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LOGARITHMIC DIFFERENTIAL FORMS AND THE
COHOMOLOGY OF THE COMPLEMENT OF A DIVISOR

MARTIN P. HOLLAND and DAVID MOND

Introduction.

Let D be a divisor in the complex manifold X , let U � X nD, and denote the
inclusion U ,!X by j. Recall the Grothendieck Comparison Theorem
([Gro]):

Theorem. Let 
���D� denote the complex of differential forms on X with
meromorphic poles along D. Then the de Rham morphism 
���D� ! Rj�CU is
a quasi-isomorphism.

Thus, if X is a Stein space (for example, Cn) then for each cohomology
class c 2 Hp�X nD;C�, there is a differential form ! with pole of finite order
along D, such that for any p-cycle � on X nD one has c��� � R� !.
It is natural to ask what one can say about the order of the pole of ! along

D. For example, if D is a complex submanifold then the order of pole can be
taken to be 1; this generalises the elementary fact that the cohomology of the
complement of f0g in C is generated by the 1-form dz=z. The question of the
order of the pole goes back to Griffiths [Gri]; see also [DD], [D], [K].
In case the divisor D is nonsingular, one can make a stronger statement

than merely that the order of pole is 1: the differential form ! can be as-
sumed to have a logarithmic pole along D. That is, not only does ! have a
pole of order at most 1, but so also does its exterior derivative, d!. Differ-
ential forms with logarithmic poles evidently form a subcomplex of 
���D�,
which is denoted by 
��logD�. This fact was exploited by Castro, Narväez
and Mond in [CMN] to prove a version of the Grothendieck comparison
theorem in which 
���D� is replaced by 
��logD�, for a rather special class
of divisors, namely locally quasihomogenenous free divisors. A divisor D is
free if each term 
p�logD� in the logarithmic complex is locally free as an
oX -module; local quasihomogeneity is the property that in some neighbour-
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hood of each point x 2 D, there is a good C�-action, centred at x, preserving
D.
The theorem of [CMN] can be summarised as saying that the logarithmic

comparison theorem holds for locally quasihomogenenous free divisors.
In this paper we generalise the method of [CMN] to cover a wider class of

locally quasihomogeneous divisors. We construct a spectral sequence con-
verging to H��X nD;C�, whose E1 term involves local cohomology with
coefficients in the 
p�logD�, and give conditions under which the sequence
collapses to the complex 
��logD�. As a consequence of our main results
(Theorems 2.3 and 2.4), we prove, for example, that the logarithmic com-
parison theorem holds if either D is a surface with only simple (i.e. du Val)
singularities, or if D is a surface with smooth normalisation eD, such that the
projection � : eD! D has only simple singularities in the sense of [Mo1].
Another consequence of our results (see 2.6) is that the logarithmic com-
parison theorem holds for some but not all simple isolated hypersurface
singularities in Cn, for n � 3. In fact, it holds precisely for those in the table
below.

Ak : xk�11 � x22 � � � � � x2n; k � 1 except k odd; n even
Dk : xkÿ11 � x1x22 � x23 � � � � � x2n; k � 4 n odd
E6 : x41 � x32 � x23 � � � � � x2n
E7 : x31x2 � x32 � x23 � � � � � x2n n odd
E8 : x51 � x32 � x23 � � � � � x2n:

Our main technical result concerning isolated singularities is:

Theorem. Suppose that D is a divisor with isolated singularity at x in the n-
dimensional complex manifold X, and that D is weighted homogenenous at x
with respect to positive integer weights w1; . . . ;wn. Let h 2 oX ;x be a reduced
defining equation for D of weight r. Then the following statements are equiva-
lent:
(a) the logarithmic comparison theorem holds at x;
(b) �Rij�CU �x � 0 for i � 2;
(c) �oX ;x=Jh�irÿPwj

� 0, for 1 � i � nÿ 2;
(d) the link of x in D is a Qÿhomology sphere.

Furthermore, each of these statements implies that hi�
��logD��x � 0 for
i � 2, and if n � 3 the reverse implication also holds.

1. The logarithmic defect.
1.1. A polynomial h 2 C�x1; . . . ; xn� is quasihomogeneous with respect to
(positive integer) weights w1; . . . ;wn if it is homogeneous when the variable xi
is considered to have degree wi, for 1 � i � n. An analytic divisor D � U ,
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where U is a non-empty open subset of Cn, is quasihomogeneous (with re-
spect to these weights) if it is the zero locus in U of a quasihomogeneous
polynomial.
An analytic divisor D in an n-dimensional complex manifold X is locally

quasihomogeneous if for each point y 2 D there exist local coordinates
�U ; x1; . . . ; xn� centred at y (i.e. xi�y� � 0, for 1 � i � n) and weights
w1; . . . ;wn (depending on y) with respect to which D \U � U is quasihomo-
geneous. Note that quasihomogeneity does not imply local quasihomogene-
nity: it is shown in [CMN2] that the quasihomogeneous hypersurface D in C3

defined by x5z� x3y3 � y5z is not locally quasihomogeneous. It is singular at
each point �0; 0; z�, but only when z � 0 is there a good C�-action centred at
�0; 0; z� preserving D.
However, it is evident that if h is a quasihomogeneous polynomial defin-

ing a hypersurface D with an isolated singularity at the origin then D � Cn is
locally quasihomogeneous.
Let D be a divisor in a complex manifold X . Saito in [Sa] defines the co-

herent sheaf 
p�logD� of logarithmic differential p-forms on X to be those
meromorphic differential forms ! such that both ! and d! have a pole of
order at most one along D. Off the divisor 
p�logD� coincides with 
p

X . He
points out that exterior differentiation and wedge product make 
��logD�
into a differential graded algebra and observes that contraction by vector
fields in Der�logD� leaves 
��logD� stable. Here, Der�logD� denotes the
sheaf of vector fields on X that stabilise iD.

1.2. In fact, it will be more convenient in this section to work locally. Fix,
throughout this section, D � U a quasihomogeneous divisor in an open sub-
set U of Cn. Let S � C�x1; . . . ; xn� and suppose that the variables have
weights w1; . . . ;wn. Let us say that h 2 S, a polynomial of weighted degree r,
defines D at 0. Throughout this section we simplify notation by not distin-
guishing notationally between 
p�logD� and the stalk of this sheaf at 0. We
enforce a similar convention for Der�logD�.
The assumption that h is quasihomogeneous evidently leads to filtrations

on 
p�logD� and Der�logD� etc. Perhaps the clearest way to understand this
is as follows. The sheaf of algebraic logarithmic differential p-forms for an
algebraic divisor is defined analogously to 
p�logD�. Let 
p

alg�logD� denote
the the sheaf of algebraic logarithmic p-differential forms for the divisor
in Cn defined by the quasihomogeneous polynomial h. Evidently
ÿ�Cn;
p

alg�logD�� is a graded S-module. Further, it is easy to see that, in
fact, the natural map ÿ�Cn;
p

alg�logD�� 
S oCn; 0! 
p�logD� is an iso-
morphism. In general, if N is a graded S-module we write Nk for the part of

logarithmic differential forms and the cohomology of the ... 237



{orders}ms/990063/holland.3d -20.11.00 - 10:29

degree k and N�a� for the graded S-module with N�a�k � Na�k. If
M � N 
S oCn;0 then we use the notation M�a� :� N�a� 
S oCn;0.
It is shown in [Sa] that the natural contraction map 
1�logD� �Der

�logD� ! oCn;0 is a perfect pairing. Also, there is an isomorphism
Der�logD��rÿPwk� ! 
nÿ1�logD� defined by v 7!�v�dx1 ^ . . . ^ dxn=h�.
In the sequel, we often write dx=h for dx1 ^ . . . ^ dxn=h.
Note that the Euler field �e �

P
wixi@=@xi is in Der�logD�. We define


p�log h� to be the submodule Ker ��e of 
p�logD�.
An easy but important observation is that for ! 2 
p�logD�:

r! � ��e��dh=h� ^ !� � �dh=h� ^ ��e!:
It follows from this that �
��logD�; ��e� and �
��logD�; �dh=h� ^ � are split
exact. In particular, one has that


p�logD� � 
p�log h� � �dh=h� ^ 
pÿ1�log h� � 
p�log h� � 
pÿ1�log h�:�1:3�
Likewise, Der�logD� � oCn;0��e� �Der�log h�, where Der�log h� denotes

the submodule of Der�logD� vanishing on h. Putting this together with the
isomorphism Der�logD� ! 
nÿ1�logD� one deduces that the above decom-
position of 
nÿ1�logD� is:


nÿ1�logD� � oCn;0��e�dx=h� � �dh=h� ^ 
nÿ2�log h�
� oCn;0�rÿ

X
wk� � 
nÿ2�log h�:�1:4�

Proposition 1.5. Suppose that D is locally quasihomogeneous. Then
(a) The module 
p�logD� is reflexive. In fact,


p�logD� � HomoCn ;0�^pDer�logD�;oCn;0�:
(b) The wedge product gives a perfect pairing


p�logD� � 
nÿp�logD� ! 
n�logD� � oCn;0�rÿ
X

wj�:

Proof. (a) It follows from [Sa, Lemma 1.5] that there is a natural map
� : 
p�logD� ! HomoCn ;0�^pDer�logD�;oC n;0�. This is easily seen to an iso-
morphism if n � 1. Since D is locally quasihomogeneous, and not merely
quasihomogeneous, in a neighbourhood of any point distinct from the origin
it is isomorphic to a product C�D0 for a locally quasihomogeneous divisor
D0 of lower dimension (see [CMN2, Lemmas 2.2, 2.3]). Thus, by induction
on dimension, we may assume that � is an isomorphism at all points of a
neighbourhood of 0, except possibly at 0 itself. It remains to establish the
isomorphism at 0. Consider the short exact sequence:
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0! 
p�logD� ÿ!� HomoCn ;0 �^p Der�logD�;o Cn ;0 � ! Cok� ! 0:

By assumption, the right-most term is supported at 0. The middle term is
reflexive and so has depth at least two. We claim that the same is also true of
the first term. This will certainly ensure that the right-most term is zero, as
we need. In fact, this claim follows from the argument of [OT, Lemma 5.14].
(b) This is proved similarly to (a).

1.6. There is natural structure of a graded S-module on Hq
0 �
p

alg�logD��,
the qth cohomology group with supports in the origin and coefficients in

p

alg�logD�, as this identifies with the local cohomology group
Hq

S��ÿ�Cn;
p
alg�logD���. Consider now the analogous analytic situation.

Unfortunately, the qth cohomology group with supports in the origin
Hq

0 �
p�logD�� is, in general, bigger than the local cohomology group
Hq

mCn ;0
�
p�logD�� (which coincides with Hq

0 �
p
alg�logD��).

However, because of the quasihomogeneity of D we can exploit an eigen-
space decomposition that will allow us to reduce computations to the alge-
braic case. Precisely, the Lie derivative L�e defines an endomorphism of

p�logD� and hence an induced one of Hq

0 �
p�logD��. Let us write
Hq

0 �
p�logD��m for the eigenspace of this endomorphism corresponding to
the eigenvalue m. We will show in a moment that this eigenspace is the same
as the corresponding algebraic one and, further, that the complex
Hq

0 �
��logD�� has all its cohomology concentrated in degree zero. These
facts are certainly implicit in [CMN2], see especially the discussion after
[CMN2, Lemma 2.1].

Lemma. One has that Hq
0 �
p�logD��m � Hq

0 �
p
alg�logD��m, for all m.

Further, hp�Hq
0 �
��logD��� � hp�Hq

0 �
��logD��0�, for all q; p.
Proof. This will be important later on in the paper so let us explain the

details. Obviously, we may suppose that q > 0. Let U denote the cover of
Cn n 0 by the complements of the coordinate hyperplanes. There is a split
injection of complexes from the weight m part of the ïCech complex to the
full ïCech complex

�C��U;
p�logD��m ! �C��U;
p�logD��:
Of course, we have the equality �C��U;
p�logD��m � �C��U;
p

alg�logD��m.
Furthermore, since �C��U;
p

alg�logD�� is completely reducible under the C�-
action, the cohomology of �C��U;
p

alg�logD��m is exactly H�0 �
p
alg�logD��m. It

follows that there is a (split) injection Hq
0 �
p

alg�logD��m ! Hq
0 �
p�logD��m,

for every m. We now show that it is surjective. Let ! be a ïCech cocycle re-
presenting a cohomology class in Hq

0 �
p�logD�� which has degree m. Note
that this does not yield immediately that ! has degree m. As soon as we show
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that there is a cocycle of weight m representing the same class as ! the lem-
ma will be proved.
We can represent ! as an infinite sum of homogeneous pieces

! �Pk2Z !k, where !k has weight k. As �d! � 0, by assumption, we have
�d!k � 0, for all k. As the class of ! has weight m we have L�e!ÿm! � �d�,
for some � 2 �Cqÿ1�U;
p�logD��. Note that, since h and dh are weighted
homogeneous, each �k lies in �Cqÿ1�U;
p�logD��. In particular,

�kÿm�!k � L�e!k ÿm!k � �d�k:

Consider, now, � �Pk 6�m
1

kÿm�k. This sum converges because
P
�k does.

Further, � 2 �Cqÿ1�U;
p�logD�� because each �k is.
Now !ÿ �d� represents the same cohomology class as ! and

!ÿ �d� �
X
k

!k ÿ
X
k 6�m

!k � !m

does have weight m, as required.

1.7. In fact, if D is locally quasihomogeneous (or free) the degree zero
part of this cohomology vanishes for q � 0, q � 1 and q � n. The first two of
these statements follow for reasons of depth (1.5). The last is a consequence
of local duality (see [BH, 3.6.19]): if N is a finitely generated graded S-
module then there is an isomorphism of graded S-modules

Hq
0 �N�_ � Extnÿq�N; !S�:

Here, if N is any graded S-module, then N_ is the graded S-module with
�N_�k � HomC�Nÿk;C�. Note also that, as graded S-modules, one has
!S � S�ÿPwk�.
1.8. Corollary. Suppose that D is locally quasihomogeneous. Then

Hn
0 �
p�logD��0 � 0.

Proof. By 1.5 and 1.7,

Hn
0 �
p�logD��_0 � Hom�
p

alg�logD�;S�ÿ
X

wk��0 � 
nÿp
alg �logD�ÿr

and the latter is is easily seen to be zero.

1.9. We say that the quasihomogeneous divisor D is log acyclic if
Hq

0 �
p�logD��0 � 0, for all q; p.
More generally, a divisor in a complex manifold is said to be locally log

acyclic if it is locally quasihomogeneous and each point of the divisor is log
acyclic. The starting point for this paper was the fact, noted in [CMN] (see
also [CMN2]), although not in this language, that locally quasihomogeneous
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free divisors are locally log acyclic. Note, also, that a quasihomogeneous free
divisor is log acyclic.

Theorem. If each 
p�logD� has a graded free resolution

0! �ioCn ;0 �ÿris��is ! � � � ! �ioCn ;0 �ÿri0��i0 ! 0

in which rij <
P

k wk then D is log acyclic.

Proof. Fix some q; p. By local duality (1.7), in order to show that
Hq

0 �
p�logD��0 � 0 it is enough to show that Extnÿq�
p
alg�logD�;S

�ÿPwk��0 � 0. But the latter is computed by applying Hom� ;S�ÿPwk��0
to the free resolution of 
p

alg�logD�. The hypothesis that rij <
P

wk

ensures that Hom�S�ÿrij�;S�ÿ
P

wk��0 � 0, completing the proof, as
Extnÿq�
p

alg�logD�;S�ÿ
P

wk��0 is a subquotient of this.
1.10. Definition. Suppose that D is locally quasihomogeneous and that

either n � 3 or that 0 is an isolated singularity. We define the log defect of
D to be Xnÿ2

i�1
dimHnÿi

0 �
i�log h��0:

We denote it by ��logD�. When we work globally with a locally quasiho-
mogeneous divisor E in a complex manifold X , such that either X is three-
dimensional or the singularities of E are all isolated then we use the notation
��logE�x to denote the log defect at a point x of the divisor E.
Suppose that n � 3. It is worth pointing out that by virtue of 1.3 and 1.4

the modules 
1�logD� and 
2�logD� are identical up to a free summand.
Precisely,


1�logD� � 
1�log h� � oC3;0�0� and 
2�logD� � oC3;0�rÿ
X

wk� � 
1�log h�:
In particular,

��logD�0 � dimH2
0 �
1�log h��0 � dimH2

0 �
1�logD��0 � dimH2
0 �
2�logD��0:

Thus, by the definition of log acyclicity and 1.6 we obtain the following re-
sult.

Proposition. Suppose that n � 3. The locally quasihomogeneous divisor D
is log acyclic if and only if it has zero log defect.

1.11. In our next result (only) we relax one of the standing hypotheses of
this section and consider a not necessarily quasihomogeneous divisor.

Lemma. Suppose that D is a not necessarily quasihomogeneous divisor in an
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open subset U of Cn with a unique singuarity at the origin and suppose that h is
a local equation of D at 0.
(a) There is a short exact sequence

0! 
pÿ1�logD�!i 
pÿ1 � 
p!� Mp :� �dh=h� ^ 
pÿ1 � 
p ! 0:

Here i! � �h!; dh ^ !� and ��!1; !2� � �dh=h� ^ !1 ÿ !2. Note that, if D is
quasihomogeneous then i has degree r and � has degree 0.
(b) For p � nÿ 2, we have Mp � 
p�logD�.
(c) For n � 3 and i � 2, the inclusion Mp � 
p�logD� induces an iso-

morphism Hi
0�Mp� � Hi

0�
p�logD��.
(d) If n � 2 then all the 
p�logD� are free. If n � 3 then 
p�logD� has

depth nÿ p, for p � nÿ 2, depth 2, for p � nÿ 1, and depth n, for p � n.

Proof. (a) This is really just the definition of 
p�logD�. If ! 2 
pÿ1��D�
then ! 2 
pÿ1�logD� if and only if h! 2 
pÿ1 and dh ^ ! 2 
p. Certainly
then i has image inside ker�. On the other hand, if �!1; !2� is in the kernel of
� then dh ^ �!1=h� � !2. Thus, we see that �!1; !2� � i�!1=h�.
(d) The claim when n � 2 follows from Saito's results (1.2). So suppose

that n � 3. Note that the short exact sequence

0! Der�logD� ! DeroCn;0!�h Jh � hoCn;0=hoCn;0 ! 0

shows that Der�logD� has depth two. Suppose that 0 � p � nÿ 2. We prove
the result by induction on p, the case p � 0 being trivial. Consider the short
exact sequence of (a) in the case p � 1. Clearly, M1 is either free or has
projective dimension one. On the other hand, M1 agrees with 
1�logD� off
D and at the smooth points of D. Thus, M1 must coincide with 
1�logD�. If
M1 is free then D is free, a contradiction. Thus, M1 � 
1�logD� has projec-
tive dimension one.
Consider the short exact sequence of (a) in the case 2 � p � nÿ 2. By in-

duction, 
pÿ1�logD� has projective dimension pÿ 1. It follows that Mp has
projective dimension p and hence (as p � nÿ 2) depth at least 2. Evidently,
Mp agrees with 
p�logD� off D and at the smooth points of D. Thus, Mp

must coincide with 
p�logD� (proving (b)). Now, induction finishes the
proof of (d).
Note that (c) is clear if p � nÿ 2. If p � nÿ 1 or n then the inclusion of

Mp in 
p�logD� has finite-dimensional cokernel supported at the origin. But
such a module has non-zero zeroth cohomology with supports in the origin
and all its other cohomology groups, with supports in the origin, are zero.
The result is now clear.

1.12. We now return to our standing assumptions of this section. For a
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quasihomogeneous divisor with isolated singularity we can obtain a more
precise result than that of (1.11).

Proposition. Suppose that the origin is an isolated singularity of D. Let
p � nÿ 2. Then
(a) There is a short exact sequence

0! 
pÿ1�log h��ÿr� ÿdh^!
p
��e �dh=h�^ÿÿÿÿÿ!
p�log h� ! 0:

(b) In particular,

Hq
0 �
p�log h��_0 �

�o
Cn ;0=Jh�prÿ�wj

ifq � nÿ p

0 otherwise:

�
Proof. (a) The given sequence is clearly a complex. That the map on the

right is surjective follows from Lemma 1.11. That the map on the left is in-
jective follows from the fact that if dh ^ ! � 0 then, applying, ��e , one ob-
tains rh! � 0.
Finally, exactness in the middle. If ! 2 
p and ��e��dh=h� ^ !� � 0 then

! � dh ^ ���e!=rh�. It follows from this that ��e!=rh is a logarithmic differ-
ential form and, hence, the result.
(b) Note that we may suppose that q < n, by virtue of 1.8. The short exact

sequence shows that 
p�log h� is a nÿ pth syzygy in the Koszul resolution of
oCn;0=Jh corresponding to the regular sequence �@h=@x1; . . . ; @h=@xn�. By lo-
cal duality (1.7) we can compute

Hq
0 �
p�log h��0 � Extnÿq�
p

alg�log h�;S�ÿ
X

wj��0
� Extnÿq�nÿp��S=Jh���nÿ p�r�;S�ÿ

X
wj ��0:

The second equality following by dimension shifting. Finally, it is easy to see
that the above vector space is zero, for 2nÿ qÿ p 6� n, and equals
�S=Jh�prÿPwj

, for q � nÿ p.

1.13. Lemma. Let D be a quasihomogeneous divisor in Cn with an isolated
singularity at the origin. Then

��logD�0 �
Xnÿ2
i�1

dim
ÿ
oCn;0=Jh

�
irÿ�wj

:

In particular, if D � C3 is a quasihomogeneous divisor with an isolated singu-
larity at 0, then

��logD�0 � jf�i1; i2; i3� 2 Z3 : i1; i2; i3 > 0 and i1w1 � i2w2 � i3w3 � rgj:
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Proof. This follows immediately from the Proposition. Note that when
n � 3 then ÿ

oCn;0=Jh
�
irÿ
P

wj
� Sirÿ�wj :

1.14. Examples. Let D � C3 be a quasihomogeneous divisor with an iso-
lated singularity at 0. It is easy to use the above lemma to compute the
logarithmic defect at the origin. For example:
��logD�0 � 0 if the origin is a rational double point.
��logD�0 � 0 if the origin is a triangle singularity. That is, in Arnold's

notation [AGV, p.185], it has one of the 14 types: Q10-Q12, Z11-Z13, S11, S12,
W12, W13, E12-E14, U12.
��logD�0 � 1 for a simple elliptic singularity of type ~E6, ~E7 or ~E8 (in the

notation of [Sa1]).
Of course, it is already well known that the link of each of these singula-

rities (except for the last three) is a rational homology sphere.

2. Proof of the main results.

Remark. If D is a locally quasihomogeneous divisor in a complex manifold
X of dimension three and x is a non-isolated singularity of D then it can
easily happen that ��logD�x � 0 and �R3j�CU�x 6� 0. The reader will easily
supply examples after reading the results of Section 3.

2.1. We now establish the technical results about the spectral sequence
mentioned in the introduction that will be used in the proofs of the theorem
of the introduction. Throughout this section we assume that D is a locally
quasihomogeneous divisor in a complex manifold X of dimension n. Further,
we assume that D is log acyclic except at isolated points.
Note that this latter condition will hold in either of the two cases (a)

dimX � 3 or (b) D has only isolated singularities. If D had only isolated
singularities then the divisor D will be free away from these singular points
If dimX � 3 then again D will be free away from some isolated points (see
[CMN2, Proposition 2.4]). Thus in either case the main theorem of [CMN]
applies.

Proposition Let x 2 D. For any sufficiently small Stein open neighbour-
hood V of x there is a spectral sequence with E1 term

Ep;q
1 � Hq�V n x;
p�logD��

which converges to h��ÿ�V n V \D;
�V\D��. Further, Ep;0
1 � ÿ�V ;
p�logD��,

for all p.

Proof. It follows from the arguments of [CMN2, proof of theorem 1.1]

244 martin p. holland and david mond



{orders}ms/990063/holland.3d -20.11.00 - 10:31

that we may choose a Stein open neighbourhood V of x with the following
properties : (1) For suitable local coordinates centred at x, the divisor
D \ V � V is quasihomogeneous; that is, defined by quasihomogeneous
h 2 S. (2) Writing U � V n V \D, and with the inclusion j : U ! V , the
natural morphism 
��logD� ! Rj�CU is a quasi-isomorphism away from
x � 0.
To simplify notation let us replace D by D \ V . We claim that the argu-

ment of [CMN2, proof of theorem 1.1] shows that there is a spectral se-
quence with E1 term

Ep;q
1 � Hq�V n x;
p�logD��

converging to h��ÿ�V ;
�U ��. For the convenience of the reader we will ex-
plain this here.
Let Vi � V \ fxi 6� 0g and let V 0i � Vi n Vi \D. Thus, fVig and fV 0i g are

Stein open covers of V n 0 and V nD. Consider the double complexes

Kp;q �
M

1�i0<...<iq�t
ÿ�
\q
j�0

Vij ;

p�logD��;

~Kp;q �
M

1�i0<...<iq�t
ÿ�
\q
j�0

V 0ij ;

p�;

each of which is equipped with the ïCech differential �d and exterior derivative
d. The restriction morphism ��;�0 : K�;� ! ~K�;� commutes with both differ-
entials; hence it induces morphisms of the spectral sequences arising from
the standard filtrations on the total complexes of these double complexes.
Denoting the spectral sequences for K� by IE and IIE and those for ~K� by

I ~E
and

II ~E we have

IEp;q
1 � hp�K�;q� � hp�

M
1�i0<...<iq�t

ÿ�
\q
j�0

Vij ;

��logD���;

I ~Ep;q
1 � hp�

M
1�i0<...<iq�t

ÿ�
\q
j�0

V 0ij ;

��� �

M
1�i0<...<iq�t

Hp�
\q
j�0

V 0ij ;C�;

IIEp;q
1 � hq�Kp;�� � Hq�V n 0;
p�logD��; and

II ~Ep;q
1 � hq�~Kp;�� � Hq�V nD;
p�:

By the first paragraph of the proof I�p;q1 : IEp;q
1 !

I ~Ep;q
1 is an isomorphism,

for all p; q. Hence, I�p;q1 is an isomorphism also.
Now,

II ~E evidently collapses at E2 because V nD is Stein. Thus,
II ~E con-

verges to hp�ÿ�U ;
���. Of course, I ~E converges to the same thing. On the
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other hand, the isomorphism I�p;q1 shows that IE also converges to this. Fi-
nally, IIE converges to the same limit as IE.
This establishes the first statement of the proposition, with E � IIE. For

the second, recall from Proposition 1.5 that 
p�logD� has depth at least two.
Thus, the final row in IIE1 is simply ÿ�V ;
��logD��.
2.2. For the rest of this section we assume that either n � 3 or D has only

isolated singularities.

Theorem. The above spectral sequence degenerates at E2 page which is:

0 0G1 00G1 0 0 . . . 0
0 0 0G2 00G2 0 . . . 0
..
. ..

. . .
. . .

. . .
. . .

.

0 0 . . . 0 0Gnÿ2 00Gnÿ2 0
H0 H1 . . . Hnÿ3 Hnÿ2 Hnÿ1 Hn

Here, Hi � hi�ÿ�V ;
��logD���, for i � 0; 0Gi � Hnÿi
0 �
i�log h��0 and

00Gi � Hnÿi
0 ��dh=h� ^ 
i�log h��0, for 1 � i � nÿ 2.

In particular, the natural map from the cohomology of the complex
ÿ�V ;
��logD�� to the cohomology of V nD is an isomorphism if and only if
��logD�0 � 0.

Proof. Note that the quasihomogeneous polynomial h defines a divisor
not just in V but in all of Cn. Abusing notation we will also call this divisor
D. Let U be the cover of Cn n 0 by the complements of the coordinate hy-
perplanes. We consider the spectral sequence F with F1 term

Fp;q
1 � Hq�Cn n 0;
p

alg�logD��:
It is associated to the second filtration on the double complex L�;� with
Lp;q � �Cq�U;
p

alg�logD��.
Notice that for q > 0 we have �Ep;q

1 �0 � �Fp;q
1 �0. This is because of excision:

Hq�Cnn0;
p
alg�logD��0�Hq�1

0 �
p
alg�logD��0�Hq�1

0 �
p�logD��0�Hq�Cnn0;
p�logD��0:
It follows from this and 1.6 that if we can prove that for all r � 2 the dif-
ferentials of Fr pointing to the q � 0 row are all zero then the same will be
true in Er and that Ep;q

r � Fp;q
r , for q � 1.

Furthermore, as we know that the cohomology of the differentials in F1 is
concentrated in degree zero, that is, �Fp;q

2 �0 � Fp;q
2 , if we let G be the spectral

sequence associated to the double complex M�;� :� �L�;��0 then G2 � F2.
Thus, we may as well concentrate our attention on the spectral sequence

G. The first thing to notice is that, by (1.3),
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Mp;q� �Cq�U;
p
alg�logD��0� �Cq�U;
p

alg�logh��0� �Cq�U;�dh=h�^
pÿ1
alg �logh��0

:�0Mp;q�00Mp;q:

Now, �d obviously respects the decomposition. Further, if �!i�2 �Cq�U;
p
alg

�logD��0, say
�!i� � �0!i� � �00!i� 2 0Mp;q � 00Mp;q

then �00!i� � ��dh=h� ^ 0�i�, for some �0�i� 2 0Mpÿ1;q. Now,

d�!i� � d�0!i� � d��dh=h� ^ 0�i� � �d 0!i� ÿ ��dh=h� ^ d 0�i�:
Since d��e � ÿ��ed on 
p

alg�logD�0, we see that d also respects the decom-
position. In other words, this decomposition makes

M�;� � 0M�;� � 00M�;�

into a direct sum of double complexes. Even more is true however, because it
is clear from the above discussion that there is an isomorphism of double
complexes 00M�;� � 0M�ÿ1;�.
Thus, we obtain that the spectral sequence G is a direct sum of spectral

sequences G � 0G� 00G and that

Gp;q
r � 0Gp;q

r � 00Gp;q
r � 0Gp;q

r � 0Gpÿ1;q
r :

We claim that G1 is:

0 0G1;nÿ2
1

00G2;nÿ2
1 0 0 . . . 0 0

0 0 0G2;nÿ3
1

00G3;nÿ3
1 0 . . . 0 0

..

. ..
. . .

. . .
. . .

. ..
. ..

. ..
.

0 0 . . . 0 0Gnÿ2;1
1

00Gnÿ1;1
1 0

G0;0
1 G1;0

1 . . . Gnÿ2;0
1 Gnÿ1;0

1
00Gn;0

1

To see this, firstly note that Gp;nÿ1 � 0, by Corollary 1.8. Also,

n�logD� � �dh=h� ^ 
nÿ1�logD� which accounts for the fact that
Gn;0
1 � 00Gn;0

1 . Now, 
0�logD� and 
n�logD� are both free, which shows that
the initial and final columns are zero above the q � 0-axis. In the case n � 3,
this last fact ensures that Gnÿ2;1

1 � 0Gnÿ2;1
1 and that Gnÿ1;1

1 � 00Gnÿ1;1
1 , and it

follows that G1 is as claimed. So suppose that we are in the isolated case.
Now, by Proposition 1.12, for 1 � p � nÿ 2 and 1 � q 6� nÿ pÿ 1, we have
0Gp;q

1 � 0. Recalling that 0Gpÿ1;q
1 � 0 implies that 00Gp;q

1 � 0 and, likewise, that
00Gp�1;q

1 � 0 implies that 0Gp;q
1 � 0, we obtain the G1-page is as claimed.

Next we claim that the differentials (above the �q � 0�-axis) on the G1-
page are all zero. This follows because the only possibly non-zero ones map
from the �p� q � nÿ 1�-diagonal to the �p� q � n�-diagonal. The former is
pure 0 and the latter is pure 00. Similarly, the only possibly non-zero differ-
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entials on the G2-page map from the �p� q � nÿ 1�-diagonal to the
�p� q � n�-diagonal and so, in fact, are zero.

2.3.We can now give a criterion for the cohomology of the complement to
be logarithmic.

Theorem. Suppose that D is a locally quasihomogeneous divisor in X a
complex manifold. Further suppose that X has dimension three or that D has
only isolated singularities. Let U � X nD and let j : U ! X be the inclusion.
Then, 
��logD� ! Rj�CU is a quasi-isomorphism if and only if

��logD�x � 0, for every x 2 D.
Proof. Note that if V is any sufficiently small open Stein neighbourhood

of x then ��logD�x is zero if and only if the natural map
hq�ÿ�V ;
��logD��� ! Hq�V nD;C� is an isomorphism. On the other hand,
�Rqj�CU�x is the limit, over sufficiently small Stein open neighbourhoods V
of x, of Hq�V nD;C� and, similarly, hq�
��logD��x is the limit of
hq�ÿ�V ;
q�logD���.
2.4. Finally we prove the theorem of the introduction.

Theorem. Suppose that D is a locally quasihomogeneous divisor with only
isolated singularities in a complex manifold X. Let U � X nD and let
j : U ! X denote the inclusion. Finally, for x 2 D, let w1; . . . ;wn be the system
of weights at x, and r the degree of a weighted homogeneous local equation h of
D at x. Consider the following statements:
(a) ��logD�x � 0;
(b) �Rij�CU �x � 0, for i � 2;
(c) �oX ;x=Jh�irÿPwj

� 0, for 1 � i � nÿ 2;
(d) The link of �D; x� is a Q-homology sphere.
(e)hi�
��logD��x � 0, for i � 2.

Then (a)^(d) are equivalent and imply (e). If X has dimension three then (e) is
equivalent to (a)^(d).

Proof. Let us begin by computing the cohomology of ÿ�Cn;
��logD��.
As usual, this coincides with H�, the cohomology of ÿ�Cn;
�alg�logD��0.
Further, we have the usual bigrading

Hp � 0Hp � 00Hp � 0Hp � 0Hpÿ1:

Now the Wang sequence shows that the only possible non-zero values of
H��Cn nD;C� are for � � 0; 1; nÿ 1; n. It follows from Theorem 2.2 that
Hp � 0, for p 6� 0; 1; nÿ 1; n. Furthermore, this shows that H1 � 00H1 and
Hnÿ1 � 0Hnÿ1. On the other hand, looking at 
0

alg�logD� and 
n
alg�logD� we

can see that H0 � 0H0 and Hn � 00Hn. Obviously we have H0 � C. It follows
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that H1 � C�dh=h�. As we have already remarked Hp � 0, for 2 � p � nÿ 2.
Let us turn our attention to Hn. We have

Hn � S�dx=h�
�dh=h� ^ d
 nÿ2

alg
�log h��

 !
0

:

Now the isomorphism Der�log h��rÿPwk� ! 
nÿ2
alg �log h� together with

the fact that Der�log h� is generated by the vector fields
�@h=@xi�@=@xj ÿ �@h=@xj�@=@xi for 1 � i < j � n shows that 
nÿ2

alg �log h� has
a system of generators with degrees

P
k 6�i;j wk, for 1 � i 6� j � n. In parti-

cular, 
nÿ2
alg �log h�0 � 0. It follows that Hn � �S�dx=h��0. Similarly,

Hnÿ1 � �S���e�dx=h���0 � Hn.
(a) () (c). This is immediate from Lemma 1.13
(c) �) (b). Consider the spectral sequence of 2.1 in the case when V � Cn.

By (c) this spectral sequence collapses onto the bottom row which is
h��ÿ�Cn;
��logD��� and computes H��Cn nD;C�. By the hypothesis (c) we
certainly have �oCn;0=Jh�rÿPwj

� 0. On the other hand, Jh contains no
element of degree less than rÿ supwj. Thus, we have Srÿ

P
wj
� 0. It follows,

by the first paragraph of the proof, that Hn � Hnÿ1 � 0. Thus,
Hi�Cn nD;C� � 0, for i � 2. Now let V be any small Stein neighbourhood of
the origin such that V n V \D is a deformation retract of Cn nD. Clearly we
have Hi�V n V \D;C� � 0, for i � 2. This completes the proof that (c) im-
plies (b).
(b) �) (c). On the other hand, (b) is easily seen to yield (c) by virtue of

Theorem 2.2.
(b) () (d). The equivalence of (b) and (d) follows by Alexander duality.
That (a)^(d) imply (e) is clear by Theorem 2.3 That (e) implies the other

statements, if n � 3, can be seen by fine-tuning the proof above that (c) is
equivalent to (b). Specifically, by the first paragraph of the proof
H3 � �Sdx=h�0. This latter vector space has dimension ��logD�0, as required.
2.5. Let us make a few observations about the value of ��logD�x in the

isolated case and its connection with the mixed Hodge structure on the Mil-
nor fibre.

Remark. Suppose that D is a quasihomogeneous divisor in Cn with an
isolated singularity at the origin. Further, suppose that h is an equation for
D with weighted degree r. Let F denote the Milnor fibre, that is, the hy-
persurface defined by hÿ 1 in Cn. Then
(a) The defect ��logD�0 � 0 if and only if hp;nÿp � 0, for p � 1; . . . ; nÿ 1,

where the former are the mixed Hodge numbers of Hnÿ1�F �.
(b) Let W� denote the weight filtration for the nÿ 1st cohomology group

of the Milnor fibre Hnÿ1�F ;R�. Thus,
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0 �Wnÿ2 �Wnÿ1 �Wn � Hnÿ1�F ;R�:
Then ��logD�0 � 0 if and only if Wnÿ1 � Hnÿ1�F ;R�.
(c) If the degree r of h is odd then stabilisation in an odd number of vari-

ables (i.e. replacing h by h� y21 � � � � � y22k�1) yields a divisor with
��logD�0 � 0.
(d) The log defect ��logD�0 is unchanged by stabilisation in an even

number of variables. (i.e. replacing h by h� y21 � � � � � y22k).

Proof. (a) Steenbrink [St.] has computed that

hp;nÿp � dim�S=Jh�prÿPwj
:

Now, by the theorem, the log defect is zero if and only hp;nÿp � 0, for
p � 1; . . . ; nÿ 2. On the other hand, hnÿ1;1 � h1;nÿ1.
(b) The hypothesis that ��logD�0 � 0 is equivalent to GrWn HC � 0, by (a).

On the other hand, the latter says that Wn �Wnÿ1.
(c) Let us assign the weights r=2 to the additional 2k� 1 variables. We

have to consider the sequence of weights �i ÿ �2k� 1�=2�rÿPwj, for
1 � i � n� 2kÿ 1. The weights are clearly not integers. On the other hand,
oCn;0=Jh clearly is concentrated in integer weights.
(d) Consider the log defect of the new equation. It isXn�2kÿ2

i�1
dim�S=Jh�irÿ�wjÿkr �

Xn�2kÿ2
i�1

hiÿk;nÿi�k:

The increase on the old value isXk
i�1

hiÿk;nÿi�k �
Xn�2kÿ1

i�n�kÿ1
hiÿk;nÿi�k

Using hp;q � hq;p and the fact that hiÿk;nÿi�k � 0, for i � k, we obtain the re-
sult.

2.6. By way of illustration we give some examples. The reader will easily
check the statements made using the above results.

Examples. Consider, for n � 3, the quasihomogeneous divisor D in Cn

defined by the series

Ak : xk�11 � x22 � � � � � x2n; k � 1 except k odd; n even
Dk : xkÿ11 � x1x22 � x23 � � � � � x2n; k � 4 n odd
E6 : x41 � x32 � x23 � � � � � x2n
E7 : x31x2 � x32 � x23 � � � � � x2n n odd
E8 : x51 � x32 � x23 � � � � � x2n:
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In each case ��logD�0 � 0. If the condition in the second column fails then
��logD�0 � 1 in types Dk, if k odd, and in types Ak, E7. In type Dk with n
and k both even then ��logD�0 � 2.

2.7. Finally, let us observe, for use elsewhere, that the argument of 2.1
(which is taken directly from [CMN2]) yields the following result.

Corollary Let D be a locally log acyclic divisor in a complex manifold
X, let U � X nD and let j : U ! X be the inclusion. Then the natural map

��logD� ! Rj�CU is a quasi-isomorphism.

3. Finitely determined quasihomogeneous map germs C2; 0! C3; 0.

3.1. Throughout this section we consider a quasihomogeneous map
f : C2 ! C3 which is finitely determined at the origin. Let D denote the im-
age of this map. Denote the coordinate functions on the domain by y1; y2
with weights d1; d2. The coordinate functions on C3 are denoted by x1; x2; x3
with weights w1;w2;w3. Denote by h the quasihomogeneous polynomial de-
fining D and write r for its degree. By [Mo2, Proposition 1,5(i)] we have
r � w1w2w3=d1d2. Now, f �y1; y2� � �f1; f2; f3� and we denote by rf the ideal
of oC2;0 generated by the maximal minors of df .

Theorem. One has the following formula for the log defect:

��logD�0 � dim
ÿ
Naef

�
w1w2w3
d1d2

ÿ�w1�w2�w3� � dim
ÿ
oC2;0=rf

�
w1w2w3
d1d2

ÿd1ÿd2 :

3.2. As a special case we obtain some more examples of divisors with zero
log defect.

Corollary. If f has a simple singularity at the origin then ��logD�0 � 0.

3.3. The corollary follows immediately from the theorem and the follow-
ing two lemmas.

Lemma. If f has a simple singularity at the origin then
dim�Naef �w1w2w3

d1d2
ÿ
P

wi
� 0.

Proof. This follows, by a simple computation, from the explicit descrip-
tion of Naf which can be found in [Mo1].

3.4. Next we need a result that follows from the work of Scheja and
Storch [SS].

Lemma. If f has corank one at the origin thenÿ
oC2;0=rf

�
w1w2w3
d1d2

ÿd1ÿd2 � 0:
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Proof. Without loss of generality, we may take f1 � y1 and so d1 � w1.
We may also assume without loss that f2 � yk2 � . . ., with k � 1, and that
w3 � d2.
Scheja and Storch prove in [SS] that if polynomials t1; . . . ; tn define 0 2 Cn

as a 0-dimensional complete intersection then their Jacobian determinant
generates the (1-dimensional) socle of the the algebra oCn;0=�t1; . . . ; tn�. It
follows, in the graded case, that this is the element of highest weight. Let us
call this weight N.
Now

df �
1 0

@f2=@y1 @f2=@y2
@f3=@y1 @f3=@y2

24 35
and so t1 � @f2=@y2 and t2 � @f3=@y2 generate the ramification ideal rf (and
hence define 0 2 C2 as a complete intersection). Thus, we discover that
N � w2 � w3 ÿ d1 ÿ 3d2. The result will follow if we can show that
rÿ d1 ÿ d2 > w2 � w3 ÿ d1 ÿ 3d2. Thus, we must demonstrate that
w2w3=d2 > w2 � w3 ÿ 2d2. Now w2 � kd2 so this becomes
�kÿ 1�w3 > �kÿ 2�d2. But this is true, since w3 � d2.

3.5. Now we can return to the proof of the theorem.

Proof. By local duality (1.7), using the isomorphism 
2�logD� �
Der�logD��ÿPwi � r�, one has

H2
0 �
2�logD��_0 � Ext1�Der�logD��ÿ

X
wi � r�; !C3�0:

The exact sequence:

0! Der�logD� ! �C3 ! �Jh=h��r� ! 0

together with the equality JhoD � Jh=h shows that that

Ext1�Der�logD��ÿ
X

wi � r�; !C3�0 � Ext2�JhoD�ÿ
X

wi � 2r�; !C3�0:
But now if c is the conductor of oC2 into oD then we have the exact se-
quence

0! JhoD ! c! c=jhoD ! 0:

The conductor c is principal generated by c � �ÿ1�i�@h=@xi�=dfi, where dfi
denotes the ith maximal minor of df (see [Pi, Theorem 1, Example 1]). Since
c � coC2 , Ext��c;oC3� is zero in degrees different from 1. Therefore

Ext2�JhoD�ÿ
X

wi � 2r�; !C3�0 � Ext3�c=JhoD�ÿ
X

wi � 2r�; !C3�0
� Ext3�c=JhoD; !C3��wiÿ2r:
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Furthermore, multiplying by c shows that there is an isomorphism
c=JhoC2;0 � �oC2;0=rf ��ÿdeg c�. Now, there is a short exact sequence of
finite-dimensional modules

0! JhoC2=JhoD ! c=JhoD ! c=JhoC2 ! 0:

Thus, by local duality (1.7), we have

dimExt3�c=JhoD; !C3�Pwiÿ2r � dim
ÿ
JhoC2=JhoD

�
2rÿ
P

wi
� dim�oC2;0=rf �

�ÿdeg c�2rÿPwi
:

By [Mo3, Proposition 2.1] one has that JhoC2=JhoD � Naef �ÿr�. Finally,
deg c � rÿPwi � d1 � d2 and so we obtain that

��logD�0 � dim
ÿ
Naef

�
rÿ
P

wi
� dim

ÿ
oC2=rf

�
rÿd1ÿd2 :

Remark. The simple singularities do not yield all the examples with
��logD�0 � 0. For example, consider a finitely determined map-germ of the
form �x; y�7!�x; y2; yp�x; y2��. A short computation together with Theorem
3.1 shows that ��logD�0 � 0.
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