-1} \le \left(\frac{\min(s, l-s)}{b_1}\right)^{\alpha-1}$$

for 0 < s < l, and hence

(3.11)
$$|f(z_1) - f(z_2)| = |g(l) - g(0)|$$
$$\leq \int_0^l |g'(s)| \, ds \leq 2b_1^{1-\alpha} \int_0^{\frac{l}{2}} s^{\alpha-1} \, ds$$
$$= \frac{2b_1^{1-\alpha}}{\alpha} \left(\frac{l}{2}\right)^{\alpha} \leq \frac{c_1}{\alpha} \operatorname{dist}(z_0, \partial D)^{\alpha},$$

where $c_1 = b_1 c$. If f satisfies (3.4) in D, then f satisfies (3.10) with $\alpha = 1$. Hence, f satisfies (3.11) with $\alpha = 1$, i.e. f satisfies (3.5).

Now suppose that (3.5) holds for any analytic function f on D which satisfies (3.4). By [KW, Theorem 1] with k = 1, for $z_1, z_2 \in D$

$$\inf_{\beta} \int_{\beta} |d\zeta| \le c_1 \sup_{f} |f(z_1) - f(z_2)|,$$

where the infimum is taken over all Jordan arcs β in D joining z_1 to z_2 , c_1 is

an absolute constant, and the supremum is taken over all analytic functions f on D with $|f'(z)| \le 1$. Thus by Lemma 1.3,

$$\ell(\gamma) \le k \inf_{\beta} \ell(\beta) \le k c_1 \sup_{f} |f(z_1) - f(z_2)| \le k c_1 c \operatorname{dist}(z_0, \partial D)$$

for an absolute constant k, where γ is the hyperbolic geodesic joining z_1 to z_2 in D and z_0 is the euclidean midpoint of γ .

REMARK 3.12. Note that this proof shows that if (3.4) implies (3.5), then *D* satisfies (2) and hence

$$|f'(z)| \leq \operatorname{dist}(z, \partial D)^{\alpha-1}$$

in D implies

$$|f(z_1) - f(z_2)| \le \frac{c}{\alpha} \operatorname{dist}(z_0, \partial D)^{\alpha}$$

for any $0 < \alpha \leq 1$.

In order to prove the equivalence of (1) and (4), we need a lemma which shows that each hyperbolic line in D which joins two points on ∂D lies in the middle of D. See [R, Lemma 4.13] and [PR, Theorem 3.3].

LEMMA 3.13. Suppose that D is a simply connected proper subdomain in C and that $\gamma \subset D$ is a hyperbolic line joining $w_1, w_2 \in \partial D$ and dividing D into disjoint subdomains D_1 and D_2 . Then

$$\frac{1}{b} \le \frac{\operatorname{dist}(z, \alpha_1)}{\operatorname{dist}(z, \alpha_2)} \le b, \qquad b = 3 + 2\sqrt{2}$$

for all $z \in \gamma$, where $\alpha_j = \partial D_j \setminus \overline{\gamma}$, j = 1, 2.

PROOF OF EQUIVALENCE OF (1) AND (4). Suppose that $D \subset \mathbb{C}$ is a bounded *c*-John disk with fixed John center z_0 . Fix $z_1 \in D$ and let γ be the hyperbolic geodesic joining z_0 to z_1 in *D*. Fix two disjoint continua F_1 , F_2 of γ . Then by [K, Theorem 2.1] and the construction on [GO, pp. 67-68], there is a *K*-quasidisk G_1 in *D* such that $\gamma \in \overline{G_1}$, where *K* depends only on *c*. Thus by [GM3, Remark 2.23], G_1 is *M*-QED with respect to G_1 for some constant *M*, $1 \leq M < \infty$, which depends only on *K*, and hence only on *c*. Therefore, since $\Gamma_{G_1} \subset \Gamma_D$,

$$\operatorname{mod}(\Gamma) \leq M \operatorname{mod}(\Gamma_{G_1}) \leq M \operatorname{mod}(\Gamma_D),$$

where Γ , Γ_{G_1} , Γ_D are the families of curves which join F_1 and F_2 in C, G_1 , D, respectively.

Suppose next that z_0 is a point in D and that D is M-QED with respect to

all hyperbolic geodesics in D which have z_0 as an endpoint. Fix $z_1 \in D$, $z_1 \neq z_0$ and let γ be the hyperbolic geodesic joining z_0 to z_1 in D.

We show first that for some constant a > 1 and for all $z \in \gamma$

(3.14)
$$\min(|z_0 - z|, |z - z_1|) \le a \operatorname{dist}(z, \partial D).$$

Suppose otherwise. Then for each constant a > 1, there is a point $z \in \gamma$ such that $\min(|z_0 - z|, |z - z_1|) > a \operatorname{dist}(z, \partial D)$. Fix a constant a > 1 and let $b = 3 + 2\sqrt{2}$. Then for a constant ab > 1 there is a point $z \in \gamma$ such that

$$\min(|z_0 - z|, |z - z_1|) > ab \operatorname{dist}(z, \partial D).$$

Consider the hyperbolic line in D which contains γ and which has the endpoints $w_1, w_2 \in \partial D$ and let α_1, α_2 be as described in Lemma 3.13. Then $dist(z, \partial D) = \min_{j=1,2} dist(z, \alpha_j)$. Thus we may assume that $dist(z, \partial D) = dist(z, \alpha_1)$ and hence by Lemma 3.13

$$(3.15) \qquad \qquad \operatorname{dist}(z,\alpha_2) \le b \operatorname{dist}(z,\partial D).$$

Let $r = b \operatorname{dist}(z, \partial D)$. By means of a preliminary similarity mapping we may assume that z = 0. Then $z_0, z_1 \notin B(0, ar)$. Let $A = B(0, ar) \setminus \overline{B}(0, \sqrt{ar})$. For j = 0, 1, let F_j denote a component of $A \cap \gamma(0, z_j)$ which joins the two boundary circles of A. Then by [V, Theorem 10.12],

(3.16)
$$\operatorname{mod}(\Gamma) \ge \operatorname{mod}(\Gamma_A) = \frac{2}{\pi} \log \sqrt{a},$$

where Γ , Γ_A are the families of curves joining F_0 and F_1 in **C** and in *A*, respectively. Now let $B = B(0, \sqrt{ar}) \setminus \overline{B}(0, r), E = \partial B(0, r)$, and $F = \partial B(0, \sqrt{ar})$. Then by (3.15), Γ_D is minorized by Γ_B and hence by [V, 7.5]

(3.17)
$$\operatorname{mod}(\Gamma_D) \le \operatorname{mod}(\Gamma_B) = 2\pi \left(\log \frac{\sqrt{ar}}{r} \right)^{-1} = \frac{2\pi}{\log \sqrt{a}},$$

where Γ_B is the family of curves joining *E* and *F* in *B* and Γ_D is the family of curves joining F_0 and F_1 in *D*. Then by the hypothesis, (3.16) and (3.17)

$$\frac{2}{\pi}\log\sqrt{a} \le \operatorname{mod}(\Gamma) \le M \operatorname{mod}(\Gamma_D) \le \frac{2\pi M}{\log\sqrt{a}}$$

and hence

$$M \ge \left(\frac{\log\sqrt{a}}{\pi}\right)^2.$$

This holds for each constant a > 1 and it leads a contradiction, which establishes (3.14).

Next to show that D is a c-John disk, by [NV, Lemma 2.10] we need to prove that for some constant $c \ge 1$ and for all $z \in \gamma$

$$(3.18) |z-z_1| < c \operatorname{dist}(z, \partial D).$$

For this let $L = \max\{|z_0 - z| : z \in \partial D\}$, $k = \frac{L}{\text{dist}(z_0, \partial D)}$ and $c_1 = \max(a, k)$. If $|z - z_1| < |z - z_0|$, then by (3.14)

$$(3.19) |z-z_1| < a \operatorname{dist}(z, \partial D).$$

If $|z - z_1| > |z - z_0|$, then $|z_0 - z_1| \le L$ and (3.14) give

$$\frac{|z-z_1|}{c_1} < \frac{|z-z_0|}{a} + \frac{|z_0-z_1|}{k} < \operatorname{dist}(z,\partial D) + \operatorname{dist}(z_0,\partial D)$$
$$\leq |z-z_0| + 2\operatorname{dist}(z,\partial D) < (a+2)\operatorname{dist}(z,\partial D).$$

Hence

(3.20)
$$|z - z_1| < c_1(a+2) \operatorname{dist}(z, \partial D).$$

Therefore by (3.19) and (3.20) we obtain (3.18) with $c = c_1(a+2)$, which depends on M and z_0 .

Note that in the proof of equivalence of (1) and (4) in Theorem 3.2, what we get from (4) is the John condition on all hyperbolic geodesics with a given point z_0 as an end point and a fixed constant $c = c(z_0, M)$. If c were independent of z_0 , we are in the uniform domain case as follows.

COROLLARY 3.21. Suppose that D is a bounded finitely connected domain in C. Then D is c-uniform if and only if D is a M-QED domain with respect to all hyperbolic geodesics in D. Here c and M depend only on each other.

PROOF. Suppose that D is c-uniform. Then by [GM3, Theorem 2.22], D is a M-QED domain with respect to D, M = M(c), and hence with respect to all hyperbolic geodesics in D. For the sufficiency, let z_1, z_2 be two disjoint points in D and let γ be the hyperbolic geodesic in D with endpoints z_1, z_2 . Then by an argument similar to that for the proof of (3.14)

(3.22)
$$\min(|z_1 - z|, |z - z_2|) \le a \operatorname{dist}(z, \partial D)$$

for all $z \in \gamma$ and for some constant a > 1. Also by the same argument as the proof of [GM3, Lemma 2.7]

$$(3.23) \qquad \qquad \ell(\gamma) \le k |z_1 - z_2|,$$

where k, $1 < k < \infty$, is a constant depending only on *M*. Therefore [NV, Theorem 2.16], (3.22) and (3.23) imply that *D* is *c*-uniform with $c = \max(a, k)$, which depends only on *M*.

Next we characterize unbounded Jordan John disks with $\infty \in \partial D$ in terms of the hyperbolic geodesics in their exteriors.

LEMMA 3.24 [GHM], [NV], [R]. A Jordan domain $D \subset C$ is a c-John disk if and only if each pair of points $z_1, z_2 \in D^*$ can be joined by a continuum $E \subset D^*$ with

$$\operatorname{dia}(E) \le c_1 |z_1 - z_2|.$$

Here the constants c *and* c_1 *depend only on each other.*

THEOREM 3.25. A Jordan domain $D \subset C$ with $\infty \in \partial D$ is a c-John disk if and only there is a constant $c_0 \geq 1$ such that for each hyperbolic geodesic γ in D^*

where z_1, z_2 are the endpoints of γ . Here c and c_0 depend on each other.

To prove this we need a lemma which gives the diameter version of the Gehring-Hayman inequality in Lemma 1.3. See [R, Lemma 3.22] and [PR, Theorem 3.2].

LEMMA 3.27. Suppose that γ is a hyperbolic geodesic in a simply connected proper subdomain $D \subset C$ and that α is an arc which joins the endpoints of γ in $D \cap \overline{B}(z_0, r)$ for $z_0 \in C$. Then

$$\gamma \subset \overline{B}(z_0, br), \qquad b = 3 + 2\sqrt{2}.$$

PROOF OF THEOREM 3.25. Suppose first that a Jordan domain $D \subset \mathbb{C}$ is a c-John disk with $\infty \in \partial D$. Then by Lemma 3.24 for each pair of points $z_1, z_2 \in D^*$ there exists a continuum $E \subset D^*$ such that $\operatorname{dia}(E) \leq c_1|z_1 - z_2|$. Thus by [NV, Lemma 4.3], E can be replaced by an arc $\alpha \subset D^*$ with $\operatorname{dia}(\alpha) \leq c_2|z_1 - z_2|$ for any $c_2 > c_1$. Next let γ be the hyperbolic geodesic joining z_1 and z_2 in D^* . Then α is an arc which joins the endpoints of γ . Now choose a point $z_0 \in \alpha$ such that $|z_1 - z_0| = |z_2 - z_0|$ and let $r = \operatorname{dia}(\alpha)$. Thus $\alpha \subset D^* \cap \overline{B}(z_0, r)$, while $\gamma \subset \overline{B}(z_0, br)$ with $b = 3 + 2\sqrt{2}$ by Lemma 3.27. Hence

$$\operatorname{dia}(\gamma) \le 2br = 2b\operatorname{dia}(\alpha) \le 2bc_2 |z_1 - z_2|$$

and this shows (3.26) with $c_0 = 2bc_2$.

Suppose next that (3.26) holds. Then by Lemma 3.24, D is a c-John disk.

4. Hyperbolic distance in John disks.

We define a one-sided analogue of the function j_D in (1.2) as follows:

$$j'_D(z_1, z_2) = \frac{1}{2} \log \left(\frac{\lambda_D(z_1, z_2)}{\operatorname{dist}(z_1, \partial D)} + 1 \right) \left(\frac{\lambda_D(z_1, z_2)}{\operatorname{dist}(z_2, \partial D)} + 1 \right),$$

where λ_D is the inner distance on D,

$$\lambda_D(z_1, z_2) = \inf \ell(\gamma)$$

and the infimum is taken over all paths $\gamma \subset D$ with z_1 and z_2 as endpoints. The main result of this section relates h_D and j'_D in John disks. As mentioned in the introduction, this is a one-sided analogue of a characterization of quasidisks due to Gehring and Osgood [GO]. Their two-sided version characterizes uniform domains, regardless of connectivity, when the hyperbolic metric is replaced by the quasihyperbolic metric.

THEOREM 4.1. A simply connected proper subdomain $D \subset C$ is a c-John disk if and only if there exists a constant $b \ge 1$ such that

(4.2)
$$h_D(z_1, z_2) \le b j'_D(z_1, z_2)$$

for all $z_1, z_2 \in D$. Here the constants c and b depend only on each other.

We will use the following inequality, which is easily derived.

LEMMA 4.3. For any $c \ge 1$ and $x \ge 0$,

$$\log(cx+1) \le c \log(x+1).$$

PROOF OF NECESSITY. Suppose that *D* is a *c*-John disk. Then by [GHM, Theorem 4.1] each $z_1, z_2 \in D$ can be joined by a hyperbolic geodesic γ in *D* such that for all $z \in \gamma$

(4.4)
$$\min_{i=1,2} \ell(\gamma(z_i, z)) \le c_1 \operatorname{dist}(z, \partial D)$$

for some constant c_1 depending only on c. Choose $z_0 \in \gamma$ so that $\ell(\gamma(z_0, z_1)) = \ell(\gamma(z_0, z_2))$. Then by the triangle inequality it is sufficient to show that

(4.5)
$$h_D(z_j, z_0) \le b \log\left(\frac{\lambda_D(z_1, z_2)}{\operatorname{dist}(z_j, \partial D)} + 1\right)$$

for j = 1, 2, where $b = (3c_1 + 2)k$ and k is an absolute constant. By symmetry we may assume that j = 1.

Suppose first that

(4.6)
$$\ell(\gamma(z_1, z_0)) \le \frac{c_1}{c_1 + 1} \operatorname{dist}(z_1, \partial D).$$

Then $z_0 \in B(z_1, \frac{c_1}{c_1+1} \operatorname{dist}(z_1, \partial D))$. If $z \in [z_1, z_0]$, then

$$\operatorname{dist}(z,\partial D) \ge \operatorname{dist}(z_1,\partial D) - |z_1 - z| \ge \frac{1}{c_1 + 1}\operatorname{dist}(z_1,\partial D)$$

and hence

$$\begin{aligned} |z_1 - z| + \operatorname{dist}(z_1, \partial D) &\leq c_1 \operatorname{dist}(z, \partial D) + (c_1 + 1) \operatorname{dist}(z, \partial D) \\ &\leq (2c_1 + 1) \operatorname{dist}(z, \partial D) \,. \end{aligned}$$

If $\rho_D(z)$ is the hyperbolic density in *D*, then the Schwarz lemma and the Koebe distortion theorem give the inequalities

$$\frac{1}{4\operatorname{dist}(z,\partial D)} \leq \rho_D(z) \leq \frac{1}{\operatorname{dist}(z,\partial D)} \ .$$

Thus Lemma 1.3 and Lemma 4.3 yield

$$h_D(z_1, z_0) \leq \int_{[z_1, z_0]} \frac{ds}{\operatorname{dist}(z, \partial D)}$$

$$\leq \int_0^{|z_1 - z_0|} \frac{(2c_1 + 1) \, ds}{s + \operatorname{dist}(z_1, \partial D)}$$

$$\leq (2c_1 + 1) \, \log\left(\frac{\ell(\gamma)}{\operatorname{dist}(z_1, \partial D)} + 1\right)$$

$$\leq (2c_1 + 1)k \, \log\left(\frac{\lambda_D(z_1, z_2)}{\operatorname{dist}(z_1, \partial D)} + 1\right).$$

where k is an absolute constant. This implies (4.5).

Next suppose that (4.6) does not hold and choose $y_1 \in \gamma(z_1, z_0)$ so that

$$\ell(\gamma(z_1, y_1)) = \frac{c_1}{c_1 + 1} \operatorname{dist}(z_1, \partial D).$$

If $z \in \gamma(y_1, z_0)$, then

$$\operatorname{dist}(z,\partial D) \ge \frac{1}{c_1} \ell(\gamma(z_1, z))$$

by (4.4) and hence again

$$\begin{aligned} h_D(y_1, z_0) &\leq c_1 \log \left(\frac{c_1 + 1}{c_1} \frac{\ell(\gamma(z_1, z_0))}{\operatorname{dist}(z_1, \partial D)} \right) \\ &\leq c_1 \log \left(\frac{c_1 + 1}{c_1} \frac{\ell(\gamma)}{\operatorname{dist}(z_1, \partial D)} + 1 \right) \\ &\leq (c_1 + 1)k \log \left(\frac{\lambda_D(z_1, z_2)}{\operatorname{dist}(z_1, \partial D)} + 1 \right). \end{aligned}$$

We also have

$$h_D(z_1, y_1) \le (2c_1 + 1)k \log \left(\frac{\lambda_D(z_1, y_1)}{\operatorname{dist}(z_1, \partial D)} + 1\right)$$

by what was proved above. Then (4.5) follows from the triangle inequality.

PROOF OF SUFFICIENCY. Suppose that (4.2) holds. Fix $z_1, z_2 \in D$ and let γ be the hyperbolic geodesic joining z_1 to z_2 in D. We may assume that $dist(z_1, \partial D) \ge dist(z_2, \partial D)$.

Suppose first that

(4.7)
$$2\lambda_D(z_1, z_2) \leq \operatorname{dist}(z_1, \partial D)$$

Then $|z_1 - z_2| \leq \operatorname{dist}(z_1, \partial D)/2$ and hence

$$z_2 \in B\left(z_1, \frac{\operatorname{dist}(z_1, \partial D)}{2}\right) \subset D.$$

Thus $\lambda_D(z_1, z_2) = |z_1 - z_2|$ and since euclidean disks in *D* are convex with respect to the hyperbolic geometry in *D* [Jø],

$$\gamma \subset \overline{B}\left(rac{z_1+z_2}{2},rac{|z_1-z_2|}{2}
ight) \subset B\left(z_1,rac{\operatorname{dist}(z_1,\partial D)}{2}
ight).$$

Then by Lemma 1.3

(4.8)
$$\min_{j=1,2} \ell(\gamma(z_j, z)) \le \ell(\gamma) \le k |z_1 - z_2| \le k \operatorname{dist}(z, \partial D)$$

for all $z \in \gamma$ and k is an absolute constant.

Next suppose that (4.7) does not hold. By compactness there exists a point $z_0 \in \gamma$ with

$$\operatorname{dist}(z_0, \partial D) = \sup_{z \in \gamma} \operatorname{dist}(z, \partial D).$$

Let *m* denote the largest integer for which

$$2^{m} \operatorname{dist}(z_{1}, \partial D) \leq \operatorname{dist}(z_{0}, \partial D)$$

and let y_0 be the first point of $\gamma(z_1, z_0)$ with

 $dist(y_0, \partial D) = 2^m dist(z_1, \partial D)$

as we traverse γ from z_1 towards z_0 . Clearly

(4.9)
$$\operatorname{dist}(y_0, \partial D) \leq \operatorname{dist}(z_0, \partial D) < 2 \operatorname{dist}(y_0, \partial D).$$

Let $y_1 = z_1$ and choose points $y_2, \ldots, y_{m+1} \in \gamma(z_1, z_0)$ so that y_i is the first point of $\gamma(z_1, z_0)$ for which

(4.10)
$$\operatorname{dist}(y_i, \partial D) = 2^{i-1} \operatorname{dist}(y_1, \partial D)$$

as we traverse γ from z_1 towards z_0 . Then $y_{m+1} = y_0$ and let $y_{m+2} = z_0$.

We show first that for i = 1, m + 1

(4.11)
$$\begin{cases} h_D(y_i, y_{i+1}) \le 2^4 \cdot b^2\\ \ell(\gamma(y_i, y_{i+1})) \le 2^7 \cdot b^2 \operatorname{dist}(y_i, \partial D). \end{cases}$$

Fix $i \in \{1, m+1\}$ and set

$$t = \frac{\ell(\gamma(y_i, y_{i+1}))}{\operatorname{dist}(y_i, \partial D)}.$$

If $z \in \gamma(y_i, y_{i+1})$, then by (4.9), (4.10)

$$\operatorname{dist}(z,\partial D) \leq \operatorname{dist}(y_{i+1},\partial D) \leq 2\operatorname{dist}(y_i,\partial D)$$

and hence

$$t = \int_{\gamma(y_i, y_{i+1})} \frac{|dz|}{\operatorname{dist}(y_i, \partial D)} \le 8 h_D(y_i, y_{i+1}).$$

Since

$$j'_D(y_i, y_{i+1}) \le \log\left(\frac{\lambda_D(y_i, y_{i+1})}{\operatorname{dist}(y_i, \partial D)} + 1\right) \le \log(t+1),$$

(4.2) implies that

$$h_D(y_i, y_{i+1}) \le b \log(t+1) \le b (t+1)^{1/2}.$$

If $t \ge 1$, then

$$t \le 8 h_D(y_i, y_{i+1}) \le 8b (t+1)^{1/2} \le 8b (2t)^{1/2}$$

which implies

$$t \le 2^7 \cdot b^2$$

and hence

$$h_D(y_i, y_{i+1}) \le b (2 \cdot 2^7 \cdot b^2)^{1/2} = 2^4 \cdot b^2.$$

Thus we obtain (4.11). If t < 1, then $t \le 2^7 \cdot b^2$ and again we obtain (4.11). This completes the proof of (4.11).

Now [GP, Lemma 2.1] and (4.11) imply that for $z \in \gamma(y_i, y_{i+1})$, $i = 1, \ldots, m+1$

$$\log \frac{\text{dist}(y_{i+1}, \partial D)}{\text{dist}(z, \partial D)} \le 4 h_D(z, y_{i+1}) \le 4h_D(y_i, y_{i+1}) < 2^6 \cdot b^2 = c_0$$

and thus

(4.12)
$$\operatorname{dist}(y_{i+1}, \partial D) \leq e^{c_0} \operatorname{dist}(z, \partial D).$$

If $z \in \gamma(z_1, z_0)$, then $z \in \gamma[y_{i_0}, y_{i_0+1}]$ for some $i_0 \in \{1, m+1\}$ and hence by (4.10), (4.11) and (4.12)

$$(4.13) \quad \min_{j=1,2} \ell(\gamma(z_j, z)) \le \ell(\gamma(z_1, z)) \le \sum_{i=1}^{i_0} \ell(\gamma[y_i, y_{i+1}]) \\ \le 2 c_0 \sum_{i=1}^{i_0} \operatorname{dist}(y_i, \partial D) = 2 c_0 (2^{i_o} - 1) \operatorname{dist}(y_1, \partial D) \\ < 2 c_0 \operatorname{dist}(y_{i_o+1}, \partial D) \le 2 c_0 e^{c_0} \operatorname{dist}(z, \partial D).$$

Likewise, if $z \in \gamma(z_2, z_0)$, then we also have (4.13). Therefore by (4.8) and (4.13) *D* is a *c*-John disk with $c = 2 c_0 e^{c_0}$.

REMARK 4.14. Theorem 4.1 is easily translated into a result for the quasihyperbolic distance in D, k_D . If we assume that quasihyperbolic geodesics are double *c*-cone arcs in D, the result for k_D can be generalized to finitely connected domains in the plane, and to domains in \mathbb{R}^n which are quasiconformal images of uniform domains. In the quasihyperbolic case, the proof of sufficiency of Theorem 4.1 shows that in a domain $D \subset C$ satisfying

$$k_D(z_1, z_2) \le b j'_D(z_1, z_2),$$

quasihyperbolic geodesics are double c-cone arcs, where c depends only on b.

REFERENCES

- [GH] F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pure Appl. 9 (1962), 353–361.
- [GHM] F. W. Gehring, K. Hag and O. Martio, Quasihyperbolic geodesics in John domains, Math. Scand. 65 (1989), 75–92.
- [GM1] F. W. Gehring and O. Martio, Quasidisks and the Hardy–Littlewood property, Complex Variables 2 (1983), 67–78.
- [GM2] F. W. Gehring and O. Martio, *Lipschitz classes and quasiconformal mappings*, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203–219.

- [GM3] F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mapping, J. Analyse Math 45 (1985), 181–206.
- [GO] F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math 36 (1979), 50–74.
- [GP] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math 30 (1976), 172–199.
- [HL] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math Z. 34 (1932), 403–439.
- [H] D. A. Herron, The Harnack and other conformally invariant metrics, Kodai Math. J. 10 (1978), 9–19.
- [Ja] S. Jaenisch, Length distortion of curves under conformal mapping, Michigan Math. J. 15 (1968), 121–128.
- [JK] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domain, Adv. in Math. 46 (1982), 80–147.
- [Jø] V. Jørgensen, On an inequality for the hyperbolic measure and its applications in the theory of functions, Math. Scand. 4 (1956), 113–124.
- [KW] R. Kaufman and J.-M. Wu, Distances and the Hardy-Littlewood property, Complex Variables 4 (1984), 1–5.
- [K] K. Kim, Necessary and sufficient conditions for the Bernstein inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 419–432.
- [Kr] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19–24.
- [MS] O. Martio and J. Sarvas, *Injectivity theorems in plane and space*, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978), 383–401.
- [NV] R. Näkki and J. Väisälä, John disks, Exposition. Math. 9 (1991), 3–43.
- [P] C. Pommerenke, One-sided smoothness conditions and conformal mappings, J. London Math. Soc. 26 (1982), 77–82.
- [PR] C. Pommerenke and S. Rohde, *The Gehring–Hayman inequality in conformal mapping*, Quasiconformal Mappings and Analysis, Springer-Verlag, submitted.
- [R] K. Kim. Ryu, Properties of John disks, University of Michigan Ph.D. Thesis, University of Michigan (1991).
- [V] J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math. 229, 1971.

DEPARTMENT OF MATHEMATICS PUSAN WOMEN'S UNIVERSITY PUSAN 617–736 KOREA DEPARTMENT OF MATHEMATICS UNIVERSITY OF MICHIGAN ANN ARBOR, MI 48109 USA