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MEASURE HOMOLOGY

SOREN KOLD HANSEN

Abstract.

Let X be a topological space, Sing(X) the space of singular k-simplices with the compact-open
topology, and let € (X)be the real vector space of all compactly supported signed Borel Mea-
sures of bounded total variation on Sing(X). There are linear operators 9 : €x(X) — Gx_1(X),
so that {#.(X), 0} is a chain complex. The homology H”(X) is the measure homology of X of
Thurston and Gromov. The main results in this paper are that H*(—) satisfies the Eilenberg-
Steenrod axioms for a wide class of topological spaces including all metric spaces, and is ordi-
nary homology with real coefficients for CW-complexes.

1. Introduction.

Measure homology was introduced by Gromov and Thurston in [T] §6 in
connection with Gromov’s theorem that the Gromov norm of a closed
oriented hyperbolic n-manifold M equals the volume of M divided by the
supremum of the volumes of the geodesic n-simplices in the hyperbolic n-
space.

For a measurable space (X,gp), let 7' (X,p) be the vector space of all
signed measures of bounded total varation. The total variation of a signed
measure g on (X, p) is ||u|| = pT(X) — p~(X) where yu = p* — p~ is the Jor-
dan decomposition of y into its positive and negative variation. A measure u
on (X, p) has support in 4 € p, Supp(p) C 4, if u(4 N B) = pu(B) for all
B € p. We write 4(X) for the Borel o-algebra on the space X, and define a
linear subspace of 7" (X, %4(X)) by

MA(X)={p €V (X,B(X))|nhas compact support}.

A continuous map f : X — Y induces a linear map f. : A4 (X) — M. (Y),
namely the image measure of y under f.

Let Sing (X) be the set of continuous maps from the standard k-simplex A*
to the space X with the compact-open topology, and set

Gu(X) = M (Sing(X)).
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The ith face map & :AF! — AX induces a continuous map
9 : Sing(X) — Sing_1(X), 0i(c) =006, and hence a linear map
(), : €x(X) — €r—1(X). The measure chain complex is the spaces % (X)
together with the boundary operators 0 = Zfzo(—l)i (01),. The homology of
%.(X) is denoted H!/(X) and is the measure homology of X, cf. [T]. Actu-
ally, in [T], the authors only defined %.(X) when X is a smooth manifold
and used the sets Sin; (X) of singular k-simplices of class C' with the C! to-
pology instead of Sing(X). We shall see that this makes no difference. The
main theorem of this paper is the following result, listed without proof in the
case of smooth manifolds in [T] §6 p. (6.7):

THEOREM 1.1. The measure homology functor satisfies the Eilenberg-
Steenrod axioms on the category of metric spaces.

REMARKS. 1) Actually we prove that H”(X) satisfies the Eilenberg-Steen-
rod axioms for all Hausdorff spaces X such that Sing(X) and Sing(A4) are
normal for all k > 0 and all ACX. This is indeed satisfied if X is a metric
space. Note that normality of X does not imply normality of Sing(X). Ac-
tually A. H. Stone showed in [S] that if 7 =[0,1] and Y is the product of
uncountably many copies of I then Y7 is not normal, where Y/ is the space
of maps of I into Y with the compact-open topology.

2) If X is a smooth manifold theorem 1.1 and the proof we give for it is
still valid if one uses the sets Sin; (X) of singular k-simplices of class C" with
the C" topology instead of Sing(X) = Sin{(X) to define measure homology,
1 <r<oo.

I would here like to thank H. J. Munkholm for drawing my attention to
this problem and I. Madsen and J. Tornehave for guidance.

2. The measure homology functor.

In the preceding section we introduced the measure chain complex . (X) for
an arbitrary topological space X. A map f : X — Y induces linear maps
f:Gr(X) — 6x(Y) by f = (fy), where fy : Sing(X) — Sing(Y) is as usual.
Instead of f we usually write f : € (X) — %,(Y). This makes %.(—) a co-
variant functor and turns H*(—) into a covariant functor in a standard way.

One can generalize the above to pairs of Hausdorff spaces (X, 4). We have
B(A)={ZNA|Zc B(X)}, so that B(4) ={Z € B(X)|ZCA}CH(X) if
A € #(X). For an arbitrary set E, Z(E) = {4 | ACE} denotes the power set
of E. Taking direct images, f : E — F induces Z(f): #(E) — #(F) and
makes #(—) a covariant functor. For a homeomorphism f:X — Y,
P Nax) :#(X) — #(Y) is a bijection. We use below that Sing(X) is a
Hausdorff space if and only if X is.
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LemMA 2.1. For (X, A) a pair of Hausdorff spaces, the inclusioni: A — X
induces a monomorphism i : €.(A) — €.(X).

Proor. If K is a compact subset of Sing(A4) then L = ix(K) is a compact
subset of Sing(X) and ix|g : K — L is a homeomorphism. Let p,u2 € € (A)
with compact supports Kj, K>, and i(u1) = i(un). If B € #(Sing(4)) then
BN (Kz\K]) =KnN (B\K]) € @(Kz), SO

p2(B N (K2 \ K1) = i(p2) (i (BN (K2 \ K1))) = i) (i (BN (K2 \ K1)))
=m(BN(Ky\ K1) =0.

Thus K;NK, is a support for pu», and, symmetrically for p;. If
B € #(Sing(X)),

(05 (B) = i (B) N Ky 0 Ka) = (i (B Ly 01 L))
where L, = ix(K,), v =1,2. But
BKINK>) = {z;l (D)|D € B(L N Lz)}
_ {i;(B NL NL)|Be ,@(smk()())}

so p1 = po on B(K; N K3) hence on all of %(Sing(4).

We let €.(X, A) be the cokernel of i : ¥.(4) — €.(X), so that we have an
exact sequence

0 — G, (4) — €.(X) - €.(X,4) — 0

of chain complexes. The homology groups of €.(X, A) are the relative mea-
sure homology groups of (X,4) and are denoted HH(X,A4). A map
f:(X,4) — (Y,B) of pairs of Hausdorff spaces induces a commutative
diagram

™

0 — %.(4) - €. (X) 5 %.(X,4) — 0

l l l

— %.(Y,B) — 0

o
|
X
c
-
N
=

of chain maps. Thus we get as usual a long exact homology sequence, nat-
ural in (X, 4):

i

D ) S 0 s (o A) 2 B (4)
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3. Proof of theorem 1.1.

In this section we verify the homotopy axiom, excision and the dimension
axiom, i.e.

1) If fo,fi : (X, 4) — (Y, B) are homotopic as maps of pairs of Hausdorff
spaces, then H"(fy) = H*(f1) : H*(X,A) — H!(Y,B).

i) If (X,A) is a pair of metric spaces and U C A has U C Int(A),then the
inclusion map i:(X —U,A—U)— (X,A) induces an isomorphism on
homology.

iii) If X is a one-point space, then H (X) = 0 for k # 0 and Hj(X) = R.

If one works with complex measures instead of real measures the only dif-
ference is that H{/(X) = C for a one-point space X. We start by showing the
easy 1) and iii).

Proor of iii). Since Sing(X) has only one element ¢y, #(Sing(X)) =
{0, {vr}} and p € €1(X) is completely determined by the value p({pi}). If
r € R we get an element p* € %, (X) defined by 15(0) = 0, % ({px}) = r. This
shows that € (X) = R, and a simple calculation shows that

0 k odd
k _ )
Apy) = { =1k even and k > 0.

Since O = 0 for all p € €o(X) by definition the result follows.

PRrOOF of i). We just do the absolute case, 4 = B=0. Let \; : X — X x [
be given by \(x) = (x,1),] =[0,1] and let F: X x I — Y be a homotopy
between fy and fi. Then F)\y = fy and FA; = f] and it suffices to show that
H! () = H(\) : HY(X) — H!(X x I). To show this we construct a chain
homotopy P : €.(X) — %.(X x I) between Ay and A;. Fori=0,1,... &k we
define maps Q; : Sing(X) — Sing41 (X x I) by

i
Qi(0)(t0s - -y tir1) = 0(tos oy ity ti - tig1, tigas ooy Brg1) X (1 - ZU)
=0

for o € Sing(X) and (19, ...,t1) € A1 The Q; are continuous and induce
linear maps (Q;), : Gx(X) — Grr1(X x I). Define Py : €1 (X) — G (X x I)
by P = Zfzo(—l)i(Q,-)*. A tedious calculation shows that the P form a
natural chain homotopy between Ay and A;. The general case now follows in
a standard way, by using naturality of P.

We now begin the proof of ii). Let U be an open subset of X and
i:U— X the inclusion map. Then V = iy(Sing(U)) is open in Sing(X)
and iy :Sing(U) — V' is a homeomorphism. It follows that 2(iy):
B(Sing (U)) — #(V) is a bijection so that
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B(Sin(U)) = {i;(B) |Be 93(1/)} - {i;(B) |Be %’(Sink(X))}.

For a family % = {U, |« € I} of (not necessarily open) subsets of X we
consider the subchain complex of €. (X) of “%-small”’ measures

CLX) =D 61 (X),  C(X) =ia(Gr(Ua)).
acl
For the family % we let Int(%) be the collection of interiors of elements of
9. We then have

THEOREM 3.1. Let X be a metric space and let U be a family of subsets of X
such that Int(%) is a covering of X. Then the inclusion chain map
I:%"(X) — %.(X) induces an isomorphism on homology.

The proof for this theorem is deferred to §4. As in the case of singular
homolog the excision axiom follows at once. Let % = {U, |« € I'} and X be
as in theorem 3.1 and let N4 ={U, N 4|« € I}. The commutative dia-
gram of inclusion maps

Mo

u,n4 — U,

N

A — X
l

shows that i(j, (64 (U, N A))) C in(6x(Uy)) so i(47"4(X)) is a subcomplex of
G"(X). Setting €. (U, U N A) =6 (X)/i(€""1(A)), we have a commutative
diagram of chain maps

0 — "4 — X)) 5 G.(U,UNA) — 0

/| /| g

0o — (g*(A) — (5*()0 — %(X,A) —s 0.

By the preceding theorem the inclusions / induce isomorphisms on homo-
logy, and the five-lemma yields that I7 induces an isomorphism on homo-

logy.
PrROOF of ii). Let % = {X — U,Int(4)}. Then #NA = {4 — U,Int(4)}
and we have that Int(%) and Int(% N A4) cover respectively X and 4. Now let

mt(4) 2% x A-U ™ x-vU

L

A — X A — X

1 1
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be commutative diagrams of inclusion maps. Then we have
6 (A) = 14(61(4 = U)) +ja(Cr(Int(4)))
G¢(X) = ix (6x(X = U)) +)jx(€x(Int(4)))
and therefore (%" (A)) = iy o m(%x(A — U)) + jx(€x(Int(A4))).This im-
plies the isomorphisms
G, 0 A) = 6" (X)/i(6"(4)) 2 i (%.(X — U))ix(m(@,(4 - U)))
G (X-U)/m(@.(4A-U))=%.(X -U,A—-U)
The first isomorphism follows by the fact that
lix om(€i(A = U)) + jx (€r(Int(4))] Nix (€x(X — U)) = ix om(€x(4 — U))

Since IT: €.(U, % NA) — %.(X,A) induces an isomorphism on homology
the result follows.

4. Proof of theorem 3.1.

The proof of theorem 3.1 uses the standard ideas from barycentric subdivi-
sion in singular theory, which we begin by recalling, cf. [D]. The subdivision
homomorphisms 3, : S,(X) — S,(X), ¢ € Z, are inductively defined in the
following way:

Let 1, € S;(A?) denotes the identity map of the standard g-simplex A?
with vertices the standard basis {e;} in R‘"! and let B, = 37, qlﬁei be the
barycenter of A?. Write B,- for the cone construction (see [D] chap. III (4.7)
p.- 34), and set

(1) Bo = id By(1g) = By - B4-1(9y), q> 0.
One defines 3, : Sing(X) — Sy(X) by 8,(0) = 04(8,(24)). Then
() B:8.(X) = S.(X)

is a natural chain map, [D] p. 41. For later use we need to explicate the
natural chain homotopy s : 8 ~ idg (y), [D] p. 42. It is 0 for ¢ = 0 and is gi-
ven by

Sq(2q) = By - (By(2g) — 19 — 54-1(019)) € Sg11(A )

on 1, € S,(A?) for ¢ > 0. For a general o € Sing(X), s4(0) = 04(54(24))-

We now want to define a ‘“‘subdivision” homomorphism [5:%.(X) —
%.(X) for the measure theoretical chain complex and a chain homotopy
s : B ~1idg, (x). To this end we write out the construction in (1) in a form
By = > vea, v, where B :Sing(X) — Siny(X) are continuous and induce



MEASURE HOMOLOGY 211

linear maps (8;), : €4(X) — €,4(X). Thus we can define our measure theo-
retical ““subdivision” homomorphism by 8, =3_,, rv(5;),. This procedure
will also be used to define the chain homotopy s : 3 ~ idg, (x). For ¢ > 1 the
explicit formula is

4 4 1
Zq _ Z Z Z 1)k1+~~-+kqa/;14..kq
kg=0 ky =0 k=0

where

ol M =B, (80 (Byy- (8o By- (6% 0 (B1-6"))-))) € Siny (A7)
Thus we get maps (3, : Sing(X) — S,(X),

9 g-! 1 . .

(3) Bo=D D ey (1)t

kg=0 ky1=0  Ji=0

where ﬁgl“‘k"(a) =oco a],;““k". Similarly when ¢ > 1 we have

g g i ! ki 4tk
sq(ig) =) (=D Y (=D k)
v=1 kg=0 kg 1=0  k1=0
qfl q q—1 v+1 . .
Y (=1t gy, k) = €4
V:1 kg=0 ky1=0  kyp1=0

where
fliﬁu(kla R 7kq) = Bc/ : (6kq © (Bq—l : (61{{/71 S (6](”] o (BV . Ukl‘“kﬂ)) o )))
Sookug, - kg) = By (650 (Byy - (65 0o (6% 0 (B, -0,)) -+ ),

v=1,...,g—1, and

q—1 1
@ s=) (DT DG V)
v=1 kg=0 ke 1=0 k=0
g1 g9 g-1 v+l
_ Z(_l)q7V Z . ( 1)/(,,+1+ +kqgky+1 kg hqq
q,v s
v=1 kg=0k, 1=0  ky;1=0

where fi %0, ghnt hgq : Sing(X) — Singy(X) are defined by
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ff_’ly-“ku(o-) =0 qu.,l/(klu L. 7kq)
glz;:/;lmkq(o—) =00 gq,l/(kwrh e akq)
hyq(0) = 00qyq.

In the following we shorten notation and write (3) as 6, =), 4, B,
where A, is the set of g-tuples (ai,...,qa4), a;=0,1,...,i, and

Flkyoky) = (—l)k‘+“‘+k‘1. For ¢ > 2 we then have
q ) 9q )
08, =Y (1Yo Y B | =D > (-1Vrdop;
j=0 ved, J=0 ved,

Z (_lyraﬁ;—l 0.

q
j=0 OéEA,[,l

ﬁqfla: Z ra53_1<

OzEAq,|

! <—1>fa,-) _
=0

j
Now 00, = ,-10 by (2) so in particular 98,(z;) = B,-10(z), 1.€.
q

Z Z(fl)"ryaZoéj = Z (fl)jraéjoa’ql_l.

q
Jj=0 ved, Jj=0 acd,
Since Sin,_1(A9) is a basis for S,_; (A7) we can write
q q

q

E E (=Yrop08 = g l,\T;\
J=0 ved, AeM,
q .
J Vi o _ n
E E (=1Yred ooy = g Suwlys
Jj=0 a€d,; HEN,

where

{T;M € Mq} c {a; 0 8|(v,j) € Ay x {0,1,... 7q}}

{wﬁﬂ,u € Nq} - {6’ ooy |(,a) €{0,1,...,q} x Aq,l},
and Aj # Xy = 70 # 72 and py # pp = W' # Wb and 1, # 0 for all X € M,
and s, # 0 for all y € N,. We observe that M, and N, contain the same

number of elements and that for all A € M, there exists a u € N, such that
sy =ty and w¥ = 7. Now let T,', Q' : Sin,(X) — Sin,1(X) be given by
T;‘(O’) =o0o T;, 2(0) =couw.

Then we have that
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{Tane m,} < {a08\w.) € 4, < {0.1,....q}}
{oune N} {851 081G.0) € {01, q} x 41

and 08, = 3y, 0T, 10 = >_uen, SuSYy- These results are also true for
g=1 with some small, obvious changes in the notation (put
Ag = {0},ro = 1,8) = id and o) = id).

Define 8 : 64(X) — €4(X) by By =3 ,c4, 1v(8;), for g = 1 and fy =
Lemma 4.1. 8:4.(X) — €.(X) is a natural chain map.
ProoF. The map is natural by definition. For ¢ > 1 we have

aﬁq=2(—1)’(@->*(2ru ) ) PIDBCHIACEEAN

j=0 veAd

q
By10 = Z (—1Yra(Bo_, 0 0)). ( Bod = Z (—1Y(9; )
From the remarks before the lemma we conclude that

By =Y (T, B10=D_ su(62),

AEM, pEN,

which implies 93, = 3,-10.
In the following we write (4) as s, =) . 5, rosy where r, € {=1,1} and
{sg | € By} = M{ U M. Here

M:{ Koy e {1, ..,q},(kl,...,kq)eAq}
Mg ={gh v e {1, g = 1) G, k) € A7 HU (g}

where A7 is the set of tuples (ap,...,qq), a:=0,1,...,i, p=1,2,...,9. We
then have that

_ J X Q _ _1V 7Y .
Osq = E g (=1YraGyosy, s4-10= E E (=1)rys, 00
j=0 a€B, J=0 v€B4

so 0sy + s4-10 = B, — id is equivalent to

q+1

(5) DD (Wradosg+d > (~Vrs08= nb; -

j=0 a€B, Jj=0 ~v€B; vEA,
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Define s, : €4(X) — €441(X) by sq=2 0cp, ralsy), for ¢ > 1. For ¢ <0,
sq = 0.

Lemma 4.2, s: 8 ~idy, (x) is a natural chain homotopy.

Proor. Naturality follows from the definition. We have 3, —id =

ZVEAI/ }’,,(ﬂ;)* - ld and

q+1 ) q .
Osg=2 > (~Vra(@osg)., s10=) > (=1Yr,(s)_ o).
Jj=0 a€B, Jj=0 ~Y€B, |

Now evaluate (5) on ¢, and use the same procedure as in the remarks before
lemma 4.1 to deduce that s defines a chain homotopy 9s, + s4-10 = 3, —

Let % ={U,JacI} be a family of subsets of X. We put
Wk = (i) #(Sink(Ua)) where i, : U, — X is the inclusion map. If U, is open

«

in X then W[ is open in Sing(X) and (ia)y : Sing(Us) — WE is a home-
omorphism.

Lemma 4.3. Let ne N. Then we have a natural chain homotopy
¢: 3"~ idg,x). If € €4(X) and O € 6 |(X) then ¢y 1(0p) € €, (X).

PROOF. Let ¢; = s,(id + 3, + ...+ B)7") : €4(X) — €411 (X). Then ¢ is a
natural chain homotopy between 3" and idg, (x). Now let ¢ >1 and
€ b,(X) and assume that Ou € %Zﬂl(X). Write Op = Z}’Zl rip.ti € R,

W€, “/ 1 (X) and choose v; € 4, 1(U,,) such that y; = i, (v;). By naturality
of ¢

cq-1(0p) = Zr,cqua (1)) Z% (cq-1(1))) € 6y (X).

—1
The main lemma is

LEmMMA 4.4. Let U ={U, |« € I} be a family of subsets of X such that
Int(%) is a covering of X. Then for all i € €,(X) there exists a natural number
n so that the n'th iterate (8,)" (1) € %,/ (X).

ProoF. We may assume that U, is open since %f]nt(%) - %Z’(X ). Now let
q =1.8Since By =3, r(0]), we have

(/Bq - Z Z Ty,. VA 51/,( ’ _0(5;/1)*

vI€A, v €Ay

=3 Y nw(Bro o),

V] €Aq Vg GA,[
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for every k € N where r,, ,, = H;.‘Zl ry,. From standard singular theory (cf.
[D] (6.3) p. 41) we know that for given € > 0 (ﬁq)k(zq) is a formal linear
combination of simplices of diameter less than e if k is sufficiently large, say

k > nyg. Now

(ﬁq)k(zq) = Z e Z rl/lmw(ﬁ;/k ©--:0 ﬁgl)@q)

V] EAq VkEAL[

for every k € N so diam(8 o -0 3 (24)(A?)) < e for all k>ng and all
(Viy... ) € (Aq)k. Here diam(C) denotes the diameter of C. For
o € Sing(X), # = {0 '(U,)|a € I} is an open covering of A’ This being
compact there exists an ¢, > 0 such that for C C A? of diameter less than e,,
there exist an index a with C € = !'(U,) (e, is the Lebesgue number of the
covering #"). Choose n, such that for all kK > n, and all (v,...,1%) € (Aq)k
we have the implications

diam(g o -0 5! (1g)(A 1)) < eg = Ja €I : B o0 B (1g)(A ) C o™ (Ua)
=3Jaecl:fBlo-0p(0) € WL

Now let k>n, and (vi,...,) € (Aq)k and choose a €/ such that
Byo---ofBt(o) € Wi Since W{ is an open subset of Sin,(X) and
Bk oo Bt Sing(X) — Sing(X) is continuous, it follows that there is an
open neighborhood Uy~ of o in Sing(X) such that Jfo---o
By (U-) C Wi Set Uy =\, cq,  Nyyea, UL It is an open neigh-
boorhood of ¢ in Sin,(X) and for all (v1,...,1%) € (Aq)k there is an index «
with 3k o0 31 (UY) C W, Let u € €,(X) be a chain with Supp(u) C K
where K C Sin,(X) is compact and set O, = U’. Since {OU}UeSinq(X) is a
covering of K with open subsets of Sin,(X) we can find oy,...,0; € Siny(X)
such that KCO, U...UO,. Set nj=n, for je{l,...,I} and set
n =max{ni,...,n} and let 7 € K. Choose a j € {1,...,/} such that 7 € O,,.
Then for all (vy,...,u,) € (4,)" there is an index o with
5:’7 00y (1) GVWg. Now let k>n; and (vi,...,u) € (Aq)k. Choose
a €1 such that 3,7 0---0 By (t) € Wi. Then fBjko---ofn(r) € W{. (Let
w € Wi. Then w(A?)CU,. We therefore have

Biw)(AT) =woo (A7) C wAf)C U

for v € 4, so B(w) € W{.) Thus to each (v,...,v,) € (4,)" and 7 € K we
can find an index «a with 3" o---0 (1) € W{. Since ;" o -0 ! is con-
tinuous L =" o---03(K) is a compact subset of Sin,(X); actually
LC W?=J,e; W{. The support of A= (8, o---0 ) (1) is contained in
L. Choose «i,...,a;, €I such that LCWI U...UWJ and let
Vi=W{ NL. Since V; € #(Sing(X)) it follows that #(V;) € #(Sing(X)).
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The restriction ); of A to #(V;) defines a real Borel measure on 7V,
j=12,. {V} " | is an open covering of L and L is normal since it is a
closed subset of the normal space Sin,(X). We can therefore choose a parti-
tion of unity {p;}/.; subordinated to the covering {¥;};.;. The maps
p; : V; — R are continuous and therefore Borel measurable. Now let

’I’]](B):/Bpjd(Aj), BE,@(VJ)7 ]:1,2,,1’}’1

Since p;(L) C [0,1] it follows that p; € L'();). This implies that 7; is a signed
Borel measure on V; of bounded total variation, and we can define y; by

1(B) = nj((iaj)#(B) N L), B e B(Sing(Uy)), j=1,2,...,m.
Since V; € #(W{ ) we have
#(v) = {BnviBeawl)} ={BnLBeaw)}.

Now (i, # 1 Sing (Uy,) — W" is a homeomorphism, so induces a bijection
,@((ia )4 ) + B(Sing(Uy,))) — ,%’(Wq) Thus p; is a well defined real valued
Borel measure on qu( o). If we put Lj = Supp(p;) € V; € W then

w(B) = [ md) = [ xamdy) = [ i)

Vi Vi

~ [ xwwpd) = [ gty =neaL)
: BNL
for B € #(V;), where x3 is the characteristic function of B etc. Observe here
that L; is a closed subset of L hence of Sin,(X), so L; € #(Sin,(X)). More-
over Be A(V;) C #(Sing(X)) so BNL; CA(Sin,(X)). But then
BNL; C #(V;) since BNL; C V; € #(Sin,(X)). This shows that the above
calculations are allowed. Also M; = (ia,);#1 (L) is a compact subset of
Sin,(U,,) and we have

1 (D)

(o) (D) VL) = (i) 4 (D) N LN L)
(ia)) (D) N L (i) (M)

(ia)) (DO M) (L) = (D 1 M)

N

T

~— /‘\/‘\/\

for all D € #(Sin,(U,,)), i.e. ji; € €,(Uy,). If B € #(Sin, (X)) we have
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> i, () (B Zuj(la Bwg)) = anBqumL)
=

I11
/ / XBnYV; PJ
BN V

= Z/ x8nv,& dA,
j=1 “/Sing(X)

where ¢ : Sing(X) — R is the Borel function defined by &(x) = pixz(x),
x € Sing(X). Now xzng = X8, + X\, and =0 on (LNB)\V; so
xav;& = Xx1ng§j. Since Y & =1on L,

> iy (1)(B / XBmLé} A) = / xsnLd(A)
=1 Sing (X Sing (X)

_)\BDL = \(B).

It follows that A = ijzl in,(117) and we conclude that

=D D el o B1). () € €L (X).

vI€Ay v €Ay

For ¢=0 the result easily follows by the preceding. Observe that
WO =,c; W2 = Sing(X) and skip the first part of the proof and let A = u
and L = K in the last part the proof.

PROOF OF THEOREM 3.1. Set 6. (X;%) = €.(X)/%"(X), giving the exact
sequence

0 — CY(X) - 6.(X) 2 €.(X;U) — 0.
We must show that H.(%.(X;%)) = 0. Let u+ %Z(X) € Z,(%.(X;%)). Then
p+%r (X)) =0u+Cr (X)=0+%" |(X) & duebl (X)

By lemma 4.4 we can choose n € N such that (3,)" (1) € %Z’(X). Let ¢ be the
chain homotopy between (3" and idy (x), see lemma 4.3. Set
¥ =(8)" (1) — ¢4—1(dp) and x = —¢,(p). Since 8,u €6 (X ) it follows from
lemma 4.3 that ¢,_1(0p) € (6;2’( ) which 1mphes that y € ‘6 (X). Moreover
we have that xe€ @, (X) and p=id(p) = (6,)" ( ) — cg—1(0p)—
O(cq(p)) = y + Ox. This implies that

,uf(?‘xefég’( )<:>,u+‘6”7’( ) = 6x+f63‘( )= 8(x+%:;‘+1( ).

But then u+(€Zl(X) € By(C.(X;U)).
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5. Measure homology and CW-complexes.

In this section we show that the measure homology groups are isomorphic to
the singular homology groups on the category of CW-complexes. The pro-
blem is that not all CW-complexes are metrizable so we need the following
result. Let X be a topological space and let {X,},.; be the family of compact
subsets of X partially ordered by inclusion. Let i’ : X,, — Xj be the inclusion
when X, CX3. Then {Hfj(Xa)}ael forms a direct system of real vector spaces
with the linear maps f? = H"(i,3) : H"(X,) — H"(X;) induced by the in-
clusion maps. We now have

PrOPOSITION 5.1.

H"(X) = lim H"(X,)
o
ProoF. Let i, : X, — X be the inclusion maps, fo, = H!(iy) : H'(X,) —

HMX) and let f =@, fo: Bocs H(Xo) —=HMX). If D7 X0, € Boes
H'(X,) and g€l 1is such that X,CXs for i=1,2,...,n and
Z?:l (g,-(x@i) = 0’ then 0 :fS(ZT:I (ﬁ(x%)> = Z?:l-fai(xai) :f(z7:1 x&i)'

Thus f induces a linear map

f: lim HM(X,) — H"(X).
a

Now let [u] € H}(X) and choose a compact subset KCSing(X) with
Supp(u)CK. The evaluation map w: Sing(X)x A? — X defined by
w(o,x) = o(x) is continuous since A? is compact so 4 =w(K x A?) is a
compact subset of X. Now if o0 € K we have that o(A?)C4, and it follows
that K C j4(Singy(A4)) where j: 4 — X is the inclusion. But then L :j#;l(K)
is a compact subset of Sin,(A4). The homeomorphism jg : L — K induces a
bijection Q = 2(j4) : #(L) — #(K). Since K € #(Sin,(X)) we have that
#(K)CA(Sing(X)). Moreover Z(L) = {LND|D € #(Sin,(4))}, so we can
define a signed Borel measure v on Sin,(A4) of bounded total variation by
v(D)=poQ(LND). By definition Supp(v)CL so ve@,(4). If
B € #(Sin, (X)) we have

JW)(B) = v(j;' (B) = no QLN ;' (B) = o QU (KN B))
= WK N B) = u(B).

Now 0 =0u =j(0v) and by lemma 2.1 j:4.(4) — ¢.(X) is injective so
dv = 0. All in all we see that [u] = H}(j)([v]) so f and thus f is surjective.
Suppose that Y7 [1a,] € B,y H'(Xa) with £ (37 [1a,]) = 0. Since
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n n n n
S <Z [Nu,}) = Z Joi([a)]) = Z [0 (110;)] = [Z iai(ﬂw)‘|
=1 =1 i=1 i=1

we can choose v € €41 (X) with v = >~ | in,(pe,). Let K C Sing.1(X) be a
compact support of v and let A =w(K x AT")  where
w:Sing1(X) x A7 — X is the continuous evaluation map. Then
X3 =AU, X,, is a compact subset of X. For o € K, o(A?"1)CACXj, so
we can choose A € €,.1(Xp) with i3(\) = v. Since

iﬁ(a)‘) = 81’5(/\) =0v = zn: im(ﬂm) =g (zn: ig,» (Mtw))
i=1

i=1

and since iz : €4(X3) — €4(X) is injective, y ., ig,(ﬂa,-) is a boundary in
,(Xs). Hence 0, 1 ([pe)) = S [, ()] = 0.

COROLLARY 5.2. The measure homology groups and the singular homology
groups are isomorphic on the category of CW-complexes.

Proor. This follows by the fact that a compact subset of a CW-complex is
metrizable.
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