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ON THE VOLUME OF A SMALL EXTRINSIC BALL IN A
HYPERSURFACE OF THE HYPERBOLIC SPACE

FRANCISCO J. CARRERAS*, AND ANTONIO M. NAVEIRA*

Abstract.

We give a power series formula for the volume of a small extrinsic geodesic ball of a hypersur-
face of the hyperbolic space and derive some geometric consequences.

1. Introduction.

Let M be a k-dimensional Riemannian manifold. A problem to which a lot
of work has been devoted is that of finding to what extent does the volume
of small geodesic balls determine the geometry of M. In this context, a re-
markable paper is [GV]. A variation of this problem have also been con-
sidered. If we restrict ourselves to submanifolds M of the euclidean space
R™!, then, instead of considering the volume of (intrinsic) geodesic balls of
M we can consider the volumes of the intersections with M of geodesic balls
of R""! (extrinsic geodesic balls of M). The question then is the following: If
we assume that the volume of every extrinsic ball in M, of sufficiently small
radius, coincides with the volume of the ball of the same radius in R¥, what
can be said about the submanifold M? This problem has been dealt with in
[KP], for hypersurfaces of the euclidean space, and in [KaP], for submani-
folds of codimension greater than 1. (In [KP] the authors also determine
those submanifolds of R"™"! which satisfy the condition on the volume of
extrinsic balls for all radii.)

We consider here the problem for hypersurfaces of the hyperbolic space
H™! instead of R""!. To begin with, we prove the following power series
formula for the volume of an extrinsic ball in a hypersurface of H"*!:

TueorEM 1.1 Let M C H™™ be a hypersurface of class C°. Then, for any
m € M and any sufficiently small r, we have the following Taylor formula:

* Work partially supported by a DGICYT Grant No. PB94-0972 and by E.C. Contract
CHRX-CT92-0050 “GADGET 11”.
Received July 29, 1996.



ON THE VOLUME OF A SMALL EXTRINSIC BALL IN A HYPERSURFACE ... 221

A(m)r? B(m)r
24(n+2) 560+ 2)(n+ 4) 0(r5)) :

vol(B™ ! (m,r) N M) = ar” (1 +

where B\ (m,r) is the (n+ 1)-dimensional open ball with centre m € M and
radius r > 0 in H', oy, is the volume of the unit ball in R", vol means n-di-
mensional volume, and A and B are functions on M given by

A =6||h|)* = 3K + 4n(n — 1),

B =1440(Ah, k) + 960||V7|)* + 180||R||* + 360]|p||* — 360hAA
—120(n” — 6n + 14)1% + 45h* — 240(n” + 2)||h||*> — 54002 ||h|*
+900||A||* + 8n(n — 1)(10n> — 391 + 62).

In the above theorem, and throughout this paper, /i denotes the second
fundamental form of M, and / = trace Ji is the (non-averaged) mean curva-
ture of M. V is the Levi-Civita connection on M, R, the Riemann curvature
tensor, and p the Ricci curvature tensor. A denotes the “rough’” Laplacian,
that is, if 7 is a tensor field on M, AT is the trace of V2T.

Next, we consider the condition that the extrinsic balls of M have the
same volume as the corresponding balls in the hyperbolic space. To be more
precise, we say that
“A k-dimensional submanifold M of H"*! satisfies the Hyperbolic Extrinsic
Volume Condition (HEVC) if vol(B"*!(m,r) N M) = the volume of the geo-
desic ball of radius r in H¥, for every m € M and sufficiently small r.”

Then, we prove the following results:

PROPOSITION 1.2 a) A connected hypersurface M' C H? satisfies HEVC
<= M" is an open geodesic segment.

b) A connected hypersurface M*> C H* satisfies HEVC <<= M? is totally
umbilical.

PROPOSITION 1.3 M" C H"™! satisfies HEVC=
7+nn+1)>0.

i) 7= —n(n+ 1) or M is minimal = M is totally geodesic.
iil) M cannot be umbilical, except for n = 2.

PROPOSITION 1.4 Let M> C H* be connected, with Vh=0. Then M sa-
tisfies HEVC if and only if it is totally geodesic.

This shows that the case of the hyperbolic space is different from that of
the Euclidean space: under the same hypotheses, a connected hypersurface of
R* with parallel second fundamental form, satisfying the extrinsic volume
condition must be totally geodesic or an open subset of S?(r) x R [KP].
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2. Computation of the riemannian invariants.

Let us denote by H"*! the (n + 1)-dimensional hyperbolic space of constant
sectional curvature —1, represented by Poincaré half-plane; that is,

H# 1 — {(x0, X1, +,Xy) € R"*! such that xo > 0},

with the metric

1
X

In what follows we shall denote the coordinate xy by z, and 0, - -, 0, will
denote a global reference of vector fields in H""!. Let M be a topologically
embedded hypersurface, let m be a point in M, and let us take the co-
ordinates z, xy,- - -, x, in H"*! so that m = (1,0, --,0), the z-axis is orthogo-
nal to M at m, and the x;-axes, 1 < i < n, lie in the principal directions at m.
Then, (x1,---,x,) are local coordinates of M in a neighbourhood of m and,
near m, the hypersurface M can be expressed as a graph

(21) M(Xl"”7x’l) = (Z(xl,-u,x,,),xl,--',x,,),

where (xi,---,x,) lies in a neighbourhood of the origin of R".
Near the origin, we can write

1

1 1
(2.2) z=1 +§Z()\A —1)x% +EZKABCXAXBxc+ﬂZLABCDXAXBchD+O(PS)

where A, ---, A, are the principal curvatures at m,

; 1/2
(2.3) p= (ZXﬁ)
A=1

and the summation in (2.2) extends to all repeating indices from 1 to n. (The
same summation convention is used throughout this section.) It follows ea-
sily that

ny 271720 D8 =G Y Kusexaagre 4 (S0 - 05)

1
_ ﬁZLABCDXAXBxCxD + O(pS)

and
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1 1 3 2
- = 1 - Z()\A — 1))('/24 — gZKABCxAxBXC + Z (Z()\A — 1)x/24)

(2.5 * |
- EZ Lagepxaxpxcxp + O(p°)

We get a basis of the tangent space of M at m by taking partial derivatives in

(2.1):
]\2,4:(2141,0,...71,...’0)7 A=1,---,n.

With respect to this basis, the coefficients of the Riemann metric of M, near
m, are given by

L 1
(2.6) gup = (M4, Mp) = ) (05 + 247p);

we, further, choose as a unit normal vector field

(2.7) v=:zD'/? <—3o +ZZ/AaA>,
A

=1

where
n

(2.8) D=1+ 27
A=1

With respect to this normal vector field, the coefficients of the second fun-
damental form are given by

1
(2.9) hap = h(M,, Mp) :;D71/2(5AB+ZZZIB+Z'AZE).

From (2.2) we have

(2.10) 2 = O —Dxy + %;KABCXBXC + 0(p%)

and

(2.11) Zip= 04— 1)oup+ EC:KABCXC + %;LABCDXAXBXCXD + 0(p*).

Differentiating in (2.6), we find

0 1 2
1B o (et + Zlye) — ;Z'c(fsAB +247),

2.12
( ) axc Z2

and
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O’gun 1
_ " ! / " 1 1 1 1
Oxcoxy 2 (Z4cpZp + Z4Zpcp + ZacZpp + ZapZpc)

2 2
(2.13) — S20(Fhezs + Z4zhe) = Zc(Zins + ZiZpp)
2 6
— 3Zcp(0an+24Zp) + 2c7p(6an + 247p).

In particular,

0
(2.14) ga(m) = 043, agAB (m) =0,
Xc
and
52&13
(215) 4(7}’1) = (6AC(SBD +6AD6BC)(>\A — 1)()\3 — 1) — 26CD6AB()\C — 1)

OxcOxp

From the classical formula for the Christoffel symbols ([KN]), we get

(2.16) r¢,(m) =0, 1<A4,B,C<n.
and
2.17 ¢
( ) aFAA (m):)\A()\Cfl), A#C
8xc
Oy,
kit () = (s = 1)s —2)
or4,
—42 = — -1 A+B
Oxp (m) (A — 1), #
c
aaI;CAB (m) =0, if at least three of the indices 4, B, C, D are different.
D

Let us now consider the components of the curvature tensor, defined as in
[KN], given by

R(0c,0p)dp =Y  Rycpda,  Raseo =Y _ & Ryep-
Then,

o4, 7 ord,
6XC (9XD

(2.18) Ryep = + Z(FgBFéF —Telpp),

and from equations (2.16) and (2.17), we get
(219) RABAB(WI) :)\A)\B_l, A #B

Rypcp(m) =0, if there are three different indices among 4, B, C, D.
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Since the M4, 1 < A < n are an orthonormal basis at m, we get

IRIF(m) =2 (\ads—1) —2(<ZA2>2—§§A2)

A#B

(£ () o
() ()5 o5 )

From (2.9), we get
hAA(Hﬂ :iAA, hAB(nQ IZO,H‘A #iB, lf;A,l?SQn

whence

n

=" AP ) =3 N
A=1

A=1

This allows us to express the curvature invariants of order 2 as follows

(220)  [[RIP(m) =2 <||/3|4 = > X+ 2)A - 2/12) (m) + 2n(n — 1),

A=1

(2.21)

ol (m ZPAA Z(;RABAB> Z (g — X2 — (n—1))2(m)
:(h2||ﬁ|\2+2xg+n(n—1)2_thA§1_2(n_1)h2+2(n_1)||f1|\2)(m)
A=1 A=1
and the scalar curvature
(222) E:pmm—EghAA—Ai—O%—Uxm)=Uf—HMV—nM—1DUM~
Using (2.10) we get
(2.23) D2 =1- %;z’j + - z:: (A — 123 + 0(p?),

and from this expression, (2.10) and (2.11) we find
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(2.24)

hAB:<1— y ()\C—l)xzc+0(p3)> <1—%i()\c—1)2xzc+0(/’3)>'

C=1

<5AB+ (H—ZZ Ae—1)xg+0(p )) (()\A_l)(SAB+ZKABCxC+
C

%ZLABCDXCXD+O(P3)> + ((/\A —1)xy4 +ZKABCXBxc+0(p3))'

C.D

(()\B_1)XB+ZKABCXAXC+0(/73)>>

1 1
:)\A(SAB+ZKABCXC+§ZLABCDXCXD 3= 1848y (Ae—1)x¢

1
+()\A_1)()\B_1)XAXB_§>\A(SABZ()\20— 1)X2C+O(p%)

(Observe that from this expression it follows that || VA||* = S Kigel)
Since

PgtB _0g'Bohyp 0hasp
—A ABj, - +2 +g" ’
(Zg AB) (m)=>_ <3(xc)2 oxc oxc ¢ d(xc)’ o

C

we get from (2.14), (2.15) and (2.24)

(2.25) Ah(m ZLAACC 2ZAA+6||hH +30 —h||h|)*=3(n+2)h+n(n+2).

Similarly,

Z a2hAB Ty )
C xC 8XC E)xc ’

and hence,
(AR, R (m Z/\ALAACC—ZZ/\4+6Z)\3

+(—||h|| + 3HIA|* = 2(n+ 3)[[A)? P+ (n +2)h)(m).

(2.26)

3. An integral formula for the volume of an extrinsic ball.

ProOOF OF THEOREM 1.1 Let us express the volume of B(m,r) N M. We
have, for sufficiently small r,
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1
(3.1) vol(B" Y (m,r) " M) = / —n\/ﬁdxl e dxy,
) £

where Q(r) is the orthogonal projection of B(m,r)NM on
R" =~ {0} x R" ¢ R""!,

Let us introduce spherical coordinates in R", (p,a;,---,a,) by
n
(3.2) xXq4=pay, 1< A4<n; Zaizl.
A=l
This means that each point a = (a;,---,a,) belongs to the unit sphere

S"=1(1) = 8" in R”, and p is given by (2.3).
We shall need the following lemma

LEMMA. For any sufficiently small r > 0, the domain Q) (r) is given by
Q(r) = {(p,a)|0 < p < P(a, 1)},

where P(a,r) is the unique solution of the equation

\/(p2+z2—1>2+4p2+p2+22—1

\/(p2—|—22—1)2—|—4p2—p2—|—22—1

r=1log| z

)

or equivalently,

24+ +1

(3.3) coshr %

ProoF. The set Q(r) is a sublevel set of the function

2(x) + 2+ 1
2z(x)

X

where p = (Y, x%)"*. The result follows from the fact that, in a neigh-
bourhood of the origin, this function is strictly convex, since

* [P+ +1 5
Ox40xp ( 2z > = 8+ 0(p")-

Using the spherical coordinates and the above lemma, we can transform the
integral in (3.1) to the form

(3.4)  vol(B"™(m,r) N M) :/

P(a,r) 1 |
do n D(paal7"'7an)pn7 dp
Sn—1 0 Z
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where do denotes the volume element on $"~!. In particular, we shall denote

Wh_1 = do = the (n — 1)-dimensional volume of sl
Snfl

Near the origin, we can write
=14+ X +Kp* + Lp* + 0(p°),
where, according to (2.2),
1 5 1 1
A= EZ(/\A —Day; K= EZKABCaAaBaC§ L= ﬁZLABCDaAaBaCaD~
Since

1 1
Zy=u—1)x4 +§ZKABCXBXC +E

Z Lagcpxpxcxp + 0(p®),
B.C B.C.D

we have that

1 L
EZZ'AZ = Bp’ +Kp’ + Lp* + 0(p),
A

where
— 1 1
B= EZA:()\A ~ D@ K=35) (A~ DKapcasapac;
1 2
Z = —Z(/\A - I)LABCD +§Z (Z KABCaBaC>
4 \BC
Thus,
1/2 | 2 | 4
D - (1032) -~ () - (2) vow
A A A
— — — 1
=14+ Bp* +Kp* + (L —EBz)p4 + 0(p).

On the other hand,

| )N
o= 1=n\o? —nKp' + (—nL — % + n2A2> pt+0(p°).

Hence our integral (3.4) takes the form
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vol(B" ' (m,r) N M) = /
Sn—1

_ 1= — 1
+<L B —m\B+ MAz - nL) P 4 O(p”+4)))dp
(3.5) 2 2

:/ d0|:p_n+(Bn)\)pn+2 (E*I’IK)/)nJrS
Sn—l

P(a,r) - L
dU(/ (p"’l—l—(B—n/\)p"H+(K—nK)p”+2
0

n n+2 n+3
=P(a,r)
+ 1 — nn+1), i s ]”
L——-B —nA\B+——F—=X\ —nL o(p""
+< 3 nAB + —— nl)- =3+ (") o
We shall now estimate the bound P(a, r). For any fixed a = (ay, - - -, a,) € S",
and any small r > 0, the solution p = P(a,r) of (3.3) is given by

(3.6) .
p:r+ﬁ(l+12)\—12)\2)r3+§K(1—2)\)r4

1
+7930(! —960K24+960L+120A—1920LA+600)> — 240073 +1680A*)r° +O(r°).

Substituting (3.6) in (3.5) we get

3.7 B
(\101()Bn+1(m,r)ﬂM) :/SIH [§+ (i_,_%)\_%/\z_i_i:rnz}\)rnﬂ
+(%K — K\ +%> RS (5;“7g02 _ %Kz _ n‘&% N 5"24§(:2f4+) 40 5
+n44/\3+%/\4—L>\+2—2§_2?’1—_£‘)/\§_%>\2§_ﬁ—2
+nl42+2(‘;_+”4) L)rn+4+0(’ﬂ+5)} do.

Now we compute this integral term by term. If w,_; denotes de volume of
the unit sphere in R", and «,, = w,—1/n, then taking account of the values for
the integrals over S"~! of the monomials in the coordinate functions ([KP,
page 125]), we have, by a routine computation,

" 1 n n 1 n+2 n n+2
—do =—w,_ 11" = a1, — 1" do = — 1",
sn-1 N n Sn—1 24 24

1 1
/ “N"2do == (h — n)a,r"*?,
Sn—l 4

[T "t 712 2
—= A" =— 2 —2(n+2 2
/SH 2)\r do 8(n+2)( \hll” +h (n+2)h+n(n+2)),

E - )‘n +2 anr”” )
T gn d — h . 2 h 1 .
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Then,

1 1., B—n\\ ., 2 )
) 2o = (6] - _
/SH <24+2A 2T n+2>’ "= 22+l I =31 + 4n(n — 1)).

On the other hand,

1 K —nk
/ SK— KA+ 2" g — 0,
Sn—l 2 n + 3

since the coefficient of "3 involves only terms of odd degree in the spherical
coordinates.
Finally,

Oé”

N do =
Sn—l

2. n+4 g a”rn+4 7112 2_
/S” g = (S QIR =20+ Dl +2)),

(h n),

n+4

)\3 n+4d :L 8 )\3 6h il’Z_6 4 n2 3
[ Wt e S X OhI 6+ ) -+

—3(n+4)h2+3(n+4)(n—|—2)h—n(n+2)(n+4)),

n-+4
Ao = anl 485 M +3205 A3 =32 3
/S = 6) 8 (1 2) ; at ; 5 =320n+6)) X,

A

—24(n+6)h||h|]* +12(n+4) (n+6)||h|]* — 4(n+2)(n+4)(n+6)h
+n(n+2)(n+4)(n+6)+6(n+4)(n+6)h> +12||h||* + 1212 || h||>
—4(n+6)h3+h4)

/S’Hﬁr”“da Ot (||h\| ~2htn),

— _anr+ B
[ B <2ZAA+h||h| -+

—2h2+3(n+2)h—n(n+2)),

114

2B o — 4 3 74

/SH)\ P do = 8(n+4 TCES) <8Z)\ +4hZAA n+8)zA:)\A+2Hh||
12| R = 2(n+10)A||2))* + (n+4) (n+12) ||| * = 243
+5(n+4)h2—4(n+2)(n+4)h+n(n+2)(n+4)>,
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n+4

-2 (674
B n+4d __n
/S/x—l ’ 7 4(” + 2)

<2Z>\4A =8 A+l — 4n|A)* 4+ 2(n+ 6) 1Al
A A
+4h2—4(n+2)h+n(n+z)),
and

1 1 — 4-n
—~K*— L) L L)r"d
/S< 2 L i Yy ) g

a4 ,
T 144+ 4)(n+2) <24 > Kipe+363 MaLaans — 9% AX.I;LAABB> :

AB,C AB
It follows that the integral of the term in #** is equal to
o 1440(AR, ) +960 Y~ K2 e — 360hAh — 120(n* + 2)h?
5760(n +2)(n +4) ’ e e

+45h* +240(n — 1)(n + 4) |1 — 18072(|A]]> + 540||A|[* — 720> " X}
A

+720) N+ 16n(n —1)(n +2)(5n — 7))
A

ay, rn+4

T 5760(n + 2)(n + 4)

(1440<A/‘i, R + 960||VA|* + 180||R||* + 360]|p||* — 360hAA

—120(n — 6n + 141> + 45h* — 240(n” + 2)||h||* — 54002 ||A||* + 900| ||

+8n(n — 1)(10n* — 39n + 62)).

This completes the proof of Theorem 1.1.

4. Some geometric consequences.

We compare now the volume of the extrinsic ball of radius r with that of the
n-ball of radius r in H”, which coincides of course with the extrinsic ball of
radius r of H” embedded as a totally geodesic submanifold of H"*'.

From [Sa, page 308] we know that the volume of the ball of radius » in H"
is

.
noz,,/ sinh" ! u du.
0
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The power series development of this expression is

n H(}’l— 1) N+ n(n_l)(sn_7) N+ n+
(4.1) an<r +6(n+2); 24 0t d) Y4 o(r 6)).

By equating the terms of the same degree in (4.1) and Theorem 1.1, we get

COROLLARY 4.1 Let M be a hypersurface of W', of class C°, satisfying
HEVC. Then we have

(4.2) 20| = 1,
and

96(Ah, h) + 64| VA|* — 12| R||* + 24||p||* — 24hAh — 8(n* — 61 + 14)1?

(43) +30* + 16(n* + 2)||h||* — 3642 ||A||* + 60||2||* — 24n(n — 1)(n — 2) = 0.
If M is of class C* and satisfies HEVC, then it still satisfies (4.2).

PROOF OF PROPOSITION 1.2 a) is trivial, since for n = 1, condition (4.2)
implies that M is totally geodesic. For n = 2, this condition means that

2N+ A2 = (M + M)

which clearly implies A; = \,. Therefore, M must be a totally umbilical
submanifold. According to [S], a totally umbilical hypersurface of the hy-
perbolic space must be either of the following:

1) A totally geodesic hypersurface,

2) A geodesic sphere,

3) A horospheres or

4) An equidistant hypersurface.

A straightforward computation shows that each of the above hy-
persurfaces satisfies HEVC. In the cases 1), 3) and 4) this condition is sa-
tisfied for extrinsic balls of any radius.

Proposition 1.3 follows directly from Corollary 4.1 and (2.22).

Finally,

PROOF OF PrOPOSITION 1.4 From Vi = 0, and equations (4.2) and (4.3),
we get

(4.4)  24(Ah Ky = 3||R|* + 6]|p||* + 12(n — 2)K* — 6n(n — 1)(n — 2) = 0.
From the identities

2(Ah, by = A([RIP) = 2] VAP,
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and
A(JHP) =3 A0R) = hh + grad P,

along with Vi =0, we get that (AE ﬁ> = 0. Besides, for n =3, the Weyl
component of the curvature tensor vanishes, which yields
I|IR||> = 4/|p||> + 72 = 0. So, for n = 3, under our hypotheses, (4.4) becomes

(4.5) —12=2||p|]* + 7 + 4h* = 0.
From (2.19), we have that
ol = (At As + Mo = 2)7 + (Ada + Aads — 2)° + (Mg + Xods — 2)°
and
T=2(MX2+ AA3+ A —3).
Thus, (4.5) is equivalent to
(4.6) h(h 42X 20A3) = 0.

Then either /=0, which implies ||| =0, and M is totally geodesic, or
h 4+ 2X1 X223 = 0. But this condition also implies that M is totally geodesic.
In fact, from

A+ +A4+22003 =0

it follows that the principal curvatures cannot be all positive nor all negative.
If any of them vanishes, then 72 = 0, whence & = 0. If one of them, say A3, is
negative, and the other two, A\, A\, are positive, then, from (4.2) we have

QN4+ N4+ = (A4 M+ )%
which can be written as
(A1 = 2)” + 22 =2X5(\ + ),

and this is impossible, for the left-hand side is positive and the right-hand
side is negative. The impossibility of having one of the A’s positive and the
other two negative follows in the same way. Thus, (4.6) implies 2 = 0, and
hence, M is totally geodesic.



234 FRANCISCO J. CARRERAS, AND ANTONIO M. NAVEIRA

REFERENCES

[GV] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small
geodesic balls, Acta Math. 142 (1979), 157-198.

[KaP] L. Karp and M. Pinsky, Volume of a small extrinsic ball in a submanifold, Bull. London
Math. Soc. 21 (1989), 87-92.

[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, 1963,
1969.

[KP] O. Kowalski and D. Preiss, Besicovitch-type properties of measures and submanifolds, J.
Reine Angew. Math. 379 (1987), 115-151.

[Sa] L. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA,
1976.

[S] M. Spivak, Differential Geometry, Publish or Perish, 1970.

DEPARTAMENTO DE GEOMETRIA Y TOPOLOGIA
UNIVERSIDAD DE VALENCIA

BURJASOT (VALENCIA)

SPAIN

E-mail address: carreras@uv.es, naveira@uv.es



