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ON THE VOLUME OF A SMALL EXTRINSIC BALL IN A
HYPERSURFACE OF THE HYPERBOLIC SPACE

FRANCISCO J. CARRERAS*, AND ANTONIO M. NAVEIRA*

Abstract.

We give a power series formula for the volume of a small extrinsic geodesic ball of a hypersur-
face of the hyperbolic space and derive some geometric consequences.

1. Introduction.

Let M be a k-dimensional Riemannian manifold. A problem to which a lot
of work has been devoted is that of finding to what extent does the volume
of small geodesic balls determine the geometry of M. In this context, a re-
markable paper is [GV]. A variation of this problem have also been con-
sidered. If we restrict ourselves to submanifolds M of the euclidean space
Rn�1, then, instead of considering the volume of (intrinsic) geodesic balls of
M we can consider the volumes of the intersections with M of geodesic balls
of Rn�1 (extrinsic geodesic balls of M). The question then is the following: If
we assume that the volume of every extrinsic ball in M, of sufficiently small
radius, coincides with the volume of the ball of the same radius in Rk, what
can be said about the submanifold M? This problem has been dealt with in
[KP], for hypersurfaces of the euclidean space, and in [KaP], for submani-
folds of codimension greater than 1. (In [KP] the authors also determine
those submanifolds of Rn�1 which satisfy the condition on the volume of
extrinsic balls for all radii.)
We consider here the problem for hypersurfaces of the hyperbolic space

Hn�1, instead of Rn�1. To begin with, we prove the following power series
formula for the volume of an extrinsic ball in a hypersurface of Hn�1:

Theorem 1.1 Let M � Hn�1 be a hypersurface of class C5. Then, for any
m 2M and any sufficiently small r, we have the following Taylor formula:
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vol�Bn�1�m; r� \M� � �nrn 1� A�m�r2
24�n� 2� �

B�m�r4
5760�n� 2��n� 4� �O�r5�

� �
;

where Bn�1�m; r� is the �n� 1�-dimensional open ball with centre m 2M and
radius r > 0 in Hn�1, �n is the volume of the unit ball in Rn, vol means n-di-
mensional volume, and A and B are functions on M given by

A �6k~hk2 ÿ 3h2 � 4n�nÿ 1�;
B �1440h�~h;~hi � 960kr~hk2 � 180kRk2 � 360k�k2 ÿ 360h�h

ÿ 120�n2 ÿ 6n� 14�h2 � 45h4 ÿ 240�n2 � 2�k~hk2 ÿ 540h2k~hk2

� 900k~hk4 � 8n�nÿ 1��10n2 ÿ 39n� 62�:

8>>>>><>>>>>:
In the above theorem, and throughout this paper, ~h denotes the second

fundamental form of M, and h � trace~h is the (non-averaged) mean curva-
ture of M. r is the Levi-Civita connection on M, R, the Riemann curvature
tensor, and � the Ricci curvature tensor. � denotes the ``rough'' Laplacian,
that is, if T is a tensor field on M, �T is the trace of r2T .

Next, we consider the condition that the extrinsic balls of M have the
same volume as the corresponding balls in the hyperbolic space. To be more
precise, we say that
``A k-dimensional submanifold M of Hn�1 satisfies the Hyperbolic Extrinsic
Volume Condition (HEVC) if vol�Bn�1�m; r� \M� � the volume of the geo-
desic ball of radius r in Hk, for every m 2M and sufficiently small r.''
Then, we prove the following results:

Proposition 1.2 a) A connected hypersurface M1 � H2 satisfies HEVC
()M1 is an open geodesic segment.
b) A connected hypersurface M2 � H3 satisfies HEVC ()M2 is totally

umbilical.

Proposition 1.3 Mn � Hn�1 satisfies HEVC�)
i) � � n�n� 1� � 0.
ii) � � ÿn�n� 1� or M is minimal �) M is totally geodesic.
iii) M cannot be umbilical, except for n � 2.

Proposition 1.4 Let M3 � H4 be connected, with r~h � 0. Then M sa-
tisfies HEVC if and only if it is totally geodesic.

This shows that the case of the hyperbolic space is different from that of
the Euclidean space: under the same hypotheses, a connected hypersurface of
R4 with parallel second fundamental form, satisfying the extrinsic volume
condition must be totally geodesic or an open subset of S2�r� � R [KP].
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2. Computation of the riemannian invariants.

Let us denote by Hn�1 the (n� 1)-dimensional hyperbolic space of constant
sectional curvature ÿ1, represented by Poincarë half-plane; that is,

Hn�1 � f�x0; x1; � � � ; xn� 2 Rn�1 such that x0 > 0g;
with the metric

g � 1
x20

Xn
i�0

dx2i :

In what follows we shall denote the coordinate x0 by z, and @0; � � � ; @n will
denote a global reference of vector fields in Hn�1. Let M be a topologically
embedded hypersurface, let m be a point in M, and let us take the co-
ordinates z; x1; � � � ; xn in Hn�1 so that m � �1; 0; � � � ; 0�, the z-axis is orthogo-
nal to M at m, and the xi-axes, 1 � i � n, lie in the principal directions at m.
Then, �x1; � � � ; xn� are local coordinates of M in a neighbourhood of m and,
near m, the hypersurface M can be expressed as a graph

~M�x1; � � � ; xn� � �z�x1; � � � ; xn�; x1; � � � ; xn�;�2:1�
where �x1; � � � ; xn� lies in a neighbourhood of the origin of Rn.
Near the origin, we can write

z�1�1
2

X
��Aÿ1�x2A�

1
6

X
KABCxAxBxC� 1

24

X
LABCDxAxBxCxD�O��5��2:2�

where �1; � � � ; �n are the principal curvatures at m,

� �
Xn
A�1

x2A

 !1=2

�2:3�

and the summation in (2.2) extends to all repeating indices from 1 to n. (The
same summation convention is used throughout this section.) It follows ea-
sily that

1
z
� 1ÿ 1

2

X
��A ÿ 1�x2A ÿ

1
6

X
KABCxAxBxC � 1

4

X
��A ÿ 1�x2A

� �2
ÿ 1
24

X
LABCDxAxBxCxD �O��5�

�2:4�

and
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1
z2
� 1ÿ

X
��A ÿ 1�x2A ÿ

1
3

X
KABCxAxBxC � 3

4

X
��A ÿ 1�x2A

� �2
ÿ 1
12

X
LABCDxAxBxCxD �O��5�

�2:5�

We get a basis of the tangent space of M at m by taking partial derivatives in
(2.1):

~MA � �z0A; 0; � � � ; 1; � � � ; 0�; A � 1; � � � ; n:
With respect to this basis, the coefficients of the Riemann metric of M, near
m, are given by

gAB � h~MA; ~MBi � 1
z2
��AB � z0Az

0
B�;�2:6�

we, further, choose as a unit normal vector field

� � zDÿ1=2 ÿ@0 �
Xn
A�1

z0A@A

 !
;�2:7�

where

D � 1�
Xn
A�1

z0A
2
:�2:8�

With respect to this normal vector field, the coefficients of the second fun-
damental form are given by

hAB � h�MA;MB� � 1
z2
Dÿ1=2��AB � zz00AB � z0Az

0
B�:�2:9�

From (2.2) we have

z0A � ��A ÿ 1�xA � 1
2

X
B;C

KABCxBxC �O��3��2:10�

and

z00AB � ��A ÿ 1��AB �
X
C

KABCxC � 1
2

X
C;D

LABCDxAxBxCxD �O��3�:�2:11�

Differentiating in (2.6), we find

@gAB
@xC

� 1
z2
�z00ACz0B � z0Az

00
BC� ÿ

2
z3
z0C��AB � z0Az

0
B�;�2:12�

and
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@2gAB
@xC@xD

� 1
z2
�z000ACDz0B � z0Az

000
BCD � z00ACz

00
BD � z00ADz

00
BC�

ÿ 2
z3
z0D�z00ACz0B � z0Az

00
BC� ÿ

2
z3
z0C�z00ADz0B � z0Az

00
BD�

ÿ 2
z3
z00CD��AB � z0Az

0
B� �

6
z4
z0Cz

0
D��AB � z0Az

0
B�:

�2:13�

In particular,

gAB�m� � �AB; @gAB
@xC

�m� � 0;�2:14�

and

@2gAB
@xC@xD

�m� � ��AC�BD� �AD�BC���Aÿ 1���B ÿ 1� ÿ 2�CD�AB��C ÿ 1�:�2:15�

From the classical formula for the Christoffel symbols ([KN]), we get

ÿC
AB�m� � 0; 1 � A;B;C � n:�2:16�

and

@ÿC
AA

@xC
�m� � �A��C ÿ 1�; A 6� C

@ÿA
AA

@xA
�m� � ��A ÿ 1���A ÿ 2�

@ÿA
AB

@xB
�m� � ÿ��B ÿ 1�; A 6� B

@ÿC
AB

@xD
�m� � 0; if at least three of the indices A;B;C;D are different.

(2.17)

Let us now consider the components of the curvature tensor, defined as in
[KN], given by

R�@C ; @D�@B �
X

RA
BCD@A; RABCD �

X
gAFRF

BCD:

Then,

RA
BCD �

@ÿA
DB

@xC
ÿ @ÿA

CB

@xD
�
X
�ÿF

DBÿA
CF ÿ ÿF

CBÿA
DF �;�2:18�

and from equations (2.16) and (2.17), we get

RABAB�m� � �A�B ÿ 1; A 6� B�2:19�

RABCD�m� � 0; if there are three different indices among A;B;C;D:
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Since the ~MA, 1 � A � n are an orthonormal basis at m, we get

kRk2�m��2
X
A6�B
��A�Bÿ1�2�2

Xn
A�1

�2A

 !2

ÿ
Xn
A�1

�4A

0@ 1A
�4

Xn
A�1

�2A

 !
ÿ

Xn
A�1

�A

 !2
0@ 1A�2n�nÿ1�

�2
Xn
A�1

�2A

 !2

ÿ
Xn
A�1

�4A

 !
�2

Xn
A�1

�2A

 !
ÿ2

Xn
A�1

�A

 !2
0@ 1A�2n�nÿ1�:

From (2.9), we get

hAA�m� � �A; hAB�m� � 0; if A 6� B; 1 � A;B � n;

whence

h�m� �
Xn
A�1

�A; k~hk2�m� �
Xn
A�1

�2A:

This allows us to express the curvature invariants of order 2 as follows

kRk2�m� � 2 k~hk4 ÿ
Xn
A�1

�4A � 2k~hk2 ÿ 2h2
 !

�m� � 2n�nÿ 1�;�2:20�

(2.21)

k�k2�m��
Xn
A�1

�2AA�
Xn
A�1

Xn
B�1

RABAB

 !2

�
Xn
A�1
�h�Aÿ�2Aÿ�nÿ1��2�m�

��h2k~hk2�
Xn
A�1

�4A�n�nÿ1�2ÿ2h
Xn
A�1

�3Aÿ2�nÿ1�h2�2�nÿ1�k~hk2��m�

and the scalar curvature

��m��
Xn
A�1

�AA�
Xn
A�1
�h�Aÿ�2Aÿ�nÿ1���m���h2ÿk~hk2ÿn�nÿ1���m�:�2:22�

Using (2.10) we get

Dÿ1=2 � 1ÿ 1
2

Xn
A�1

z0A
2 � � � � � 1ÿ 1

2

Xn
A�1
��A ÿ 1�2x2A �O��3�;�2:23�

and from this expression, (2.10) and (2.11) we find
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(2.24)

hAB� 1ÿ
Xn
C�1
��Cÿ1�x2C�O��3�

 !
1ÿ1

2

Xn
C�1
��Cÿ1�2x2C�O��3�

 !
�

�AB� 1�1
2

X
C

��Cÿ1�x2C�O��3�
 !

��Aÿ1��AB�
X
C

KABCxC�
  

1
2

X
C;D

LABCDxCxD�O��3�
!
� ��Aÿ1�xA�

X
KABCxBxC�O��3�

� �
�

��Bÿ1�xB�
X

KABCxAxC�O��3�
� ��
��A�AB�

X
KABCxC�12

X
LABCDxCxD�12��Aÿ1��AB

X
��Cÿ1�x2C

���Aÿ1���Bÿ1�xAxBÿ12�A�AB
X
��2Cÿ1�x2C�O��3�:

(Observe that from this expression it follows that kr~hk2 �PK2
ABC .)

Since

�h�m� � �
X

gABhAB
� �

�m� �
X
C

@2gAB

@�xC�2
� 2

@gAB

@xC

@hAB
@xC

� gAB
@2hAB
@�xC�2

 !
�m�;

we get from (2.14), (2.15) and (2.24)

�h�m��
X
A;C

LAACCÿ2
X
A

�3A�6k~hk2�3h2ÿhk~hk2ÿ3�n�2�h�n�n�2�:�2:25�

Similarly,

��~h�AB�m� �
X
C

@2hAB
@�xC�2

ÿ �B @ÿB
CA

@xC
ÿ �A @ÿA

CB

@xC

 !
�m�;

and hence,

h�~h;~hi�m� �
X
A;C

�ALAACC ÿ 2
X
A

�4A � 6
X
A

�3A

� �ÿk~hk4 � 3hk~hk2 ÿ 2�n� 3�k~hk2 ÿ h2 � �n� 2�h��m�:
�2:26�

3. An integral formula for the volume of an extrinsic ball.

Proof of Theorem 1.1 Let us express the volume of B�m; r� \M. We
have, for sufficiently small r,
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vol�Bn�1�m; r� \M� �
Z


�r�

1
zn

����
D
p

dx1 � � � dxn;�3:1�

where 
�r� is the orthogonal projection of B�m; r� \M on
Rn � f0g � Rn � Rn�1.
Let us introduce spherical coordinates in Rn, ��; a1; � � � ; an� by

xA � �aA; 1 � A � n;
Xn
A�1

a2A � 1:�3:2�

This means that each point a � �a1; � � � ; an� belongs to the unit sphere
Snÿ1�1� � Snÿ1 in Rn, and � is given by (2.3).
We shall need the following lemma

Lemma. For any sufficiently small r > 0, the domain 
�r� is given by

�r� � f��; a�j0 � � < P�a; r�g;

where P�a; r� is the unique solution of the equation

r � log z

�����������������������������������������
��2 � z2 ÿ 1�2 � 4�2

q
� �2 � z2 ÿ 1�����������������������������������������

��2 � z2 ÿ 1�2 � 4�2
q

ÿ �2 � z2 ÿ 1

0B@
1CA;

or equivalently,

cosh r � z2 � �2 � 1
2z

:�3:3�

Proof. The set 
�r� is a sublevel set of the function

x 7! z�x�2 � �2 � 1
2z�x�

where � � Pn
A�1 x

2
A

ÿ �1=2. The result follows from the fact that, in a neigh-
bourhood of the origin, this function is strictly convex, since

@2

@xA@xB

z2 � �2 � 1
2z

� �
� �ij �O��2�:

Using the spherical coordinates and the above lemma, we can transform the
integral in (3.1) to the form

vol�Bn�1�m; r� \M� �
Z
Snÿ1

d�
Z P�a;r�

0

1
zn

��������������������������������
D��; a1; � � � ; an�

p
�nÿ1d�

 !
�3:4�
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where d� denotes the volume element on Snÿ1. In particular, we shall denote

!nÿ1 �
Z
Snÿ1

d� � the �nÿ 1�-dimensional volume of Snÿ1:

Near the origin, we can write

z � 1� ��2 � K�3 � L�4 �O��5�;
where, according to (2.2),

�� 1
2

X
��Aÿ 1�a2A; K � 1

6

X
KABCaAaBaC ; L� 1

24

X
LABCDaAaBaCaD:

Since

z0A � ��Aÿ 1�xA�
1
2

X
B;C

KABCxBxC � 16
X
B;C;D

LABCDxBxCxD�O��5�;

we have that

1
2

X
A

z0A
2 � B�2 � K�3 � L�4 �O��5�;

where

B � 1
2

X
A

��A ÿ 1�2a2A; K � 1
2

X
��A ÿ 1�KABCaAaBaC ;

L � 1
6

X
��A ÿ 1�LABCD � 1

8

X
A

X
B;C

KABCaBaC

 !2

:

Thus,

���������������
D��; a�

p
� 1�

X
A

z0A
2

 !1=2

� 1� 1
2

X
A

z0A
2

 !2

ÿ 1
8

X
A

z0A
2

 !4

�O��5�

� 1� B�2 � K�3 � Lÿ 1
2
B
2

� �
�4 �O��5�:

On the other hand,

1
zn
� 1ÿ n��2 ÿ nK�3 � ÿnLÿ n�nÿ 1��2

2
� n2�2

� �
�4 �O��5�:

Hence our integral (3.4) takes the form
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vol�Bn�1�m; r� \M� �
Z
Snÿ1

d�
Z P�a;r�

0
�nÿ1 � �B ÿ n���n�1 � �K ÿ nK��n�2
� 

� Lÿ 1
2
B
2 ÿ n�B � n�n� 1�

2
�2 ÿ nL

� �
�n�3 �O��n�4�

��
d�

�
Z
Snÿ1

d�
�n

n
� �B ÿ n���n�2

n� 2
� �K ÿ nK��n�3

n� 3

�
� Lÿ 1

2
B
2 ÿ n�B � n�n� 1�

2
�2 ÿ nL

� �
�n�4

n� 4
�O��n�5�

���P�a;r�
��0

:

(3.5)

We shall now estimate the bound P�a; r�. For any fixed a � �a1; � � � ; an� 2 Snÿ1,
and any small r > 0, the solution � � P�a; r� of (3.3) is given by
(3.6)
��r� 1

24
�1�12�ÿ12�2�r3�1

2
K�1ÿ2��r4

� 1
1920

�1ÿ960K2�960L�120�ÿ1920L��600�2ÿ2400�3�1680�4�r5�O�r6�:

Substituting (3.6) in (3.5) we get

(3.7)
vol�Bn�1�m; r� \M� �

Z
Snÿ1

rn

n
� 1

24
� 1
2
�ÿ 1

2
�2 � B ÿ n�

n� 2

� �
rn�2

�
� 1

2
K ÿ K�� K ÿ nK

n� 3

� �
rn�3 � 5nÿ 2

5760
ÿ 1
2
K2 ÿ nÿ 2

48
�� 5n2 ÿ 42n� 40

48�n� 4� �2
�

� nÿ 4
4

�3 � n� 6
8

�4 ÿ L�� 1
24

B ÿ nÿ 4
2�n� 4� �B ÿ

1
2
�2B ÿ 1

2�n� 4�B
2

� 1
n� 4

L� 4ÿ n
2�n� 4�L

�
rn�4 �O�rn�5�

�
d�:

Now we compute this integral term by term. If !nÿ1 denotes de volume of
the unit sphere in Rn, and �n � !nÿ1=n, then taking account of the values for
the integrals over Snÿ1 of the monomials in the coordinate functions ([KP,
page 125]), we have, by a routine computation,Z

Snÿ1

rn

n
d� � 1

n
!nÿ1rn � �nrn;

Z
Snÿ1

1
24

rn�2d� � n
24
�nrn�2;Z

Snÿ1

1
2
�rn�2d� � 1

4
�hÿ n��nrn�2;Z

Snÿ1
ÿ 1
2
�2rn�2d� � ÿ �nrn�2

8�n� 2� �2k
~hk2 � h2 ÿ 2�n� 2�h� n�n� 2��;Z

Snÿ1

B ÿ �n
n� 2

rn�2d� � �nrn�2

2�n� 2� �k
~hk2 ÿ �n� 2�h� n�n� 1��:
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Then,Z
Snÿ1

1
24
� 1
2
�ÿ 1

2
�2 � B ÿ n�

n� 2

� �
rn�2d� � �nrn�2

24�n� 2� �6k
~hk2 ÿ 3h2 � 4n�nÿ 1��:

On the other hand,Z
Snÿ1

1
2
K ÿ K�� K ÿ nK

n� 3

� �
rn�3d� � 0;

since the coefficient of rn�3 involves only terms of odd degree in the spherical
coordinates.
Finally,Z
Snÿ1

�rn�4d���nr
n�4

2
�hÿn�;Z

Snÿ1
�2rn�4d�� �nrn�4

4�n�2��2k
~hk2�h2ÿ2�n�2�h�n�n�2��;Z

Snÿ1
�3rn�4d�� �nrn�4

8�n�4��n�2� 8
X
A

�3A�6hk~hk2ÿ6�n�4�k~hk2�h3
 

ÿ3�n�4�h2�3�n�4��n�2�hÿn�n�2��n�4�
�
;Z

Snÿ1
�4rn�4d�� �nrn�4

16�n�6��n�4��n�2� 48
X
A

�4A�32h
X
A

�3Aÿ32�n�6�
X
A

�3A

 
ÿ24�n�6�hk~hk2�12�n�4��n�6�k~hk2ÿ4�n�2��n�4��n�6�h
�n�n�2��n�4��n�6��6�n�4��n�6�h2�12k~hk4�12h2k~hk2

ÿ4�n�6�h3�h4
�
;Z

Snÿ1
Brn�4d���nr

n�4

2
k~hk2ÿ2h�n
� �

;Z
Snÿ1

�Brn�4d�� �nrn�4

4�n�2� 2
X
A

�3A�hk~hk2ÿ�n�6�k~hk2
 

ÿ2h2�3�n�2�hÿn�n�2�
�
;

Z
Snÿ1

�2Brn�4d�� �nrn�4

8�n�4��n�2� 8
X
A

�4A�4h
X
A

�3Aÿ4�n�8�
X
A

�3A�2k~hk4
 

�h2k~hk2ÿ2�n�10�hk~hk2��n�4��n�12�k~hk2ÿ2h3

�5�n�4�h2ÿ4�n�2��n�4�h�n�n�2��n�4�
�
;
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Z
Snÿ1

B
2
rn�4d�� �nrn�4

4�n�2� 2
X
A

�4Aÿ8
X
A

�3A�k~hk4ÿ4hk~hk2�2�n�6�k~hk2
 

�4h2ÿ4�n�2�h�n�n�2�
�
;

andZ
Snÿ1

ÿ 1
2
K2 ÿ L�� 1

n� 4
L� 4ÿ n

2�n� 4�L
� �

rn�4d�

� �nrn�4

144�n� 4��n� 2� 24
X
A;B;C

K2
ABC � 36

X
A;B

�ALAABB ÿ 9h
X
A;B

LAABB

 !
:

It follows that the integral of the term in rn�4 is equal to

�nrn�4

5760�n� 2��n� 4� 1440h�~h;~hi � 960
X
A;B;C

K2
ABC ÿ 360h�hÿ 120�n2 � 2�h2

 

�45h4 � 240�nÿ 1��n� 4�k~hk2 ÿ 180h2k~hk2 � 540k~hk4 ÿ 720h
X
A

�3A

�720
X
A

�4A � 16n�nÿ 1��n� 2��5nÿ 7�
!

� �nrn�4

5760�n� 2��n� 4� 1440h�~h;~hi � 960kr~hk2 � 180kRk2 � 360k�k2 ÿ 360h�h
�

ÿ120�n2 ÿ 6n� 14�h2 � 45h4 ÿ 240�n2 � 2�k~hk2 ÿ 540h2k~hk2 � 900k~hk4

�8n�nÿ 1��10n2 ÿ 39n� 62��:
This completes the proof of Theorem 1.1.

4. Some geometric consequences.

We compare now the volume of the extrinsic ball of radius r with that of the
n-ball of radius r in Hn, which coincides of course with the extrinsic ball of
radius r of Hn embedded as a totally geodesic submanifold of Hn�1.
From [Sa, page 308] we know that the volume of the ball of radius r in Hn

is

n�n

Z r

0
sinhnÿ1 u du:
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The power series development of this expression is

�n rn � n�nÿ 1�
6�n� 2� r

n�2 � n�nÿ 1��5nÿ 7�
360�n� 4� rn�4 �O�rn�6�

� �
:�4:1�

By equating the terms of the same degree in (4.1) and Theorem 1.1, we get

Corollary 4.1 Let M be a hypersurface of Hn�1, of class C5, satisfying
HEVC. Then we have

2k~hk2 � h2;�4:2�
and

96h�~h;~hi � 64kr~hk2 ÿ 12kRk2 � 24k�k2 ÿ 24h�hÿ 8�n2 ÿ 6n� 14�h2

�3h4 � 16�n2 � 2�k~hk2 ÿ 36h2k~hk2 � 60k~hk4 ÿ 24n�nÿ 1��nÿ 2� � 0:�4:3�
If M is of class C3 and satisfies HEVC, then it still satisfies (4.2).

Proof of Proposition 1.2 a) is trivial, since for n � 1, condition (4.2)
implies that M is totally geodesic. For n � 2, this condition means that

2��21 � �22� � ��1 � �2�2;
which clearly implies �1 � �2. Therefore, M must be a totally umbilical
submanifold. According to [S], a totally umbilical hypersurface of the hy-
perbolic space must be either of the following:
1) A totally geodesic hypersurface,
2) A geodesic sphere,
3) A horospheres or
4) An equidistant hypersurface.
A straightforward computation shows that each of the above hy-

persurfaces satisfies HEVC. In the cases 1), 3) and 4) this condition is sa-
tisfied for extrinsic balls of any radius.
Proposition 1.3 follows directly from Corollary 4.1 and (2.22).
Finally,

Proof of Proposition 1.4 From r~h � 0, and equations (4.2) and (4.3),
we get

24h�~h;~hi ÿ 3kRk2 � 6k�k2 � 12�nÿ 2�h2 ÿ 6n�nÿ 1��nÿ 2� � 0:�4:4�
From the identities

2h�~h;~hi � ��k~hk2� ÿ 2kr~hk2;
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and

��k~hk2� � 1
2

��h2� � h�h� kgrad hk2;

along with r~h � 0, we get that h�~h;~hi � 0. Besides, for n � 3, the Weyl
component of the curvature tensor vanishes, which yields
kRk2 ÿ 4k�k2 � �2 � 0. So, for n � 3, under our hypotheses, (4.4) becomes

ÿ12ÿ 2k�k2 � �2 � 4h2 � 0:�4:5�
From (2.19), we have that

k�k2 � ��1�3 � �1�2 ÿ 2�2 � ��1�2 � �2�3 ÿ 2�2 � ��1�3 � �2�3 ÿ 2�2

and

� � 2��1�2 � �1�3 � �2�3 ÿ 3�:
Thus, (4.5) is equivalent to

h�h� 2�1�2�3� � 0:�4:6�
Then either h � 0, which implies k~hk � 0, and M is totally geodesic, or
h� 2�1�2�3 � 0. But this condition also implies that M is totally geodesic.
In fact, from

�1 � �2 � �3 � 2�1�2�3 � 0

it follows that the principal curvatures cannot be all positive nor all negative.
If any of them vanishes, then h � 0, whence ~h � 0. If one of them, say �3, is
negative, and the other two, �1, �2 are positive, then, from (4.2) we have

2��21 � �22 � �23� � ��1 � �2 � �3�2:
which can be written as

��1 ÿ �2�2 � �23 � 2�3��1 � �2�;
and this is impossible, for the left-hand side is positive and the right-hand
side is negative. The impossibility of having one of the �'s positive and the
other two negative follows in the same way. Thus, (4.6) implies h � 0, and
hence, M is totally geodesic.
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