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PARTITIONS OF R3 INTO CURVES

M. JONSSON and J. WAë STLUND

Abstract.

A general technique for obtaining partitions of R3 into curves satisfying various properties is
presented. The method can be used to partition R3 into unlinked circles of radius one, which
answers a question posed by Wilker [7], or into arbitrary collections of real analytic curves. We
also apply the method to study the set of bijections of the open unit disk.

Introduction.

It is well known that the plane is not a disjoint union of Jordan curves. In
this paper we will discuss various ways to partition R3 into disjoint curves.
Our main results are:

Theorem (see Theorem 2.3). R3 can be partitioned into unlinked congruent
circles.

This answers a question in [7].

Theorem (see Theorem 3.1). R3 can be partitioned into isometric copies of
any family of cardinality c of real analytic curves.

We also obtain the following:

Theorem (see Theorem 5.2). De¢ne a metric d on the set of all bijections of
the open unit disk U onto itself by d�f ; g� � supx2U f �x� ÿ g�x�j j. The metric
space so obtained is path connected.

The paper is divided into ¢ve sections. In Section 1 we introduce the gen-
eral technique. We present and extend some known results. In Section 2, we
consider partitions of R3 into unlinked circles. In Section 3, we replace the
circles by arbitrary real analytic curves. In Section 4, we brie£y discuss the
situation in higher dimensions, and ¢nally in Section 5 we apply the method
to ``bijection spaces'' of plane sets.
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While working on this paper we found that other mathematicians had al-
ready been studying some of these questions. Some of their results are in-
cluded for completeness.

1. The general technique.

In this section we present a general technique for partitioning a space into
small subsets. As mentioned, the methods have been used before, e.g. in [2],
[3] and [5]. However, we will extend this method to deal with situations
where we put further restrictions on the partition (e.g. one circle of each
positive radius).
By a partition of a set X we mean a collection of disjoint subsets of X

whose union is X . A circle in R3 is a set isometric to fx21 � x22 � r2; x3 � 0g,
where r is the radius of the circle. Two circles are congruent if they have the
same radius. These notions extend naturally to n-spheres in Rm. A Jordan
curve is a homeomorphic image of a circle.
We let R� and Q� denote the positive real and rational numbers, respec-

tively. If X is a set then jX j will denote its cardinality, and we denote jRj by
c. If A and B are sets then A t B denotes their disjoint union.

It is possible to construct explicit partitions of R3 into circles. The fol-
lowing example is due to Szulkin [6].

Theorem 1.1. [6] There exists a partition of R3 into circles.

Proof. It is easy to see that it is possible to partition a two-punctured
sphere into disjoint circles. Let �x; y; z� be coordinates in R3 and consider the
union C of the circles of radius 1 in the �x; y�-plane centered at the points
�4k� 1; 0; 0�; k 2 Z. Then any sphere centered at the origin intersects C in
exactly two points. By covering each such sphere with disjoint circles, we
obtain the desired partition.

In the construction above, every positive real number occurs in¢nitely of-
ten as the radius of a circle of the partition. Conway and Croft [3] claim to
have shown that one could do the same thing with circles of the same radius,
but their argument is somewhat unsatisfactory. We also refer to Khar-
azishvili [5]. Alternatively, one can demand that every positive real number
should occur exactly once as the radius of a circle in the partition (see The-
orem 1.6 below). The method to obtain such ``strange'' partitions relies on
the Axiom of Choice and is general enough to deserve separate treatment.
We will consider the following problem. Let X be a set, and let S be a fa-

mily of subsets of X . We ask whether it is possible to obtain a partition of X
using only sets from S.
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Definition 1.2. Let X and S be as above. The pair �X ;S� is called £exible
if given a subcollection S0 � S of disjoint sets with jS0j < jX j, and an
x 2 X n [S0, we can always ¢nd an s 2 S such that x 2 s and s \SS0 � ;.
If �X ;S� is £exible, we can sometimes think of S as consisting of ``many

but small'' subsets of X . The usefulness of this notion comes from the fol-
lowing proposition.

Proposition 1.3. If �X ;S� is £exible then S has a subcollection which con-
stitutes a partition of X.

To prove this proposition, we will need a few set-theoretical concepts.
A well-ordering of a set X is a linear ordering < such that every nonempty

subset of X has a minimal element. As an example, N is naturally well-
ordered. It is a well known consequence of the Axiom of Choice that every
set admits a well-ordering.
If y is an element of an ordered set X , then X<y will denote the set of all

x 2 X such that x < y. A well-ordering < of a set X is said to be minimal, if
for every y 2 X , jX<yj < jX j. For example, the usual ordering on N is a
minimal well-ordering.

Lemma 1.4. Every set X admits a minimal well-ordering.

Proof. Let < be a well-ordering on X . Let Y � fy 2 X ; jX<yj < jX jg. We
claim that jY j � jX j. Suppose that this is not the case. Then X n Y contains
a minimal element x. Since jX<xj � jY j < jX j, we have x 2 Y , a contra-
diction. It follows that Y � fy 2 X ; jX<yj < jY jg � fy 2 Y ; jY<yj < jY jg, i.e.
that Y is minimally well-ordered. Now a bijection between X and Y induces
a minimal well-ordering on X .

Proof of Proposition 1.3. Let < be a minimal well-ordering of X . A
subcollection S0 of S is called good if:
� The sets in S0 are pairwise disjoint.
� For every x 2 X and s 2 S0, if x < min�s� then x 2 [S0.

The good classes are partially ordered by inclusion and every ascending
chain has a least upper bound, namely its union. By Zorn's lemma, there
exists a maximal good subcollection S0. We will show that S0 is a partition
of X . Clearly the elements of S0 are disjoint subsets of X . Suppose that
X n [S0 6� ;, and let x be its minimal element. By the second condition
above, every element in S0 must cover some element in X<x. Since < is
minimal, we have jS0j � jX<xj < jX j. Now the £exibility of �X ;S� implies the
existence of an s 2 S such that x 2 s and s \SS0 � ;. But then S0 [ fsg is
good, which contradicts the maximality of S0. Hence S0 is a partition of X .
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Our ¢rst application of this proposition is to prove the result of Conway-
Croft and Kharazishvili.

Theorem 1.5. [3], [5]. There exists a partition of R3 into congruent circles.

Proof. We take X � R3 and let S be the collection of circles of radius 1.
By Proposition 1.3 we only have to show that �X ;S� is £exible. This will
follow from Lemma 1.7 below.

Another application is the following:

Theorem 1.6. There exists a partition of R3 into circles such that every po-
sitive real number appears exactly once as the radius of a circle in the partition.

Proof. We take X � R3 t R� (the disjoint union of R3 and R�) and let S
be the collection of sets of the form s [ frg where s is a circle in R3 with ra-
dius r. Once again Proposition 1.3 tells us that it is su¤cient to prove that
�X ;S� is £exible. This too follows from Lemma 1.7.

Lemma 1.7. Given any collection fs�g�2A, jAj < c, of disjoint circles in R3,
there exists a circle s in R3, disjoint from all the s�'s, which passes through an
arbitrarily prescribed point in R3 (not covered by the s�'s), and has an arbi-
trarily prescribed positive radius.

Proof. We will construct a new circle which passes through any given
point x (not in the union of the s�'s) and has a given radius r > 0. Each circle
s� lies in exactly one plane in R3. Since there are fewer than c circles, we can
¢nd a plane through x intersecting each circle s� at most twice. In this plane,
we can draw c di¡erent circles of radius r through x, and each s� intersects at
most 4 of these. Clearly, we can pick one which is disjoint from all the s�'s.

We want to stress that Proposition 1.3 is a very powerful tool for con-
structing partitions. It allows us to establish the existence of partitions of R3

into circles satisfying seemingly very strong conditions. The following theo-
rem is an example of this. We let Q� be the set of positive rational numbers
and let � be the set of planes in R3.

Theorem 1.8. Let Y be a subset of R3 with cardinality less than c (e.g. the
set of points with rational coordinates). Then there exists a partition of R3 n Y
into circles such that:
� Every positive real number appears exactly once as the radius of a circle in

the partition.
� Every plane in R3 contains exactly one circle of the partition.
� Every point in R3 is the center of exactly one circle of the partition.
� Given any rational number q > 0, the collection of circles obtained from
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the original partition by magnifying each circle by a factor q (keeping its cen-
ter and plane ¢xed) constitutes a new partition of R3 n Y.

Proof. We use Proposition 1.3 with X � ��R3 n Y� �Q�� t R� t � t R3

and let S be the collection of subsets of the form
S

q2Q��sq; q� [ frg[
f�g [ fpg where s � s1 is a circle in R3, r, � and p are the radius, plane and
center associated with s, and sq is the circle in R3 obtained by magnifying s
by a factor q, keeping its plane � and center p ¢xed. We claim that �X ;S� is
£exible. This can be proved by an argument similar to Lemma 1.7. The
statement of the lemma will now be more complicated but the proof very
much the same. We omit the details.

2. Unlinked circles.

Szulkin's construction uses linked circles, but this is, as we shall see, not ne-
cessary even if we demand that all circles be congruent. This answers a
question posed in [7]. Here we present two results concerning partitions with
unlinked circles.

Theorem 2.1. There exists a partition of R3 into unlinked circles such that
every positive real number occurs exactly once as a radius.

In the proof of this theorem, we will only consider circles in R3 of a special
kind. Let �x; y; z� be coordinates in R3. A circle in R3 is called admissible if it
is symmetric with respect to the plane z � 0 (see the ¢gure).

We note that two disjoint admissible circles cannot be linked. The analo-
gue of Lemma 1.7 is the following result.

Lemma 2.2. Given any collection fs�g�2A, jAj < c, of disjoint admissible
circles, there exists an admissible circle s, disjoint from all the s�'s, which either
passes through an arbitrarily prescribed point in R3 (not covered by the s�'s)
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and has any su¤ciently large radius, or has an arbitrarily prescribed positive
radius.

Proof. We show that, under the above conditions, we can cover any point
p � �x; y; z� (not covered by the s�'s) with an admissible circle of a given ra-
dius r > jzj. This will take care of both cases of the lemma.
In fact, for each s� there are at most two admissible circles with radius r

through p intersecting s�. Also, there are c admissible circles with radius r
through p and the s�'s are less than c in number, so there has to be an ad-
missible circle with radius r passing through p which is disjoint from all the
s�'s.

Proof of Theorem 2.1. We apply Proposition 3.1 with X � R3 t R� and
let S be the collection of sets of the form s [ frg, where s is an admissible
circle with radius r. By Lemma 2.2 �X ;S� is £exible. Since we only consider
admissible circles, we get a partition of R3 into unlinked circles.

Next we show that the circles in a partition do not have to be linked even
if we require that they have the same radius.

Theorem 2.3. There exists a partition of R3 into unlinked congruent circles.

Proof. In order to prove this, we have to change our class of admissible
circles. From now on a circle is called admissible if it has radius 1, and is
symmetric with respect to one of the planes z � ÿ1 or z � 1 (see the ¢gure).

Note that if we can cover all points with z-coordinate strictly between ÿ2
and 2 with disjoint admissible circles, then exactly one of the points
�x; y;ÿ2� and �x; y; 2� will be covered. Hence this covering, together with all
its vertical translates by the numbers 4k, k 2 Z, will constitute a partition of
R3. Clearly, two circles used in this construction cannot be linked.

We use Proposition 1.3 with X � R3, and let S be the class of all sets
consisting of an admissible circle, together with all its vertical translates by
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the numbers 4k, k 2 Z. The £exibility of �X ;S� is guaranteed by the follow-
ing lemma.

Lemma 2.4. Given any collection fs�g�2A of disjoint, admissible circles,
jAj < c, and any point �x; y; z�, with ÿ2 < z < 2, not covered by the s�'s, there
exists an admissible circle passing through �x; y; z� which is disjoint from all the
s�'s.

Sketch of Proof. There are always c admissible circles passing through
the point �x; y; z�, and each s� can intersect at most ¢nitely many of these.

3. Covering R3 by other curves.

So far, all the generalizations of Theorem 1.1 have consisted of putting see-
mingly restrictive conditions on the circles of the partition. Now we gen-
eralize in another direction, replacing the circles by more general curves. It is
not di¤cult to use the ideas above to partition R3 into plane curves, e.g. el-
lipses or polygons,but to use other curves we need a re¢nement of the tech-
nique.
By a real analytic curve in R3 we mean a smooth embedded curve which is

locally parametrized by a nonsingular real analytic function.

Theorem 3.1. Let f�g�2A; jAj � c be a collection of real analytic curves in
R3. Then there exist orientation preserving isometries fg�g of R3 such that
fg��g is a partition of R3.

Again we will use Proposition 1.3. This time we take X � R3 t A, and let
S � fg� [ f�gg, where g is an orientation preserving isometry of R3, and
� 2 A. The following lemma implies that �X ;S� is £exible.
Lemma 3.2. Given a collection f�g of fewer than c real analytic curves in

R3, a point p 2 R3 nS � and another real analytic curve , there exists an
orientation preserving isometry g of R3 such that p 2 g and g is disjoint from
all the �'s.

Proof. Without loss of generality we may assume that p 2  and that
p � 0. It su¤ces to ¢nd a rotation g around the origin such that g does not
intersect any of the �'s. We restrict ourselves to the set T of rotations by an
angle less than �=2, with ¢xed points in the �x; y�-plane. We can identify T
with the upper half of the unit sphere by representing the rotation g by the
point g�0; 0; 1�.
We will use the fact that a real analytic curve cannot intersect a sphere in

more than a countable number of points, unless it lies entirely on the sphere.
Now  contains the origin, hence does not lie on a sphere centered at the
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origin. The curve  has a real analytic parametrization
�t� � �x�t�; y�t�; z�t��. Let r�t� �

�������������������������
x2 � y2 � z2

p
. We can divide  into a

countable number of pieces such that every piece is either a point or an arc
on which dr�t�=dt 6� 0.
Let l1 be one of these pieces. Let � 2 A. We want to show that the set of

rotations g 2 T such that g�l1� intersects � is represented by a countable
union of real analytic curves on the sphere. This is clear if either l1 consists
of a single point or if � lies on a sphere centered at the origin. We therefore
assume that � does not lie on a sphere centered at the origin. Hence we can
divide � into pieces in the same way as we did with .
Let l2 be an arc (or a point) from �. It su¤ces to show that the set of

rotations g 2 T such that g�l1� intersects l2 is represented by a real analytic
curve on the sphere. This is clear if l2 consists of a single point.
Suppose without loss of generality that dr�t�=dt > 0 on l1. Then by the

Inverse Function Theorem (for real analytic functions), the inverse function
t � t�r� is real analytic. Hence l1 has a real analytic parametrization
l1�r� � �x1�r�; y1�r�; z1�r��, where r is the distance to the origin. Similarly, l2
has a real analytic parametrization l2�r� � �x2�r�; y2�r�; z2�r��. Consider an
interval where both l1�r� and l2�r� are de¢ned, and the angle between them is
less than �=2. For every r in this interval, there is a unique rotation gr 2 T
such that gr�l1�r�� � l2�r�. By geometric considerations, we see that it is
possible to ¢nd an expression for gr�0; 0; 1� in terms of l1�r� and l2�r�, invol-
ving only rational functions and square roots. Hence gr�0; 0; 1� is a real
analytic function of l1�r� and l2�r�, and it follows that the composite function
r 7!gr�0; 0; 1� is real analytic. In other words, the set E � T of rotations g
such that g�l1�r�� � l2�r� for some r in this interval is represented by a real
analytic curve on the upper half of the unit sphere.
It now follows that the set of g such that g intersects some � is re-

presented by a union of fewer than c real analytic curves on the upper half
sphere. We choose a circle on the upper half sphere which does not contain
any of these curves. Since this circle intersects each of the curves in only a
countable number of points, it must contain a point which does not lie on
any of these curves. This point represents the desired rotation g, and the
proof is complete.

Remark 3.3. Using the same technique, we can show that Theorem 3.1
remains true even if we allow the sets in A to be unions of fewer than c real
analytic curves (for example polygons).

Remark 3.4. Lemma 3.2 above (and hence the theorem) should probably
be true under considerably weaker smoothness assumptions on the curves,
say C1 (perhaps the Continuum Hypothesis would help here). One must,
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however, assume some regularity, i.e. one cannot replace the family � in the
theorem by any family of Jordan curves. To see this, we use the fact that a
Jordan curve in R3 can have positive Lebesgue measure. More precisely, gi-
ven � > 0 we can, by modifying a construction in [4], ¢nd a Jordan curve  in
the cube E � �0; 1�3, not passing through �12 ; 12 ; 12�, with Lebesgue measure
��� > 1ÿ �.
We claim that R3 cannot be partitioned into isometric copies of  if � is

small enough. It su¤ces to show that if 0 is an isometric copy of  passing
through �12 ; 12 ; 12�, then  and 0 must intersect. But for simple geometrical
reasons there exists an � > 0, not depending on �, such that the cubes E and
E0 corresponding to  and 0 must intersect in a set of measure at least �. If
 and 0 were disjoint, then we would have 2ÿ � � 2ÿ ��E \ E0 � �
��E [ E0 � � �� [ 0� � ��� � ��0� � 2ÿ 2�. This is a contradiction if
2� < �.

4. Higher dimensions.

The method of Section 1 generalizes to prove the following results (see the
proof of Theorem 4.5):

Theorem 4.1. [2] There exists a partition of R2n�1 into (isometric) copies of
Sn.

Using the methods of Section 2 one can even demand that the n-spheres be
unlinked. The following question is natural:

Question 4.2. What is the smallest m � m�n� such that Rm can be parti-
tioned into n-spheres?

Theorem 4.1 shows that m�n� � 2n� 1. On the other hand, one easily sees
that m�n� � n� 2 (see Theorem 4.9 below).
Partitioning an open subset of R3 (or R2n�1) is no more di¤cult than the

whole space:

Theorem 4.3. [5] Any open subset of R3 (or R2n�1) can be partitioned into
circles (or n-spheres).

Another natural issue is to partition R2n�1 into subsets of Sn:

Theorem 4.4. [2] Given a nonempty subset U � Sn, there exists a partition
of R2n�1 into (isometric) copies of U.

As an example of the technique, we give a proof of the following theorem.

Theorem 4.5. Given a nonempty subset U � Rn, there exists a partition of
R2n�1 into (isometric) copies of U.
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Proof. We show that the copies of U constitute a £exible family. It is
enough to show that, given a collection fV�g of fewer than c n-dimensional
a¤ne subspaces in R2n�1, we can ¢nd another n-dimensional a¤ne subspace
V , containing a given point (not in the union of the V�'s), say the origin,
without intersecting any V�.
Let y�;1; . . . ; y�;n�1 be an a¤ne basis for V�. Since we want to cover the

origin, we want to ¢nd points x1; . . . ; xn in R2n�1 whose (linear) span does
not intersect any V�, or equivalently, such that

det�y�;1; . . . ; y�;n�1; x1; . . . ; xn� 6� 0

for all �. Since this determinant is a polynomial in the n variables x1; . . . ; xn,
in other words, in n�2n� 1� real variables, the theorem is a consequence of
the following lemma.

Lemma 4.6. Given fewer than c nonzero polynomials P� in m real variables,
there exists a point in Rm at which none of them vanishes.

Proof. Since a polynomial can have only a ¢nite number of linear factors,
each polynomial vanishes on only ¢nitely many hyperplanes. Since there are
c hyperplanes in Rm, there is a hyperplane H on which no P� is identically
zero. By a linear substitution of variables, the restrictions of the P�'s to H
can be regarded as polynomials in mÿ 1 variables. Hence the lemma will
follow by induction on m.

We can ask whether the last theorem is sharp, i.e. whether there exists a
subset U � Rn such that R2n cannot be partitioned into isometric copies of
U . Obviously, R2nÿ1 cannot be partitioned into copies of Rn n f0g, since it is
impossible to use one copy of Rn n f0g to ¢ll the ``hole'' of another, unless
they intersect.

Question 4.7. Is it possible to partition R2n into copies of Rn n f0g?
We remark that Question 4.2 has been answered if we allow home-

omorphic images of spheres. On the one hand, one can indeed do much
better than the estimate m�n� � 2n� 1 suggests:

Theorem 4.8. [1] There exists a partition of Rn�2 into homeomorphic ima-
ges of Sn.

On the other hand, we have the following well-known fact:

Theorem 4.9. Rn�1 cannot be partitioned into homeomorphic images of Sn.

This is perhaps most easily proved using the Hausdor¡ Maximality Prin-
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ciple, but one can give a more constructive argument which, as far as the
authors know, has not appeared before:

Proof. Suppose a partition exists and let s be one of the sets of the par-
tition. Then s divides Rn�1 into two parts, one of which, U , is bounded (the
Jordan Curve Theorem). Take any x0 2 U with maximal distance to the
boundary and let U0 be the bounded component of the complement of the
set of the partition passing through x0. De¢ne inductively xk to be any ele-
ment in Ukÿ1 with maximal distance to the boundary and let Uk be the
bounded component of the complement of the element passing through xk.
Let rk be the distance from xk to the boundary of Ukÿ1. An easy compactness
argument shows that rk ! 0 as k!1. The sets Uk form a decreasing se-
quence of open subsets of U . Let y be any cluster point of fxkg. Then y be-
longs to all the Uk and the maximal distance from y to the boundary of Uk

tends to 0. But then there can be no set of the partition passing through y.

5. Bijection spaces.

We end this paper by a di¡erent application of our method.

Theorem 5.1. Given a bijection f of R2 onto itself, we can construct a one-
parameter family of bijections ft : R2 ! R2 such that
� f0 � id
� f1 � f
� for every point x in R2, the function g : �0; 1� ! R2 given by g�t� � ft�x�, is

continuous.

Proof. Let X � �0; 1� � R2, and let S be the set of all graphs of con-
tinuous functions g : �0; 1� ! R2 with the property that, for some x 2 R2,
g�0� � x and g�1� � f �x�. The theorem is equivalent to the statement that
there is a partition of X into sets from S. By Remark 3.4, it seems unlikely
that �X ;S� is £exible. Therefore, we restrict ourselves to the subclass S0 � S
consisting of all graphs of piecewise linear functions g. We now show that
�X ;S0� is £exible.
Suppose that we are given a collection fg�g of fewer than c sets from S0,

and a point �t; y� in X , not covered by any g�. If 0 < t < 1, we choose a point
x 2 R2 such that �0; x� is not covered by any g�. Then neither is �1; f �x��. If
t � 0 or t � 1, we let x � y or x � f ÿ1�y�, respectively. We want to ¢nd a
piecewise linear function g whose graph passes through the points �0; x�,
�t; y� and �1; f �x�� without intersecting any g�.
If t 6� 0, consider the planes containing the points �0; x� and �t; y�. If a line

segment from a g� does not lie on the line joining �0; x� to �t; y�, it lies in at
most one of these planes. Hence we can ¢nd such a plane which, except
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perhaps on the line through �0; x� and �t; y�, intersects the g�'s in fewer than
c points. In this plane, we can then ¢nd a point �t0; z�, 0 < t0 < t, such that
the line segments joining �0; x� to �t0; z�, and joining �t0; z� to �t; y� will not
intersect any of the g�'s. By joining �t; y� to �1; f �x�� in the same way, we
obtain the desired function g.
On a bounded set, we can even make the points move in a uniformly

continuous way.

Theorem 5.2. Let U be the open unit disk. Let f be a bijection U ! U.
Then there are bijections ft : U ! U such that
� f0 � id
� f1 � f
� for s; t 2 �0; 1� and x 2 U, fs�x� ÿ ft�x�j j � 4 sÿ tj j.
Proof. We will partition the set X � �0; 1� �U into graphs of piecewise

linear functions with slope � 4. We proceed as in the proof of the previous
theorem. Given a collection fg�g of fewer than c such graphs, and a point
�t; y� 2 �0; 1� �U , not in their union, we can choose the point x such that
either x or f �x� is as close as we please to y, depending on whether t is closer
to 0 or 1. Since the distance between any two points in U is less than 2, the
line segments joining �0; x� to �t; y�, and joining �t; y� to �1; f �x�� will both
have slope strictly less than 2

1=2 � 4. As in the proof of the previous theorem,
we now choose a point �t0; z�, and join �0; x� to �t; y� via �t0; z�. Since the
point �t0; z� can be chosen arbitrarily close to the straight line from �0; x� to
�t; y�, this can be done in such a way that all the line segments used have
slope � 4.

Let �X ; �� be a bounded metric space. We de¢ne the bijection space of
�X ; �� to be the set of all bijections of X onto itself, with the metric given by
d�f ; g� � supx2X ��f �x�; g�x��. Theorem 5.2 can then be reformulated as fol-
lows:
The bijection space of the open unit disk in R2 is path connected.

Remark 5.3. It follows from well known theorems of algebraic topology
that the set of all continuous bijections is not path connected in this metric.
There is no way to get from the identity to a re£ection in a line via con-
tinuous bijections.

Question 5.4. Which metric spaces give rise to path connected bijection
spaces?

For example it is easily veri¢ed, using the above method, that two disks
together with a common boundary point, or even two disks connected by a
line segment, give rise to path connected bijection spaces. Hence a gas can
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pass through a hole consisting of only one point! We can also ask other
questions about the topology of the bijection space.

Theorem 5.5. The bijection space of the open unit disk is not simply con-
nected.

Proof. Consider the closed curve in the bijection space consisting of ro-
tations around the origin by an angle � 2 �0; 2��. Suppose that this curve
could be contracted to the identity. Without loss of generality, we can as-
sume that the origin remains ¢xed throughout the contraction. Then the
path of any other point x, which is a circle around the origin, must be con-
tracted to the point x without passing over the origin. This is impossible.

Question 5.6. Is the bijection space of the three dimensional open ball
simply connected?
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