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HAHN DECOMPOSITION FOR THE RIESZ CHARGE OF
6-SUBHARMONIC FUNCTIONS

MIKHAIL SODIN

We use standard notions of the potential theory. Let w be a §-subharmonic
function: i.e. a function represented as a difference of two subharmonic
functions. Such a function is well defined outside a certain polar set; i.c.
quasi-everywhere. For simplicity, we consider functions in the whole com-
plex plane.

Defining a continuous function of # > 0

1 2w )
t—N,(t,z) = 7 / w(z + te) df,
0

us
we have quasi-everywhere
= lim N,(t,z2).
w(E) = lim N (1.2)
In fact, that relation can be regarded as a definition of the value w(z) if the
limit on the right-hand side exists in [—o0, 0o]. Consider the set & of points

z such that the function ¢—N,(z,z) has intervals [r,(z), R,(2)],
0 < ry(z) < Ry(z), Ru(z) \, 0 as n — oo, on which

Nip(rn; 2) < Nip(Rp, 2) -
By u[w] we denote the Riesz charge of w(z).
THEOREM. The set & is Borelian, and the restriction p[wl|s is a non-ne-
gative measure.
Corollaries.
1. If w(z) > 0 quasi-everywhere, then
&+ DA{z: lirtn\ioanw(t,z) =0} > {z: w(z) =0},
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and we obtain that

M[W] {z: w(z)=0} >0.

This statement is known as Grishin’s lemma. It was proved in [6], however
weaker versions go back to De la Valléé Poussin [11, p.21] and Brelot [1]. It
found a number of applications in the potential theory [2], in the sub-
harmonic approach to value-distribution theory [3, 4], in the theory of or-
thogonal polynomials [9], in complex dynamics [10]. A different proof with
further generalizations was given in [5].

2. Let &_ = {z: liminf, o N,(t,z) = —oc}. Then & D &_. Hence
pwlls_. > 0.
3. Let

& ={z: limioanw(t, z) < limsup N,(¢,2)}
—

t—0

be the polar set of undeterminancy of w. Then &, D & and u|w)
placing w by —w, we conclude that

u[wll(67) = 0.

Corollaries 2 and 3 answer questions posed by Eremenko. Another proof
of these two corollaries based on the fine potential theory was given by
Fuglede.

o > 0. Re-

4. Define a “dual” set &_ of points z such that for certain intervals
[rn(2), Ry(2)], 0 < ry(2) < Ry(2), Ry(z) \\ 0 as n — oo,

Nw(i’n,z) > Nw(RmZ) .

Then the domain of the function w(z) splits into three mutually disjoint sets
E() = g+ mgf,E+ = (g)+\éa7, E_ = éaf\é{f and

/J'[W“E‘ >0, wpwllp <0,
whilst
luw]|(Eo) = 0.

Here, E, is the set of points z such that the function #—N,,(¢, z) increases
strictly for 0 < < #y(z), and Ej is the set of points z such that the function
t— N, (1, z) decreases strictly for 0 < ¢ < #(z).

This is the version of the Hahn decomposition of u[w] promised in the title
of this paper.
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Proof of the Theorem.

We repeat almost verbatim Grishin’s original arguments. First, we prove
that & is a Borelian set. Since the function z—N,,(¢,z) is continuous, the
sets &(r,R) = {z: Nyw(R,z) > N, (r,z)} are closed. In the definition of & we
may assume without loss of generality that the endpoints r,, R, are rational
numbers. Therefore,

&= U U @@(B’T>
N=1 (mmack) gty N

is a Borelian set. Now, let z € . Then by the Jensen formula

B uwl(D(z, 1) _
/r,, f - Nw(RmZ) - N‘V(r”’z) = 0’

here, D(z,t) = {C: | — z|] < t}. Hence, for each z € &, there is a sequence
of shrinking discs D(z,1,(z)), t,(z) \, 0, such that u[w](D(z,t,(z))) > 0. It
remains to apply the following

CLAIM. Let E be a Borelian set, and let v be a charge on the complex
plane. Suppose that for each z € E there is a sequence t,(z) \, 0 such that

v(D(z,t,(2))) > 0.

Then the restriction I/’E s a non-negative measure.

Proof of the Claim.

Let F C E be an arbitrary compact subset. We prove that v(F) > 0 which
implies the statement.

First, we choose a decreasing sequence of open sets O; such that F = ﬂj 0;
and

lim|v](0)\F) =0.
J

Fixing j, we assume that all radii ,(z), z € F, are less than the distance from
F to Oj; i.e. all discs D(z, t,(z)) are contained in O; for z € F.

Now, the generalized Vitali theorem [7, 2.8] gives us a sequence of mu-
tually disjoint discs D, (depending on j) from the whole collection
{D(z,t4(2))}, z € F, n € N, such that for G; = J, D,

VI(F\G)) = 0.
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Thus v(Gj) =3,
v(F) = liJm v(0;)

= 1[0\ (G U (F\G)) +1(G) + 1(F\G)] >0

because |v|(0;\ (G; U (F\ G)))) < |v|(0;\ F) — 0. We are done.

v(D,) >0, and

Remarks.

1. The assertion of the theorem can be slightly strengthened using the
“Phragmén — Lindeldf trick". Let us fix an increasing C!-function h(7),
0<t<1,h(0)=0, such that

H(t)=o(t) as t—0.
Then we define a set @@(f) making use of the function #—N,.(¢,z) + A(?) in-
stead of N, (z,z). Evidently, 5@ D &,. And we still have

,u[w] 6(:’) >0.

To prove this we replace u[w] by pu. = u[w] + em, where m is the planar-
area measure, and € > 0. Then, for z € é’i and large enough n, we have

iy

t

= Ny(Ry,2) = Nyy(rp, 2) + g&(Ri - ri)

> [Ny(Ry, 2) + h(R,)] — [Ny(ru, 2) + A(r,)] > 0.
(in the first inequality we have used the estimate

e

Ry Ry
h(Rn) - h("n) = / h/(t) dt < m—:/ tdt = 5 [Ri _ ri]

if n is large enough).
Now, using the Claim we conclude that p.
trary number u[w]| @ > 0.

|, > 0 and since ¢ is an arbi-
°+

|(§(+”

2. One may go a little bit further in this direction. Let E be a Borelian set.
Suppose that for some s > 0 there is a non-negative measure )\, such that for
each z € E and each 7, 0 < t < 1y(z),

As(D(z,0) > .

The existence of such a measure is provided by the so-called “anti Frostman
lemma" proved in [8, Lemma 4] for
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. log M(E)
s> A(E) = hr?j}lpw ,
where M. (E) is the smallest number of discs of radius ¢ required to cover E.
The value A(E) is called the upper Minkowski dimension or the box count-
ing dimension. In general, it is bigger than or equal the Hausdorff dimen-
sion, however for many ‘“‘reasonable” sets these two dimensions coincide.
For the discussion of this concept see [7, Chapter 5] and [8]. Ifsuch ), exists,
we can consider the intersection é”‘@ N E where g(f)is defined with an in-
creasing A(t), #(0) = 0, which is C' and such that

H(t)=o(t), t—0.

The same argument as above with p. = p[w] + eX;, € > 0, shows that
> 0.
pufw] Vg =
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