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A NOTE ON THE LOCAL INVERTIBILITY OF SOBOLEV
FUNCTIONS

ROBERTO VAN DER PUTTEN

Abstract.

We give some topological and analytical conditions in order that a continuous Sobolev function
be a local homeomorphism. The results are obtained in the setting of the spaces W 1;n�
;Rn� and
W 2;p�
;Rn�.

1. Introduction.

In this paper we deal with the local invertibility of continuous mappings and,
more precisely, with the properties of the branch set of such mappings; we
recall that, if 
 is an open subset of Rn and f : 
! Rn a continuous map-
ping, the branch set of f , denoted by Bf , is the set of all points x 2 
 where f
does not de¢ne a local homeomorphism. It is well known that if f 2 C1, then
Bf � Zf where Zf � fx 2 
 : Df�x� exists and detDf �x� � 0g, but the study
of Bf becomes more di¤cult beyonds the class of smooth mappings. Some
results have been obtained under topological assumptions: if f is light and
sense-preserving (see below for de¢nitions) then the topological dimension of
Bf and f �Bf � is not greater than nÿ 2 and

Bf � Zf [ Sf�1:1�
where Sf � fx 2 
 : f is not weakly di¡erentiable at xg ([11] and [3]).
However, it is not known under what analytical conditions a mapping is

light and sense-preserving ; some results can be found in [7] (mappings with
¢nite dilatation) and in the monograph of Rickman ([11]) on quasiregular
mappings.
Invertibility has been studied also in the setting of nonlinear elasticity: in

fact this requirement guarantees that interpenetration of matter does not
occur. In this case Ball and Sï verak ([2], [13]) have found analytical condi-
tions which implies the global invertibility of Sobolev functions.
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In this paper we present three results in the setting of Sobolev spaces: the
¢rst two concern mappings belonging to W 1;n�
;Rn� and they are slight im-
provements of the recalled result in [11] (Chap. I, Lemma 4.11); we prove
that (1.1) holds if detDf � 0 almost everywhere in 
 and f is either open or
light. The topological degree is widely used in the proofs. The third theorem
concerns mappings belonging to W 2;p�
;Rn�. First we prove that Sf is a set
of zero capacity if p > n�nÿ1�

2nÿ1 ; then we use this result to show that (1.1)
holds if p > nÿ 1;Zf is a set of zero capacity and detDf > 0 almost every-
where in 
.

2. Notations and preliminaries.

Throughout this paper 
 is a nonempty, bounded and open set in Rn, with
n � 2.
We write ln for the Lebesgue measure in Rn and k k for the norm in the

same space. Given x 2 Rn and r > 0;B�x; r� is the open ball of center x and
radius r;Q�x; r� is the set fy 2 Rn : jxi ÿ yij < r; i 2 f1; :::; ngg, where x �
�x1; ::::; xn� and y � �y1; ::::; yn�. If A � Rn; D�A� will be the set of accumula-
tion points of A.
For 1 � p � �1 and m � 1, let Lp�
;Rm� be the collection of all m-tuples

�f1; ::::; fm� of real functions in Lp�
�. For k � 1, we say that f 2Wk;p�
;Rm�
if f 2 Lp�
;Rm� together with its derivatives (in the sense of distribution) up
to kth order; Df will be the distributional Jacobian matrix of f .
Now we introduce the Bessel capacity. Let g be the Bessel kernel, that is

the function whose Fourier transform is

��g��x� � �2��ÿ
n
2�1� kxk2�ÿ1

2;

for p > 1, we de¢ne the Bessel capacity for any set A � Rn as

B1;p�A� � inf

Z
Rn
jf �x�jpdx : f 2 Lp�Rn�; g � f � 1 on A; f � 0

� �
;

where g � f is the convolution of g and f (the elementary properties of Bessel
capacity can be found in [15]).
Let A � Rn. The Hausdor¡ dimension of A is de¢ned by

dimH�A� � supf� � 0 : H��A� > 0g with the convention dimH�;� � 0,
where H� is the �-dimensional Hausdor¡ measure (see [4]).
Now let f : 
! Rn be a continuous mapping. We say that f satis¢es the

condition �N� on 
 if ln�f �A�� � 0 whenever A � 
 is such that
ln�A� � 0. If A � 
 and y 2 Rn, we denote by N�f ;A; y� the number (pos-
sibly in¢nite) of elements of the set A \ f ÿ1�y�. The map f is said to be light
if f ÿ

1�y� is totally disconnected for every y 2 Rn.
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In the following A will be a domain such that A �� 
 and y 2 Rn.
Now we introduce the topological degree. Suppose that y 62 f �@A�. Then

there exists r 2 R, 0 < r < 1, r small enough, such that f induces a homo-
morphism of cohomology groups

f � : Hn�1�B�y; rÿ1�;B�y; rÿ1�nB�y; r�� ! Hn�1�A; @A�:
If g1, g2 are suitable generators of the cohomology groups, there exists an
integer, we denote it ��y; f ;A�, such that f ��g1� � ��y; f ;A�g2; ��y; f ;A� is
called the topological degree of y with respect to the pair �f ;A�.
We say that f is sense-preserving (weakly sense-preserving) if ��y; f ;A� >

0���y; f ;A� � 0� for every domain A �� 
 and y 62 f �@A�:
Now, resorting to the topological degree, we may de¢ne some multiplicity

functions. Given a domain B such that B � A, we say that B is a positive
(negative) indicator domain for �y; f ;A� if y 62 f �@B� and ��y; f ;B� > 0�< 0�.
A ¢nite (possibly empty) collection of pair-wise disjoint positive (negative)
indicator domains for �y; f ;A� is called a positive (negative) indicator system
for �y; f ;A� and is denoted by ���y; f ;A���ÿ�y; f ;A��. Finally we de¢ne the
multiplicity functions

K��y; f ;A� � Sup
X
B2��

��y; f ;B� : �� � ���y; f ;A�
( )

;

Kÿ�y; f ;A� � Sup ÿ
X
B2�ÿ

��y; f ;B� : �ÿ � �ÿ�y; f ;A�
( )

;

K�y; f ;A� � K��y; f ;A� � Kÿ�y; f ;A�
with the convention that K��y; f ;A� � 0�Kÿ�y; f ;A� � 0� if there is no posi-
tive (negative) nonempty indicator system. The multiplicity function K is
related with the concept of essential maximal model continua (e.m.m.c.). We
say that C � Rn is an e.m.m.c. for �y; f ;A� if C is a component of A \ f ÿ1�y�
which is a continuum and if for every open set D such that C � D � A there
exists a positive or negative indicator domain B for �y; f ;A� such that
C � B � B � D. If either K�y; f ;A� � 1 or K�y; f ;A� � �1 then K�y; f ;A�
agrees with the number of e.m.m.c. for �y; f ;A� ([10], II.3.4., Thm. 3).
A sequence fBkgk2N of nonempty domains is called a determining se-

quence for �y; f ;A� if Bk�1 � Bk �� A; y 2 f �Bk�n f �@Bk�, for every k 2 N
and limk!1 diam� f �Bk�� � 0.
Now let x0 2 
; we say that f has a weak di¡erential at x0 if there exists a

linear mapping L : Rn ! Rn and a set B � R such that 0 is a point of right
density of B satisfying
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lim
t!0�
t2B

sup
f �x0 � tz� ÿ f �x0�

t
ÿ L�z�

  : z 2 @Q�0; 1�
� �

� 0:

The following result by Go¡man and Ziemer ([6] ,Thm. 3.4) states the weak
di¡erentiability properties of Sobolev functions.

Theorem 2.1. If f 2W 1;p�
;Rn� with p > nÿ 1, then f is weakly differ-
entiable almost everywhere in 
.

3. Local invertibility of Sobolev functions.

Theorem 3.1. Let f 2W 1;n�
;Rn� be a continuous, open mapping such that
detDf � 0 almost everywhere in 
. Then Bf � Zf [ Sf :
Proof. Let x0 62 Zf [ Sf ; we shall prove that x0 62 Bf . We use the link be-

tween the weak di¡erential and the topological degree ([10], p. 329); if
x0 62 Zf [ Sf , there exist r1; r2 > 0 such that Q�x0; r1� �� 
 and
��y; f ;Q�x0; r1�� � 1 for every y 2 B�f �x0�; r2�.
We show that N�y; f ;Q�x0; r1�� � 1 for every y 2 B�f �x0�; r2�. Since

f is weakly sense-preserving ([11], Ch. VI, Lemma 5.1), we have
�ÿ�y; f ;Q�x0; r1�� � ; for every y 2 Rn; therefore Kÿ�y; f ;Q�x0; r1�� � 0 and
K�y; f ;Q�x0; r1�� � K��y; f ;Q�x0; r1�� for every y 2 Rn. Furthermore

K��y; f ;Q�x0; r1�� � ��y; f ;Q�x0; r1�� � 1�3:1�
for every y 2 B�f �x0�; r2� such that K�y; f ;Q�x0; r1�� < �1 ([10], II. 3.4,
Thm. 2 and Thm. 4). Now we note that f satis¢es the condition (N) ([8],
Corollary B) and, by Theorem 2.1, f is weakly di¡erentiable almost every-
where in 
. This implies that K��; f ;Q�x0; r1�� 2 L1�Rn� ([10], V. 3.3., Thm.
5) and then K�y; f ;Q�x0; r1�� < �1 for almost every y 2 Rn. By (3.1),
K�y; f ;Q�x0; r1�� � 1 for almost every y 2 B�f �x0�; r2� and, therefore, also
N�y; f ;Q�x0; r1�� � 1 for almost every y 2 B�f �x0�; r2� ([10], V. 3.3. Thm. 2).
Since f is open , then N��; f ;Q�x0; r1�� is lower semicontinuous in Rn ([5],
Chap. 5, Thm. 1.3) and this implies that N��; f ;Q�x0; r1�� � 1 everywhere in
B�f �x0�; r2�. On the other hand B�f �x0�; r2� � f �Q�x0; r1�� because
��y; f ;Q�x0; r1�� � 1 for every y 2 B�f �x0�; r2� and then N��; f ;Q�x0; r1�� � 1
everywhere in B�f �x0�; r2�.
Finally, let Ax0 � f ÿ1�B�f �x0�; r2�� \Q�x0; r1�; since f �Ax0� � B�f �x0�; r2�,

the restriction of f to Ax0 is one-to-one and, as f is an open mapping, f is a
homeomorphism from Ax0 to f �Ax0�, that is x0 62 Bf .

Definition 3.2. Let f : 
! Rn be a continuous mapping. For every
y 2 Rn we de¢ne Ry � fx 2 f ÿ1�y�: there exists a sequence fVmgm2N of open
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neighbourhood of x such that diam�Vm� < 1
m, there exists ��y; f ;Vm� and it is

positive for every m 2 Ng:
Remark 3.3. If f is light, weakly sense-preserving and A � 
 is a domain,

we have that Ry \ A is the set of the e.m.m.c. for �y; f ;A�.
In the following lemma , we recall a property of the set Ry for such map-

pings (see also [14]).

Lemma 3.4. Let f : 
! Rn be a continuous, light and weakly sense-preser-
ving mapping. Then D�Ry� \
 � ; for every y 2 Rn.

Proof. By contradiction we suppose that there exists y 2 Rn such that
D�Ry� \
 6� ;. Then let x 2 
 be a limit point of a sequence fxmgm2N in Ry.
Since f is continuous and light, then x 2 f ÿ1�y� and there exists an open
neighbourhood B of x such that B � 
 and f ÿ1�y� \ @B � ;. Let
��y; f ;B� � � � 0; k 2 N satisfying k > � and let fx1; x2; :::::; xkg be k points
of the sequence fxmgm2N belonging to B. Then, for every i 2 f1; 2; :::; kg,
there exists an open neighbourhood Vi of xi such that Vi � B, Vj \ Vl � ;
for every j; l 2 f1; 2; :::; kg and ��y; f ;Vi� � 1:
Finally let V � [ki�1 Vi and 
 � B nV . Then f ÿ1�y� \ @V � ;,

f ÿ1�y� \ @W � ; and therefore f ÿ1�y� \ B � [Ki�1 Vi [W . Consequently

� � ��y; f ;B� �
XK
i�1

��y; f ;Vi� � ��y; f ;W� � k

and this is a contradiction.

Theorem 3.5. Let f 2W 1;n�
;Rn� be a continuous, light mapping such that
detDf � 0 almost everywhere in 
. Then Bf � Zf [ Sf :
Proof. As in Theorem 3.1, we consider x0 62 Zf [ Sf and we prove that

x0 62 Bf . Analogously we can show that there exist r1; r2 > 0 such that
K�y; f ;Q�x0; r1�� � 1 for every y 2 B�f �x0�; r2� satisfying K�y; f ;Q�x0; r1�� <
� 1.
Now we prove that fy 2 B�f �x0�; r2� : K�y; f ;Q�x0; r1�� � �1g � ;. By

contradiction we suppose that there exists y 2 B�f �x0�; r2� such that
K�y; f ;Q�x0; r1�� � �;. Then let fCigi2N be a sequence of e.m.m.c. for
�y; f ;Q�x0; r1��; since f is light, we have Ci � fxig for every i 2 N, and
xi 2 Ry for every i 2 N. Therefore Ry \Q�x0; r1� contains a bounded, in¢nite
subset and this implies that D�Ry� \
 6� ;, which contradicts Lemma 3.4.
Hence we have K�y; f ;Q�x0; r1�� � 1 for every y 2 B�f �x0�; r2� and, by Re-
mark 3.3, this implies that Ry \Q�x0; r1� � fxyg for every y 2 B�f �x0�; r2�.
Now let g�y� � xy for every y 2 B�f �x0�; r2�. We prove that g is a home-

omorphism and g � f ÿ1 in a neighbourhood of f �x0�.
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First we show that g is continuous on B�f �x0�; r2�. Let y 2 B�f �x0�; r2� be a
limit point of a sequence fymgm2N in B�f �x0�; r2� and suppose for contra-
diction that there exists a subsequence fxymkgk2N which converges to
x 2 Q�x0; r1� and x 6� xy. We have that x 2 f ÿ1�y� and therefore
x 2 Q�x0; r1�. Hence x 62 Ry and, since f is light , this implies that there exists
an open neighbourhood W of x such that ��y; f ;W� � 0; consequently, there
exists h 2 N such that ��ymk ; f ;W� � 0 for every k � h. On the other hand
there exists an open neighbourhood Vm of xym such that diam�Vm� < 1

m and
��y; f ;Vm� � 1; then, if we take h� 2 N such that h� � h and Vmk ��W for
every k � h� we have

��ymk ; f ;W� � ��ymk ; f ;Vmk� � ��ymk ; f ;WnVmk� � 0

for every k � h�. Hence ��ymk ; f ;Vmk� � 0 and this is a contradiction.
Therefore g is continuous on B�f �x0�; r2�:
Now we observe that, by the de¢nition of Ry; f �g�y�� � y for every

y 2 B�f �x0�; r2� and then g is one-to-one. Therefore, by the invariance do-
main theorem, g is open and then it is a homeomorphism from B�f �x0�; r2�
to g�B�f �x0�; r2��; consequently f � gÿ1 is a homeomorphism from
g�B�f �x0�; r2�� to B�f �x0�; r2�. Finally we observe that g�f �x0�� � x0 ([10],
pag 329) and g�B�f �x0�; r2�� is an open neighbourhood of x0. Therefore
x0 62 Bf .

Remark 3.6. Theorems 3.1 and 3.5 are not true without the topological
assumptions about f , i.e. if f is neither open nor light, as it is shown by the
following example : let k 2 N; I � �ÿ2; 2�; Ik � �kÿ1; kÿ1 � kÿ2�;F � [k2NIk
and E � F [ �ÿF�; it is easily veri¢ed that x0 � 0 is a point of density 1 for
E (see [4] for the de¢nition). We set

g�x� �
Zx
0

�E�t�dt and f �x; y� � �g�x�; y� if �x; y� 2 I � I

where �E is the characteristic function of E. Then f 2W 1;1�I � I ;R2� and
det Df �x; y� � �E�x� � 0 for almost every �x; y� 2 I � I :
Now we observe that �0; 0� 2 Bf n�Zf [ Sf �. Indeed, if k 2 N, let

Jk � ��k� 1�ÿ1 � �k� 1�ÿ2; kÿ1�; we note that g0�x� � 0 for every x 2 [k2N Jk
and therefore g is constant on each Jk. Then, for every � > 0 we may choose
m 2 N such that Jm � �ÿ�; �� and f �Jm � f0g� is a point. This implies that
�0; 0� 2 Bf . On the other hand, since x0 � 0 is a point of density 1 for E, we
have that f is weakly di¡erentiable in �0; 0� and det Df �0; 0� � 1, that is
�0; 0� 62 �Zf [ Sf �. Finally, we note that f is neither open nor light ; indeed
f �Jk � I� � fg�kÿ1�g � I and f ÿ1�g�kÿ1�; 0� � Jk � f0g for every k 2 N.
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4. Local invertibility of Sobolev functions of higher order.

The following lemma concerns a local property of the ¢bers f ÿ1�y�; the proof
is similar to the one of Theorem 1, (iv) in [2].

Lemma 4.1. Let f 2W 1;n�
;Rn� be a continuous mapping such that
detDf > 0 almost everywhere in 
 and let x0 62 Zf [ Sf .
Then there exist r1; r2 > 0 such that f ÿ1�y� \Q�x0; r1� is a continuum for

every y 2 B�f �x0�; r2�.
Proof. Since x0 62 Zf [ Sf , there exist r1; r2 > 0 such that Q�x0; r1� �� 


and ��y; f ;Q�x0; r1�� � 1 for every y 2 B�f �x0�; r2� (see the proof of Theorem
3.1).

First we observe that f ÿ1�y� \Q�x0; r1� is closed. In fact for every
y 2 B�f �x0�; r2�; f ÿ1�y� \ @Q�x0; r1� is empty and since Q�x0; r1� �� 
 and
f ÿ1�y� is closed in 
, we have f ÿ1�y� \Q�x0; r1� � Q�x0; r1� and this implies
that f ÿ1�y� \Q�x0; r1� is closed.
Now let's suppose by contradiction that f ÿ1�y� \Q�x0; r1� is not con-

nected and consider a partition of compact sets fCigi�1;2 of
f ÿ1�y� \Q�x0; r1�; besides let A1;A2 be disjoint open sets such that
Ci � Ai � Q�x0; r1� �i � 1; 2�. Since y 62 f �@A1� [ f �@A2� we have

1 � ��y; f ;Q�x0; r1�� � ��y; f ;A1� � ��y; f ;A2�:
Without loss of generality we can suppose ��y; f ;A1� � 0. Then there exists
� > 0 such that B�y; �� \ � f �@A1� [ f �@A2�� is empty and ��z; f ;A1� � 0 for
every z 2 B�y; ��; now, f satis¢es condition �N� on 
 ([9], Corollary 3.13)
and therefore, as in Theorem 3.1, one can prove that K�y; f ;A1� < �1 for
almost every y 2 Rn. Hence the following transformation formula holds
([10], II.3.4., Thm 2 and V.3.4., Thm 1)Z

A1

�
B�y;��

�f �x�� detDf �x� dx �
Z

B�y;��

��z; f ;A1� dz

and consequently ln�A1 \ f ÿ1�B�y; ���� � 0. Since A1 \ f ÿ1�B�y; ��� is
open, it follows that A1 \ f ÿ1�B�y; ��� � ; and therefore C1 \ f ÿ1�y� � ;,
which is a contradiction.

In the following we suppose that 
 has a Lipschitz boundary (see [1]).

Lemma 4.2. If f 2W 2;p�
;Rn� with p > n�nÿ1�
2nÿ1 , then B1;p�Sf � � 0.

Proof. From the Sobolev inequalities it follows that f 2W 1;p�
;Rn� with
p > nÿ 1 and then, according to the proof of Theorem 3.4 in [6], we have
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nSf � x 2 
 : Df �x� exists and lim
t!0�

tÿn
Z

Q�x;2t�

jjDf �y� ÿDf �x�jjp dy�

264
8><>:

� tÿnÿp
Z

Q�x;2t�

jj f �y� ÿ f �x� ÿDf �x��yÿ x�jjp dy

375 � 0

9>=>;:
Since Df 2W 1;p�
;Rn2�, there exists a set E � 
 such that B1;p�E� � 0 and

lim
t!0�

tÿn
Z

Q�x;2t�

jjDf �y� ÿDf �x�jjp dy � 0

for every x 2 
nE ([15], Theorem 3.3.3.). Besides, there exists a set F � 

such that B1;p�F � � 0 and

lim
t!0�

tÿnÿp
Z

Q�x;2t�

jjf �y� ÿ f �x� ÿDf �x��yÿ x�jjp dy � 0

for every x 2 
nF ([15], Theorem 3.4.2.). Finally, if we de¢ne G � E [ F , we
obtain Sf � G and B1;p�G� � 0.

In the next theorem we deal with mappings f belonging to W 2;p�
;Rn�
with p > nÿ 1. We recall that, by the Sobolev inequalities, such mappings
have a Hoë lder continuous representative in their equivalence class; we shall
always assume that this representative of f has been choosen.

Theorem 4.3. Let p > nÿ 1 and f 2W 2;p�
;Rn� such that
(a) detDf > 0 almost everywhere in 
,
(b) B1;p�Zf � � 0.

Then Bf � Zf [ Sf ; dimH�Bf � � nÿ p and dimH�f �Bf �� � p�nÿp�
2pÿn .

Proof. Let x0 62 Zf [ Sf ; we shall prove that x0 62 Bf . First we observe
that, by the Sobolev inequalities, f 2W 1;n�
;Rn� and satis¢es the condition
�N� ([9], Corollary 3.13); as in the proof of Theorem 3.1, we can show that
there exist r1; r2 > 0 and a set N � B�f �x0�; r2� such that ln�N� � 0 and
N�y; f ;Q�x0; r1�� � 1 for every y 2 B�f �x0�; r2�nN.
Let Ax0 � f ÿ1�B�f �x0�; r2�� \Q�x0; r1� and let's prove that

N�y; f ;Q�x0; r1�� � 1 for every y 2 f �Ax0�. For this purpose we show that
f ÿ1�y� \Q�x0; r1� � �Zf [ Sf � \ Ax0 for every y 2 N \ f �Ax0�.
Let y 2 N \ f �Ax0� and x 2 f ÿ1�y� \Q�x0; r1�.
First we prove that x 2 �
 nAx0� [ �Zf [ Sf �. Let's suppose by contra-
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diction that x 2 Ax0n�Zf [ Sf �. By the Hoë lder continuity of f , there exists a
sequence of positive real numbers f�ngn2N such that fQ�x;�n�gn2N is a de-
termining sequence for �y; f ;Q�x0; r1�� ([10], p.329). This implies that fxg is a
component of f ÿ1�y� \Q�x0; r1� ([10], II.3.1., Lemma 6); besides
y 2 B�f �x0�; r2� and therefore f ÿ1�y� \Q�x0; r1� is a continuum by Lemma
4.1; consequently fxg � f ÿ1�y� \Q�x0; r1� and y 62 N, which is a contra-
diction. Then x 2 �
 nAx0� [ �Zf [ Sf �:
Finally we show that x 2 Ax0 . Again by contradiction, let's suppose

x 62 Ax0 . Since x 2 Q�x0; r1�, we have x 62 f ÿ1�B�f �x0�; r2�� and this implies
that x 62 f ÿ1�y�, otherwise f �x� � y 2 f �Ax0� � B�f �x0�; r2�, and this is a
contradiction. Then x 2 Ax0 \ ��
nAx0� [ �Zf [ Sf �� � Ax0 \ �Zf [ Sf � and
consequently f ÿ1�y� \Q�x0; r1� � �Zf [ Sf � \ Ax0 for every y 2 N \ f �Ax0�.
Now, by Lemma 4.2 and (b), we obtain

B1;p�f ÿ1�y� \Q�x0; r1�� � B1;p�Zf [ Sf � � 0

for every y 2 N \ f �Ax0�. Since p > nÿ 1, we have

dimH�f ÿ1�y� \Q�x0; r1�� < 1

([15], Th. 2.6.16), and, since f ÿ1�y� \Q�x0; r1� is a continuum by Lemma 4.1,
then diam �f ÿ1�y� \Q�x0; r1�� � 0, that is N�y; f ;Q�x0; r1�� � 1: Therefore
we have proved that N�y; f ;Q�x0; r1�� � 1 for every y 2 N \ f �Ax0� and then
for every y 2 f �Ax0�. This implies that the restriction of f to Ax0 is one ^ to ^
one; by the invariance domain theorem it follows that such restriction is
open and then f is a homeomor¢sm from Ax0 to f �Ax0�, that is x0 62 Bf .
In order to show that dimH�Bf � � nÿ p, it is enough to recall that, by (b)

and Lemma 4.2, B1;p�Bf � � B1;p�Zf � � B1;p�Sf � � 0. Hence Hnÿp���Bf � � 0
for every � > 0 ([15], Theorem 2.6.16) and dimH�Bf � � nÿ p.
Finally we observe that, by the Sobolev inequalities, f 2 Co;�2pÿn�=p�
;Rn�

and therefore Hp�nÿp���=�2pÿn��f �Bf �� � Hnÿp���Bf � � 0 for every � > 0 ([12],
Theorem 29); consequently dimH�f �Bf �� � p�nÿp�

2pÿn .
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