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TWO PROBLEMS ON POTENTIAL THEORY FOR
UNBOUNDED SETS

U. CEGRELL, S. KOLODZIEJ* AND N. LEVENBERG

0. Introduction. Statement of the problems.

We consider two problems which are well-known in classical potential theo-
ry when one studies bounded sets and measures having compact support. Let
L denote the plurisubharmonic (psh) functions in CN of logarithmic growth:

L � fu psh in CN : u�z� ÿ log jzj � c � c�u�; jzj ! �1g:
This class, as well as associated subclasses, have been extensively studied in
relation with extremal psh functions. For an arbitrary Borel set E � CN we
define the Lÿextremal function

VE�z� � supfu�z� : u 2 L; u � 0 on Eg
and V �E�z� :� lim sup�!z VE���. If V �E 6� 0;�1, then V �E 2 L and
fz 2 E : V�E�z� > 0g is pluripolar. Recall that a set E is pluripolar (equiva-
lently, V �E � �1) if there exists a psh function u with E � fz : u�z� � ÿ1g;
in this case, we can even take u 2 L. Let Ej; j � 1; 2; ::: be an increasing se-
quence of Borel sets in CN and let E :� [Ej. If E is bounded (or if E is
pluripolar), then
(0.1) limj!�1 V �Ej

� V�E pointwise on CN.
Here's a quick proof of (0.1) (see [5]). Clearly if E is pluripolar, so is each Ej

and V �Ej
� V�E � �1. Suppose E is not pluripolar. Clearly

V :� limj!�1 V �Ej
� V�E and V 2 L. Set

F :� [jfz 2 Ej : V�Ej
�z� > 0g;

then F is pluripolar and V � 0 on E ÿ F . Hence V � V �EÿF and we are done
provided we can show:
(0.2) if a set F is pluripolar, then V �E � V �EÿF .
Now clearly V�E � V�EÿF . For the reverse inequality, we can find v 2 L with
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F � fz : v�z� � ÿ1g; since E ÿ F is bounded and v is uppersemicontinuous
we can assume v � 0 on E ÿ F . Then for any u 2 L with u � 0 on E ÿ F and
any � > 0,

�1ÿ ��u� �v � VE � V �E :

Thus u � V �E almost everywhere (a. e.) and hence everywhere.
Note how boundedness of E was used. If E is unbounded, we show that

(0.1) and (0.2) are still true if N � 1 (Theorem 1.2 and Corollary 1.4) but not
if N > 1. This was a problem posed by Plesniak.
The other result is a positivity and uniqueness theorem for the logarithmic

energy

I��; �� :�
Z Z

log
1

jxÿ yj d��x�d��y�

of signed Borel measures in Rn which have total mass 0 but which are not
necessarily compactly supported. We recall the classical result.

Positivity and Uniqueness Lemma ([6], Theorem 1.16)(n=2). If � is a
signed Borel measure in R2 with I�j�j; j�j� < �1 and j�j�1� < �1 having
compact support and either ��1� � 0 or the support of � is contained inside the
unit disk, then I��; �� � 0 and I��; �� � 0 if and only if � � 0.

The lemma can be extended to certain non-compactly supported measures
in Rn for any n � 2 (Theorem 2.5). Our first attempt at solving the Plesniak
problem in C � R2 led us to this result.
In the case N � 1, the class L, also called the class of subharmonic func-

tions of minimal growth, has been studied by many authors including Ar-
sove, Ess�en, Haliste, Hayman, Huber, Lewis, Shea and Wu; we refer the
reader to [3] for specific references.
We would like to thank the mathematics departments of Umea³ University

and the University of Auckland as well as the New Zealand Mathematical
Society for their support. The third author would also like to thank V. Totik
for many helpful discussions. In addition, the authors thank the referee for
valuable comments.

1. The Plesniak problem.

The Plesniak problem (both (0.1) and (0.2)) has a negative answer in C2 as
the following example due to [2] shows.

Example 1.1. Let E � f�z1; z2� 2 C2 : jz2j � 1g [ f�z1; z2� 2 C2 : z1 � 0;
jz2j � 2g and F � f�z1; z2� 2 C2 : z1 � 0; 1 < jz2j � 2g. Then
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V �EÿF �z1; z2� � log� jz2j 6� log�
jz2j
2
� V �E�z1; z2�:

Proof. Clearly V �EÿF �z1; z2� � log� jz2j. To see that V �E�z1; z2� � log� jz2j2 ,
note first that since E � f�z1; z2� 2 C2 : jz2j � 2g, we have V �E�z1; z2�
� VE�z1; z2� � log� jz2j2 . Now, since E ÿ F � E, VE�z1; z2� � V �E�z1; z2�
� log� jz2j. This shows that VE ; V�E are independent of z1; for if we fix z02,
then f �z1� :� V �E�z1; z02� � log� jz02j for all z1; thus f is bounded and hence
constant. Since VE�0; z2� � 0 for jz2j � 2 we have VE�0; z2� � log� jz2j2 ; thus
this better bound persists on all of C2; i.e., VE�z1; z2� � log� jz2j2 .
Note, in this example, for any sequence of bounded Borel sets Ej with

Ej � Ej�1; E � [Ej , we have

lim
j!�1

V�Ej
�z1; z2� � V�EÿF �z1; z2� � log� jz2j 6� V�E�z1; z2�:

We see here the phenomenon of propagation of singularities that can occur in
CN for N > 1 but not in C; the one-variable proof sketched in the introduc-
tion of equality of V �EÿF and V �E in the bounded case fails for the following
reason: if u 2 L and u � ÿ1 on F , then necessarily u � ÿ1 on the whole
complex line

F � :� f�z1; z2� 2 C2 : z1 � 0; z2 2 Cg
(F � is the pluripolar hull of F ; see [1] for further results). For any 0 < � � 1,
the function v��z� :� � log jz1j is ÿ1 precisely on F �; clearly these functions,
and hence any v 2 L which is ÿ1 on F �, cannot remain bounded above on
E ÿ F .

Theorem 1.2. Let Ej; j � 1; 2; ::: be an increasing sequence of Borel sets in
C and let E :� [Ej. Then

lim
j!�1

V�Ej
� V �E :

Proof. The proof is based on the following preliminary result. Below,
``q.e. on E'' means everywhere on E except perhaps a polar set; SH(U) de-
notes the subharmonic functions on U; and ``� �M on @U '' means
lim supz!� ��z� �M for all � 2 @U .

Lemma 1.3. Let u 2 L; u � 0 (but u 6� 0) and E � C with u � 0 q.e. on E.
Let U be a connected component of fu <Mg for some M > 0. Suppose that

ujU � �supf� 2 SH�U� : � � 0 on E 0; � �M on @Ug���1:1�
where E 0 :� fu � 0g \U. Then given c > 0 with c <M and given z0 2 U ÿ E,
there exists w 2 L such that
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1. w � u in the complement of U;
2. w � c on E \U;
3. w � u� c everywhere in C; and
4. w�z0� > u�z0� ÿ c.

Furthermore, if F 0 :� fw � cg \U, then

wjU � �supf� 2 SH�U� : � � c on F 0; � �M on @Ug��:

Proof of Lemma 1.3. The set U is bounded by the theorem of Wiman-
Valiron (see [3], page 384 or [4], page 197). For this theorem tells us that
given t > 1, there exist Rj " �1 such that

inf
jzj�Rj

u�z� > 1
t

sup
jzj�Rj

u�z�:

Clearly limj!�1 supjzj�Rj
u�z� � �1; hence, given M > 0, we can choose Rj

with U \ fz : jzj < Rjg 6� ; and
inf
jzj�Rj

u�z� >M:

Since U is connected, it is path connected; using this, an easy exercise shows
that U � fz : jzj < Rjg.
Recall we are assuming that

ujU � �supf� 2 SH�U� : � � 0 on E 0; � �M on @Ug���1:1�
where E 0 :� fu � 0g \U . Now since E n E 0 is polar, we can find g sub-
harmonic in C with g � 0 on U and E n E 0 � fg � ÿ1g. We let
Uj " U ; j � 0; 1; 2; ::: be an exhaustion sequence for U with the property that
g is bounded on the boundary of every Uj. This can be achieved since by
Theorem 6.3 in [3], given z0 2 C and R > 0, one can find a circle
fz : jzÿ z0j � rg; r < R, on which g is bounded. Then any compact set con-
tained in U may be covered by the interiors of these circles.
Fix a sequence of positive numbers fcjg with cj < cj�1 " c. Set

h1 :� �supf� 2 SH�U� : � � c1 on E 0; � �M on @Ug��:
Then u < h1 � u� c1 in U . In particular,

h1�x� � c1 for x 2 E 0:�1:2�
Since h1 > u in U and g is bounded on @U0 �� U , we can choose d1 > 0
such that h1 � d1g > u on @U0 and

d1g�z0� > ÿc1:�1:3�
Then

268 u. cegrell, s. kolodziej and n. levenberg



{orders}ms/990063/cegrell.3d -20.11.00 - 10:42

f1 :�
h1 � d1g; on U0;
max�h1 � d1g; u�; on U nU0;
u; on C nU

8<:
is a well defined, subharmonic function. We have f1�z0� > u�z0� ÿ c1 and
f1 � c1 on E 0 (see (1.2)). Furthermore, since g is negative and c1 is positive,

h1 � d1g � h1 � u� c1

which shows that

f1 � u� c1:�1:4�
Note E 0 � E 01 :� ff1 � c1g from (1.4). Also, since f1 � ÿ1 on �E ÿ E 0� \U0,
we have

�E ÿ E 0� \U0 � int E 01:�1:5�
Set

u1 :� �supf� 2 SH�U� : � � c1 on E 01; � �M on @Ug��; on U ;
u; on C nU :

�
Since E 0 � E 01, if � � c1 on E 01 we have � � c1 on E 0 which shows that
u1 � h1. Thus, for z 2 E 0 we have u1�z� � h1�z� � u�z� � c1 � c1 which means
that z 2 E1 :� fu1 � c1g; i.e., E 0 � E1. We claim that, together with (1.5),
this shows that

E 0 [ ��E ÿ E 0� \U0� � E1:

For if int E 01 � ;, there is nothing to prove. If, on the other hand, int E 01 6� ;,
then u1 � c1 on int E 01 which shows that int E 01 � E1. Moreover, as noted
above, u1 � u� c1; also, from (1.3), u1�z0� � u�z0� ÿ c1. Thus we have a
subharmonic function u1 2 L having the following properties:
u1 � u� c1;
E 0 [ �U0 \ �E ÿ E 0�� � E1 :� fu1 � c1g;
u1 � u outside U ; and
u1�z0� � u�z0� ÿ c1.

If we repeat this construction with u1;U1;E1 and c2 ÿ c1 in place of u;U0;E 0

and c1, we obtain u2 2 L having the following properties:
u2 � u1 � �c2 ÿ c1�;
E 0 [ �U1 \ �E ÿ E 0�� � E1 [ �U1 \ �E ÿ E1�� � E2 :� fu2 � c2g;
u2 � u outside U ; and
u2�z0� � u1�z0� ÿ �c2 ÿ c1� � u�z0� ÿ c1 ÿ �c2 ÿ c1� � u�z0� ÿ c2.

We continue in this fashion getting a sequence fujg such that uj ÿ cj is de-
creasing; it is easy to see that the function w :� lim uj has all the required
properties.
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Proof of Theorem 1.2. Let Ej; j � 1; 2; ::: be an increasing sequence of
Borel sets in CN with E :� [Ej and let V :� limj!1 V �Ej

. Then V � V�E . If
V � 0, then V � V�E implies V �E � 0. Since the case where V � �1 was
covered in the introduction, we need only consider the case where
V 6� 0;�1; i.e., V 2 L, and it clearly suffices to show: given c > 0 and
z0 2 Cÿ E, there exists  2 L with  � c on E and  �z0� > V�z0� ÿ c. For
then  ÿ c � 0 on E; hence V�E�z0� �  �z0� ÿ c > V�z0� ÿ 2c; this inequality
being valid for all c > 0 yields the result. To prove the italicised statement,
note first that V satisfies the hypothesis (1.1) of Lemma 1.3. We now fix an
exhaustion sequence for C of open sets Uj, each of them being a connected
component of fV <Mjg containing z0; here, the sequence fMjg is chosen
with Mj !1. Fix fcjg with c0 � 0, cj > 0 for j > 0, and

P
cj < c: We apply

the lemma repeatedly, first with the data �V ; c0;U0�, obtaining u1 as the new
function; then with data �u1; c1;U1� to get u2; etc. Since uj ÿ

Pjÿ1
k�0 cj is de-

creasing and
P

cj < c, the limit  � lim uj exists;  2 L; and, by the con-
struction,  satisfies the required inequalities.

Corollary 1.4. Suppose E is a Borel set in C and F is a polar set. Then
V �EÿF � V �E.

Proof. Take Ej bounded with Ej " E. Then
V�EÿF � lim

j!1
V�EjÿF � lim

j!1
V�Ej
� V�E :

Remark. As pointed out to the third author by S. Gardiner, for un-
bounded E, V�E 2 L (i.e., V�E 6� 0; �1) if and only if E is not polar and
E� :� fz : 1=z 2 Eg is thin at 0. In this case, the total mass ��1� of the La-
placian of V �E equals 2�; indeed, a characterization of this subclass of the
class L can be found in [3], Theorem 6.32: for a function u 2 L, ��1� � 2� if
and only if

lim
r!�1

supjzj�r u�z�
log r

� 1:

2. Logarithmic potentials in Rn.

In this section, we discuss some general results about logarithmic potentials
and energies of measures in Rn for any n � 2; 3; :::. Let � be a positive mea-
sure on Rn satisfying Z

log �1� jtj�d��t� < �1:�2:1�

Then the logarithmic potential
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p��x� �
Z

log
1

jxÿ yj d��y�

is locally integrable and superharmonic in all of Rn. Furthermore, since

log
1

jxÿ yj � ÿ�log�1� jxj� � log�1� jyj��;

(2.1) implies thatZ
p��x�d��x� �

Z Z
log

1
jxÿ yj d��y�

� �
d��x� > ÿ1:

Definition. Let � and � be two positive measures satisfying (2.1). We call

I��;���
Z Z

log
1
jxÿyjd��x�

� �
d��y�:� lim

M!�1

Z Z
min log

1
jxÿyj;M

� �
d��x�

� �
d��y��2:2�

the mutual energy of � and �.

Note that by Fubini's theorem we have I��; �� � I��; ��. Also, I��; �� may
be equal to �1. Also note that again (2.1) implies that I��; �� > ÿ1. When
is I��; �� < �1?

Lemma 2.1. Let �; � be two positive measures satisfyingZ
log �1� jtj�d��� ���t� < �1:�2:3�

Then p��x� :� R log 1
jxÿyj d��y� 2 L1�d�� if and only if I��; �� < �1. In this

case,

lim
R;S!�1

I��B�0;R��; �B�0;S��� � I��; ��

where �B�0;R� denotes the characteristic function of the ball B�0;R� �
fx : jxj < Rg.
Proof. Clearly if p� 2 L1�d�� then I��; �� < �1. For the converse, sup-

pose I��; �� < �1. For M � 0, we have

log
1

jxÿ yj � min log
1

jxÿ yj ;M
� �

� ÿ�log�1� jxj� � log�1� jyj��:

Now

p��x� �
Z

log
1

jxÿ yj � log�1� jxj� � log�1� jyj�
� �

d��y� ÿ ��1��log�1� jxj��

ÿ R log�1� jyj�d��y� :� f1�x� ÿ f2�x�
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where f2�x� :� ��1��log�1� jxj�� � R log�1� jyj�d��y� 2 L1�d�� by hypoth-
esis (2.3). Since

f1�x� :�
Z

log
1

jxÿ yj � log�1� jxj� � log�1� jyj�
� �

d��y� � 0;

it follows that f1 2 L1�d�� if

lim
M!�1

Z Z
min log

1
jxÿyj;M

� �
�log�1�jxj��log�1�jyj�

� �
d��y�

� �
d��x�<�1:

This inequality follows from (2.3), the definition (2.2), and the assumption
that I��; �� < �1.
Finally for each M � 0, the equality

lim
R;S!�1

Z Z
min log

1
jxÿ yj ;M

� �
d��B�0;R����x�

� �
d��B�0;S����y� �R R

min log
1

jxÿ yj ;M
� �

d��x�
� �

d��y�
follows from the monotone convergence theorem. Thus under the assump-
tion I��; �� < �1,

I��; �� � lim
M;R;S!�1

Z Z
min log

1
jxÿ yj ;M

� �
d��B�0;R����x�

� �
d��B�0;S����y�

� lim
R;S!�1

I��B�0;R��; �B�0;S���:

Remark. Lemma 2.1 says that under assumption (2.3),

p� 2 L1�d�� if and only if j log jxÿ yjj 2 L1��� ��:
We next turn to the case of signed Borel measures.

Definition. Suppose � is a signed Borel measure satisfyingZ
log �1� jyj�dj�j�y� < �1:�2:4�

We define the logarithmic potential

p��x� �
Z

log
1

jxÿ yj d��y�:

If � is another signed Borel measure satisfyingZ
log �1� jyj�dj�j�y� < �1;�2:40�
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and we have I�j�j; j�j� < �1, we define the mutual energy of �; � by

I��; �� :�
Z Z

log
1

jxÿ yj d��x�d��y�:�2:5�

The following result, whose proof is similar to that of Lemma 2.1, shows
that this is a good definition.

Corollary 2.2. Let �; � be two signed Borel measures satisfying (2.4),
�2:40� and I�j�j; j�j� < �1. Then
1. p� 2 L1���; p� 2 L1���;
2. jI��; ��j < �1;
3. I��; �� � I��; ��;
4. limR;S!�1 I��B�0;R��; �B�0;S��� � I��; ��.
In particular, we get finiteness of the energy I��; �� for a signed Borel

measure satisfying (2.4) and I�j�j; j�j� < �1. Under an extra hypothesis, the
energy is nonnegative. We first deal with some preliminaries. Below, we let
dm � dm�x� denote Lebesgue measure on Rn; we let D � D�Rn� denote the
space of real-valued smooth (C1) functions on Rn of compact support; we
let S be the space of rapidly decreasing functions on Rn; and, finally, S0 de-
notes the space of tempered distributions.

Lemma 2.3. Let 0 < a < n. For f 2 D,

Ca

Z Z
f �x�f �y�
jxÿ yjnÿa dm�x�dm�y� �

Z jf̂ ���j2
j�ja dm���

where Ca � �aÿn=2 ÿ�nÿa2 �
ÿ�a2� > 0 and f̂ ��� :� R f �x�eÿ2�ix��dm�x� (here, x � � :�Pn

i�1 xi�i).

Proof. Let ��x� :� exp�ÿ�jxj2�. Then � � �̂. Also,
dCa

jxjnÿa �
1
j�ja for 0 < a < n=2;

and, by the convolution identity Ca
jxjnÿa �

Ca=2

jxjnÿa=2 �
Ca=2

jxjnÿa=2 for 0 < a < n=2, the
above equation holds for 0 < a < n. For t > 0, let �t�x� � ��x=t�. Then
�̂t��� � tn�̂�t�� � tn��t�� and hence

1
j�ja � �̂t��� �

1
j�ja � t

n��t�� ! 1
j�ja�2:6�

as t! �1. Note also that

�t�x� ! 1�2:7�
as t! �1. We show that
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Z Z
�t�xÿ y�
jxÿ yjnÿa f �y�dm�y�

� �
f �x�dm�x� �

Z d�t�x�
jxjnÿa���jf̂ ���j

2dm���:�2:8�

Then since

Ca

d�t�x�
jxjnÿa��� � �̂t��� �

dCa

jxjnÿa
" #

��� � tn��t�� � 1
j�ja !

1
j�ja

as t! �1 by (2.6), equations (2.7) and (2.8) prove the lemma.
To prove (2.8), we use Parseval's identity:Z Z

�t�xÿy�
jxÿyjnÿa f �y�dm�y�

� �
f �x�dm�x��

Z dZ
�t�xÿy�
jxÿyjnÿa f �y�dm�y�

� �
���f̂ ���dm���

�
Z d�t�x�
jxjnÿa���jf̂ ���j

2dm���:

Lemma 2.4. For f 2 D with
R
fdm � 0,

I�f ; f � :�
Z Z

log
1

jxÿ yj f �x�f �y�dm�x�dm�y� � dn

Z jf̂ ���j2
j�jn dm���

where dn :� 2��n=2ÿ�n2��.
Proof. We have

Ca

Z
f �x�

jyÿ xjnÿa dm�x� � Ca

Z
f �x� 1

jyÿ xjnÿa ÿ 1
� �

dm�x�

��nÿa�Ca

Z
f �x�

1
jyÿxjnÿaÿ1

nÿa

2664
3775dm�x�!dn

Z
f �x� log

1
jxÿyjdm�x� as a!n

since �nÿ a�Ca ! dn as a! n. Now use Lemma 2.3. Note that the fact that
f̂ �0� � 0 shows that jf̂ ���j

2

j�jn is integrable near � � 0.

Theorem 2.5. Let � be a signed measure satisfying
1.
R

log �1� jtj�dj�j�t� < �1;
2. ��1� � 0;
3. I�j�j; j�j� < �1.

Then I��; �� � 0 with equality if and only if � � 0.

Proof. Note from 1., 3., and Corollary 2.2 we get I��; �� < �1.
We first give the proof if � is assumed to have compact support. Let
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� � �� ÿ �ÿ be the Jordan decomposition of �. Given a standard smoothing
kernel  2 D ( � 0;

R
 �x�dm�x� � 1;  �x� � 0 if jxj � 1), we let

 ��x� � 1
�n  �x=�� and �� �  � � �. Then �� 2 D and

R
���x�dm�x� � 0. By

Lemma 2.4,

I���; ��� � dn

Z j�̂����j2
j�jn dm��� � 0:�2:9�

We show that

lim
�!0

I���; ��� � I��; ��:�2:10�

First of all, we note that p���x� :� R log 1
jxÿyj d�

��y� is superharmonic so that

p��� �x� :�
Z

log
1

jxÿ yj d�
�
� �y� ! p���x�

pointwise on Rn. Thus, since �� ! � weak-� as �! 0, for each � > 0,Z
p��� �x�d��� �x� !

Z
p��� �x�d���x�:

By 3. and dominated convergence, we haveZ
p��� �x�d��� �x� !

Z
p���x�d���x�

as �; �! 0. Similarly,Z
p�ÿ� �x�d�ÿ� �x� !

Z
p�ÿ�x�d�ÿ�x�

and Z
p��� �x�d�ÿ� �x� !

Z
p���x�d�ÿ�x�

as �; �! 0. This proves (2.10). Together with (2.9), this shows that

I��; �� � 0

in the case where � has compact support. To prove the uniqueness assertion
in this case, since �; �� have compact support, if

I���; ��� � dn

Z j�̂����j2
j�jn dm��� � dn

Z j d � � ����j2
j�jn dm��� ! 0

then d � � � ! 0 in L2�Rn�. By Parseval's theorem, it follows that  � � � ! 0
in L2�Rn� and hence � � 0.
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If � is not assumed to have compact support, consider

�R :� �B�0;R�� ÿ ��B�0;R���
where d� � dm

m�B�0;1�� denotes normalized Lebesgue measure on the unit ball.
Then �R�1� � 0 so that from the previous case we have

I��R; �R� � 0:

Using Corollary 2.2 and hypothesis 2., as R% �1,

I��B�0;R��; �B�0;R��� ! I��; ��;

I��B�0;R��; ��B�0;R���� ! I��; ��1��� � 0 and

I���B�0;R���; ��B�0;R���� ! I���1��; ��1��� � 0;

it thus follows that

I��R; �R� ! I��; �� � 0:

Assume now that I��; �� � 0. Then I��R; �R� ! 0 so that we can find se-
quences Rk % �1 and �k & 0 with

I� �k � �Rk ;  �k � �Rk� ! 0:

Since

I� �k � �Rk ;  �k � �Rk� � dn

Z j d �k � �Rk���j2
j�jn dm���;

it follows that d �k � �Rk ! 0 in S0. Hence  �k � �Rk ! 0 in S0 which implies
� � 0.
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