ALGEBRAS WITH VANISHING $Ext^2(X, X)$ FOR INDECOMPOSABLE MODULES

G. BOLAÑOS and J. A. DE LA PEÑA

Let k be an algebraically closed field and A be a finite dimensional k-algebra. We denote by mod_A the category of finitely generated left A-modules. Recall that A is said to be representation-finite if there are only finitely many indecomposable A-modules up to isomorphism. The algebra A is tame if the indecomposables occur, in each dimension, in a finite number of discrete and a finite number of one-parameter families. If the number of discrete families growths polynomially with the dimension, then A is said to be of polynomial growth. See [11,15,17] and section 1 for these concepts.

In this work we shall say that A satisfies the condition (E^s) for some $s \in \mathbb{N}$ if $\operatorname{Ext}_A^s(X, X) = 0$ holds for every indecomposable A-module X. Important classes of algebras satisfying (E^s) for some s have been studied. If (E^1) is satisfied, then A is representation-finite [9,10]. Tilted, and more generally, quasi-tilted algebras satisfy (E^2) [7,15]. Strongly simply connected algebras of (tame) polynomial growth satisfy (E^2) [12]. In this paper we study tame algebras satisfying (E^2) .

Let A be a basis connected finite dimensional k-algebra. Then A has a presentation A = kQ/I, where $Q = (Q_0, Q_1)$ is the ordinary quiver of A with set of vertices (resp. arrows) Q_0 (resp. Q_1). By $mod_A(v)$ we denote the variety of A-modules with dimension vector v. We recall from [6] that the condition $Ext_A^s(X, X) = 0$ for some module $X \in mod_A(v)$ implies the existence of an open neighborhood \mathcal{U} of X such that $Ext_A^s(Y, Y) = 0$ for any $Y \in \mathcal{U}$.

The main results of the paper are the following

THEOREM 1. Let A be an algebra satisfying (E^2) . Then the following are equivalent:

(a) A is tame;

(b) for every $v \in \mathbb{N}^{Q_0}$, there is an open and dense subset \mathscr{U} of $\operatorname{mod}_A(v)$ such that for any $X \in \mathscr{U}$, $\dim_k \operatorname{Ext}^1_A(X, X) \leq \dim_k X$ holds.

Received June 24, 1996.

Moreover, in this case the following property is satisfied:

(c) $\dim_k \operatorname{End}_A(X) - \dim_k \operatorname{Ext}_A^1(X, X) \ge 0$, for every indecomposable $X \in \operatorname{mod}_A$.

An algebra A is strongly simply connected if every convex subcategory B of A satisfies that the first Hochschild cohomology group $H^1(B, B)$ vanishes, [16]. Strongly simply connected algebras of polynomial growth have been extensively studied, see [12,17].

THEOREM 2. Let A be a strongly simply connected algebra satisfying (E^2) . The following are equivalent:

(a) A is of polynomial growth.

(b) A is tame.

(c) For every indecomposable $X \in \text{mod}_A$, we have $\dim_k \text{Ext}^1_A(X, X) \leq \dim_k X$.

(d) For every indecomposable $X \in \text{mod}_A$, we have $\dim_k \text{End}_A(X) \leq \dim_k X$.

We shall prove the theorem and some consequences in section 2, after some general remarks in section 1. In section 3 we shall consider some properties of the structure of the Auslander-Reiten quiver Γ_A of tame algebras A satisfying (E^2) . In section 4 we give some examples.

We gratefully acknowledge support from CONACYT and DGAPA, UNAM.

1. Module varieties.

1.1. Let A = kQ/I be a finite dimensional k-algebra. A module $X \in \text{mod}_A$ will be considered as a representation of Q satisfying the ideal I, see [4]. The dimension vector $X = (\dim_k X(i))_{i \in Q_0}$ is the class of X in the Grothendieck group $K_0(A) \cong Z^{Q_0}$.

We denote by $\operatorname{mod}_A(v)$ the closed subset of $k^v := \prod_{\substack{(i \xrightarrow{v} j) \in Q_0}} k^{v(j) \times v(i)}$ of those

tuples $(X(\alpha))_{\alpha \in Q_1}$ satisfying the relations imposed by *I*. The set $\operatorname{mod}_A(v)$ is called the *variety of modules* of dimension *v*. The affine group $G(v) = \prod_{i \in Q_0} GL_{v(i)}(k)$ acts on $\operatorname{mod}_A(v)$ in such a way that the orbits form the isoclasses of *A*-modules. The indecomposable modules in $\operatorname{mod}_A(v)$ form the

constructible set $ind_A(v)$.

The following lemma is well-known, see for example [6].

LEMMA. a) For given $v \in N^{Q_0}$ and $s \in N$, the function

 $e^s: \operatorname{mod}_A(v) \to \mathsf{N}, \ X \mapsto \dim_k \operatorname{Ext}^s_A(X, X)$

is upper semicontinuous.

b) If $\operatorname{Ext}_A^s(X, X) = 0$ for some $X \in \operatorname{mod}_A(v)$, there exists an open neighborghood of X in $\operatorname{mod}_A(v)$ and an integer c_X such that for all $Y \in \mathcal{U}$ we have,

(i)
$$\operatorname{Ext}_{A}^{s}(Y, Y) = 0;$$

(ii) $\sum_{i=0}^{s-1} (-1)^{i} \dim_{k} \operatorname{Ext}_{A}^{i}(Y, Y) = c_{X}$

1.2. We recall that as examples of algebras satisfying (E^1) we have the representation-finite algebras A whose Auslander-Reiten quiver Γ_A has no oriented cycles.

LEMMA. [9] If A satisfies (E^1) , then A is representation-finite.

We recall the argument of the *proof* as an opportunity to introduce some concepts.

Let $X \in \text{mod}_A(v)$. By T_X we denote the tangent space to $\text{mod}_A(v)$ at the point X and by T_X^0 the tangent space to the orbit G(v)X at X. By Voigt's theorem [18] (see also [11]), there is a vector space embedding, $T_X/T_X^0 \hookrightarrow \text{Ext}_A^1(X, X)$. In case $\text{Ext}_A^1(X, X) = 0$, then $\dim T_X = \dim G(v)X$ which implies that G(v)X is open in $\text{mod}_A(v)$. Obviously this may happen only for finitely many G(v)-orbits in $\text{mod}_A(v)$. The result follows.

1.3. Using the scheme of modules $\underline{\text{mod}}_{\mathcal{A}(v)}$, the following is shown.

PROPOSITION. [6] Let $X \in \text{mod}_A(v)$ be a module satisfying $\text{Ext}_A^2(X, X) = 0$, then the following happens:

- (i) $mod_A(v)$ is smooth at X;
- (ii) the inclusion $T_X/T_X^0 \hookrightarrow \operatorname{Ext}^1_A(X,X)$ is an isomorphism.

COROLLARY. For $X \in \text{mod}_A(v)$ satisfying $\text{Ext}_A^2(X, X) = 0$, the following equality holds:

$$\dim G(v) - \dim_X \operatorname{mod}_A(v) = \dim_k \operatorname{End}_A(X) - \dim \operatorname{Ext}_A^1(X, X)$$

PROOF. Since $\operatorname{mod}_A(v)$ is smooth at X, then $\dim_X \operatorname{mod}_A(v) = \dim T_X$. Since the orbits are homogeneous spaces, then $\dim G(v) - \dim_k \operatorname{End}_A(X) = \dim G(v)X = \dim T_X^0$. Then the result follows from (ii) above.

1.4. An algebra A is *tame* if for every $d \in \mathbb{N}$ there is a finite number of A - k[T]-bimodules $M_1, \ldots, M_{S(d)}$ which are free as right k[T]-modules and such that for almost every indecomposable A-module X with dimension d, X is isomorphic to $M_i \otimes_{k[T]} k[T]/(T - \lambda)$ for some $1 \le i \le s(d)$ and some $\lambda \in k$. In this case we denote $\mu(d)$ the minimal number s(d) in the definition. We say that A is *domestic* (resp. *of polynomial growth*) if there is a constant $m \in \mathbb{N}$ such that $\mu(d) \le m$ (resp. $\mu(d) \le d^m$) for all $d \in \mathbb{N}$.

For a tame algebra A the following is known:

(i) [3] for every $v \in \mathbb{N}^{Q_0}$, almost all $X \in \text{ind}_A(v)$ lie in homogeneous tubes of Γ_A ;

(ii) [9] for every $v \in \mathbb{N}^{Q_0}$, the inequality $\dim G(v) - \dim \operatorname{mod}_A(v) \ge 0$ holds.

For $v \in \mathbb{N}^{Q_0}$ and $t \in \mathbb{N}$, let $\operatorname{mod}_A(v, t) = \{X \in \operatorname{mod}_A(v) : \dim G(v)X = t\}$ which by (1.1) is a closed subset of $\operatorname{mod}_A(v)$. By [5], A is tame if and only if $\dim \operatorname{mod}_A(v, t) \le |v| + t$, for every $v \in \mathbb{N}^{Q_0}$ (here $|v| = \sum_{i \in Q_0} v(i)$).

1.5. For a module $X \in \text{mod}_A$, let $\dots \to P_1(X) \xrightarrow{p_1} P_0(X) \xrightarrow{p_0} X \to 0$ be a minimal projective resolution and let $\Omega^{i+1}(X) = \ker p_i$ be the corresponding syzygies.

For any $Y \in \text{mod}_A$, Auslander and Reiten [2] showed the following formula:

$$\dim_k \operatorname{Hom}_A(X, Y) - \dim_k \operatorname{Hom}_A(Y, \tau_A X) = = \dim_k \operatorname{Hom}_A(P_0(X), Y) - \dim \operatorname{Hom}_A(P_1(X), Y).$$

2. On algebras satisfying (E^2) .

2.1. We recall some *examples* of algebras satisfying (E^2) .

(a) Obviously, hereditary algebras $A = k\Delta$ (which satisfy $g\ell \dim A \leq 1$) have property (E^2) . More generaly, tilted algebras A satisfy that for every indecomposable A-module X, either $p \dim_A X \leq 1$ or $i \dim_A X \leq 1$, hence (E^2) holds.

(b) An algebra A is said to be *quasi-tilted* if $g\ell \dim A \le 2$ and for every indecomposable A-module X, either $p \dim_A X \le 1$ or $i \dim_A X \le 1$, see [7]. Thus these algebras satisfy (E^2) .

(c) For strongly simply connected algebras the main result in our context is the following.

THEOREM. [12] Let A be a strongly simply connected algebra. Then the following are equivalent:

(a) A is of polynomial growth.

(b) For every $v \in N^{Q_0}$ and every

indecomposable $X \in \text{mod}_A(v)$, $\dim_k \text{Ext}^1_A(X, X) \leq \dim_k \text{End}_A(X)$ and $\text{Ext}^2_A(X, X) = 0$.

Moreover, if this holds, then $\operatorname{Ext}_A^s(X, X) = 0$ for every $v \in \mathsf{N}^{Q_0}$, $X \in \operatorname{ind}_A(v)$ and every $s \ge 2$.

COROLLARY. Let A be a strongly simply connected algebra satisfying (E^2) . Then the following are equivalent: (a) A is of polynomial growth.

(b) For every $X \in \operatorname{ind}_A$, we have $\dim_k \operatorname{Ext}^1_A(X, X) \leq \dim \operatorname{End}_A(X)$.

(c) A is tame.

PROOF. Obviously, it is enough to show (c) \Rightarrow (a). By [17], A is of polynomial growth if it does not contain a convex subcategory B which is either hypercritical or pg-critical. A hypercritical algebra B is not tame. Moreover, in [14] it was shown that pg-critical algebras do not satisfy (E^2) . Therefore, A is of polynomial growth.

In section 4 we will show more examples.

2.2. We shall prove our characterization of algebras satisfying (E^2) .

Proof of Theorem 1: Implication (b) \Rightarrow (a) was shown in [10]. Nevertheless it follows as part of the following argument. Assume first that A is tame.

Let $v \in \mathbb{N}^{Q_0}$ and C be an irreducible component of $\operatorname{mod}_A(v)$. Let $t \in \mathbb{N}$ be such that $C \cap \operatorname{mod}_A(v, t)$ is dense in $\operatorname{mod}_A(v)$.

Assume first that $C \cap \operatorname{ind}_A(v)$ is dense in C. Then there is an open and dense subset \mathscr{U} of C such that every $Y \in \mathscr{U}$ satisfies $\operatorname{Ext}_A^2(Y, Y) = 0$ and $\dim G(v)Y = t$. By (1.3) and (1.4), the following holds for any $Y \in \mathscr{U}$

$$\dim_k \operatorname{Ext}_A^1(Y, Y) = \dim_k \operatorname{End}_A(Y) - \dim G(v) + \dim C$$
$$\leq -t + (|v| + t) = |v| = \dim_k Y.$$

In the general case, consider the *generic decomposition* $v = \sum_{i=1}^{s} w_i$ of v in C, [9]. That is, $w_1, \ldots, w_s \in \mathbb{N}^{Q_0}$ and the following conditions hold:

(i) $\mathscr{V} = \{ Y \in C : Y = \bigoplus_{i=1}^{s} Y_i \text{ with } Y_i \in \mathscr{U}_i \}$ is open and dense in *C*, where \mathscr{U}_i is an open subset of $\text{mod}_A(w_i)$ formed by indecomposable modules;

(ii) if $Y = \bigoplus_{i=1}^{s} Y_i \in \mathscr{V}$, with $Y_i \in \mathscr{U}_i$, then $\operatorname{Ext}_A^1(Y_i, Y_j) = 0$ for $i \neq j$.

For $Y = \bigoplus_{i=1}^{s} Y_i \in \mathcal{V}$, we get by the first case, $\dim_k \operatorname{Ext}_A^1(Y, Y) \leq \sum_{i=1}^{s} \dim_k \operatorname{Ext}_A^1(Y_i, Y_i) \leq \sum_{i=1}^{s} \dim_k Y_i = \dim_k Y$. We are done.

By [9] and (1.3), for every $X \in \text{ind}_A(v)$ the following holds:

 $0 \leq \dim G(v) - \dim_X \operatorname{mod}_A(v) = \dim_k \operatorname{End}_A(X) - \dim_k \operatorname{Ext}^1_A(X, X).$

2.3. PROPOSITION. Let A be a tame algebra satisfying (E^2) . Then for every $X \in \text{ind}_A(v)$ with $\tau_A X \cong X$, there is an open neighborhood \mathcal{U} of X such that for all $Y \in \mathcal{U}$, the following equality holds:

 $\dim_k \operatorname{End}_A(Y) - \dim_k \operatorname{Ext}_A^1(Y, Y) = \dim_k \operatorname{Hom}_A(\Omega^2(X), X).$

PROOF. Let $X \in \text{ind}_A(v)$ with $\tau_A X \cong X$ and let \mathscr{U} be as in (2.2). We get the two exact sequences

$$\begin{split} 0 &\to \operatorname{End}_{A}(X) \to \operatorname{Hom}_{A}(P_{0}(X), X) \to \operatorname{Hom}_{A}(\Omega^{1}(X), X) \to \operatorname{Ext}_{A}^{1}(X, X) \to 0 \\ 0 &\to \operatorname{Hom}_{A}(\Omega^{1}(X), X) \to \operatorname{Hom}_{A}(P_{1}(X), X) \to \operatorname{Hom}_{A}(\Omega^{2}(X), X) \\ &\to \operatorname{Ext}_{A}^{1}(\Omega^{1}(X), X) \cong \operatorname{Ext}_{A}^{2}(X, X) = 0. \end{split}$$

Hence by (1.5), we get

$$\begin{split} \dim_k \operatorname{End}_A(X) &- \dim_k \operatorname{Ext}_A^1(X, X) = \\ &= \dim_k \operatorname{Hom}_A(P_0(X), X) - \dim_k \operatorname{Hom}_A(P_1(X), X) + \\ &+ \dim_k \operatorname{Hom}_A(\Omega^2(X), X) = \dim_k \operatorname{End}_A(X) - \dim_k \operatorname{Hom}_A(X, \tau_A X) + \\ &+ \dim_k \operatorname{Hom}_A(\Omega^2(X), X) \end{split}$$

and the result follows.

COROLLARY. Assume that A is a tame algebra satisfying (E^2) . Then for any $X \in \text{ind}_A(v)$ with $\tau_A X \cong X$, there is an open subset \mathscr{U} of $\text{mod}_A(v)$ such that for any $Y \in \mathscr{U}$, the following inequality holds:

 $\dim_k \operatorname{End}_A(Y) \leq \dim_k Y + \dim_k \operatorname{Hom}_A(\Omega_2(Y), Y).$

2.4. In our proof of Theorem 2 we shall use results on the structure of module categories of polynomial growth algebras proved in [17]. Namely, any indecomposable module X over a polynomial growth strongly simply connected algebra A is either directing or it lies in the coil of a multicoil component of the Auslander-Reiten quiver Γ_A . Any such coil \mathscr{C} is obtained from a tube by a sequence of admissible operations as defined in [1]. This component \mathscr{C} is standard and the *rank* of \mathscr{C} is defined as the number of modules in the mouth of \mathscr{C} .

LEMMA. Let \mathscr{C} be a coil in the Auslander-Reiten quiver Γ_B of a polynomial growth strongly simply connected algebra B. Let $X \in \mathscr{C}$ be a module with a maximal sectional path

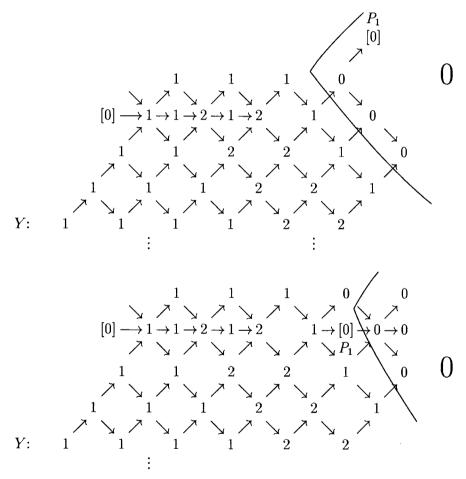
 $X = X_1 \to X_2 \to \cdots \to X_m$

in \mathscr{C} (then X_m is in the mouth of \mathscr{C}). Let m = sp + t with $0 \le t < p$, where p is the rank of \mathscr{C} . Then

 $\dim_k \operatorname{Ext}^1_B(X, X) \le s + 2.$

PROOF. Recall that $\operatorname{Ext}_{B}^{1}(X, X) \cong D \operatorname{\underline{Hom}}_{B}(\tau^{-}{}_{B}X, X)$ and let $Y = \tau_{B}^{-}X$. We shall consider the values of $\dim_{k} \operatorname{\underline{Hom}}_{B}(Y, -)$ in \mathscr{C} . For this purpose we shall use that \mathscr{C} is a standard component of Γ_{B} , [16].

Let P_1, \ldots, P_t be all projective modules in the mouth of \mathscr{C} . By [17, 4.5], we may assume that $\operatorname{Hom}_B(P_i, P_j) \neq 0$ implies i < j. Moreover, any projective P in \mathscr{C} which is not in the mouth of \mathscr{C} , is injective. Consider a Galois covering of translation quivers $\pi: \Delta \to \mathscr{C}$ defined by the action of an infinite cyclic group. Fix $\pi(Y_0) = Y$ and $X_0 = \tau_{\Delta}^- Y_0$. Examples of the values of $\dim_k \operatorname{Hom}(Y_0, -)$ in Δ are the following:



In general, we observe that for the mesh category $k(\Delta)$ we have: (a) $\dim_k \operatorname{\underline{Hom}}_{k(\Delta)}(Y_0, \tau_{\Delta}^{-i}X_0) = 1$ for $1 \le i \le m$; (b) $\dim_k \operatorname{\underline{Hom}}_{k(\Delta)}(Y_0, \tau_{\Delta}^{-i}X_0) \le 2$ for $m+1 \le i \le m+p$; (c) $\dim_k \operatorname{\underline{Hom}}_{k(\Delta)}(Y_0, \tau_{\Delta}^{-i}X_0) = 0$ for i > m+p. Since $\tau_{B}^{-i}X = X$ for $1 \le i \le m$ at most s times and $\tau_{B}^{-i}X = X$ for $m+1 \le i \le m+p$ at most once, then

$$\dim_k \operatorname{Ext}^1_B(X,X) \leq \sum \dim_k \operatorname{\underline{Hom}}_{k(\varDelta)}(Y_0,\tau_{\varDelta}^{-i}X_0) \leq s+2.$$

2.5. *Proof of Theorem 2*: In (2.1), we proved the equivalence of (a) and (b). By Theorem 1, we have (c) \Rightarrow (b). Moreover, by [10] we have (d) \Rightarrow (b) and then by Theorem 1 we get (d) \Rightarrow (c).

(a) \Rightarrow (d): Let X be an indecomposable A-module. If X is directing, then $\dim_k \operatorname{End}_A(X) = 1$. Assume that X is not directing, then there exists a convex coil subcategory B of A and a coil \mathscr{C} of Γ_B such that X lies on \mathscr{C} .

Let *C* be the tame concealed algebra which is a convex subcategory of *B* such that \mathscr{C} is obtained from a tube \mathscr{T} of Γ_C by a sequence of admissible operations. Let *p* be the rank of \mathscr{C} . Consider a sectional path

$$X = X_1 \to X_2 \to \cdots \to X_m$$

in \mathscr{C} such that X_m is at the mouth of \mathscr{C} . Write m = sp + t with $0 \le t < p$, then by (2.4) we have $\dim_k \operatorname{Ext}^1_{\mathcal{A}}(X, X) \le s + 2$.

On the other hand, let e(X) be the number of projective-injective indecomposable A-modules P such that $P \in \mathscr{C}$ and $\operatorname{Hom}_A(P, X) \neq 0$. By [13], we have $\dim_k \operatorname{End}_A(X) - \dim_k \operatorname{Ext}_A^1(X, X) \leq e(X) + 2$. Altogether we get, $\dim_k \operatorname{End}_A(X) \leq s + e(X) + 4$.

Since C is a tame concealed simply connected algebra, the sum of the dimensions of the modules in the mouth of \mathscr{T} is at least 5. Hence, $\dim_k X \ge 5s + e(X)$. If $s \ge 1$, we get $\dim_k \operatorname{End}_A(X) \le \dim_k X$ as desired. If s = 0, then the arguments given in [13, (3.3)] show that $\dim_k \operatorname{End}_A(X) \le 1$.

2.6. We recall that the *Tits form* of A is the quadratic form $q_A: \mathbb{Z}^{Q_0} \to \mathbb{Z}$ such that

$$q_A(\mathbf{v}) = \sum_{i \in Q_0} \mathbf{v}(i)^2 - \sum_{(i \to j) \in Q_1} \mathbf{v}(i)\mathbf{v}(j) + \sum_{i,j \in Q_0} \dim_k \operatorname{Ext}_A^2(S_i, S_j)\mathbf{v}(i)\mathbf{v}(j),$$

where S_i denotes the simple module corresponding to the vertex *i* of *Q*, see [11].

For A a tame algebra, q_A is weakly non-negative, [9]. From [12] we get that for A strongly simply connected satisfying (E^2) , A is tame if and only if q_A is weakly non-negative. We obtain also the more general result.

PROPOSITION. Let $F: \tilde{A} = k\tilde{Q}/\tilde{I} \rightarrow A = kQ/I$ be a Galois covering defined by the action of the group G. Assume that (i) A satisfies (E^2) and (ii) \tilde{A} is strongly simply connected. Then the following are equivalent:

(a) \tilde{A} is tame.

(b) A is of polynomial growth.

- (c) A is tame.
- (d) The Tits form $q_{\tilde{A}}: Z^{(\tilde{Q}_0)} \to Z$ is weakly non-negative.

(e) A does not contain any hypercritical convex subcategory.

For concepts not defined before, see [11,17].

PROOF. Let $F_{\lambda}: \operatorname{mod}_{\tilde{A}} \to \operatorname{mod}_{A}$ be the push-down functor. By [17], G is torsion-free and F_{λ} preserves indecomposable modules. For any $X \in \operatorname{ind}_{\tilde{A}}$ we get

$$0 = \operatorname{Ext}_{A}^{2}(F_{\lambda}X, F_{\lambda}X) \cong \bigoplus_{g \in G} \operatorname{Ext}_{\tilde{A}}^{2}(X, X^{g}),$$

where X^g is the shift of X defined by the action of G on $\text{mod}_{\tilde{A}}$. Therefore, $\text{Ext}^2_{\tilde{A}}(X, X) = 0$ and \tilde{A} satisfies (E^2) . The equivalence of (a), (b), (d) and (e) follows from [12], see (2.1). The equivalence of (a) and (c) follows from [17].

3. On the structure of the Auslander-Reiten quiver of a tame algebra satisfying (E^2) .

3.1. Recall that the number of arrows from X to Y in Γ_A is the dimension of the space $\operatorname{rad}_A(X, Y)/\operatorname{rad}_A^2(X, Y)$. The powers rad_A^n of the rad_A are ideals of the category mod_A , as well as $\operatorname{rad}_A^\infty$ defined by $\operatorname{rad}_A^\infty(X, Y) = \bigcap_{n \in \mathbb{N}} \operatorname{rad}_A^n(X, Y)$.

If X, Y belong to two different components of Γ_A and $\operatorname{Hom}_A(X, Y) \neq 0$, then $\operatorname{rad}_A^{\infty}(X, Y) \neq 0$.

We recall that a component \mathscr{C} of Γ_A is *standard* if the full subcategory of mod_A induced by the modules in \mathscr{C} is equivalent to the mesh-category $k(\mathscr{C})$, see [4].

LEMMA. Let A = kQ/I be an algebra satisfying (E^2) . The following conditions are equivalent:

(a) for every $v \in \mathbb{N}^{Q_0}$, almost every $X \in \text{ind}_A(v)$ lies in a homogeneous standard tube in Γ_A ;

(b) for every $v \in \mathbb{N}^{Q_0}$, almost every $X \in \operatorname{ind}_A(v)$ has $\operatorname{rad}_A^{\infty}(X, X) = 0$.

Moreover, if these conditions are satisfied, then A is tame.

PROOF. First observe that in [10] it was shown that condition (a) implies that A is tame. That (b) implies tameness is left as an easy exercise.

(a) \Rightarrow (b): If X is an indecomposable module in a homogeneous standard tube of Γ_A , clearly rad^{∞}₄(X, X) = 0.

If (b) is satisfied, then A is tame and by [3], almost every $X \in \operatorname{ind}_A(v)$ lies in a homogeneous tube of Γ_A . If X is in the mouth of a homogeneous tube T and $\operatorname{rad}_A^{\infty}(X, X) = 0$, then $\operatorname{End}_A(X) = k$. Moreover, $\operatorname{Ext}_A^2(X, X) = 0$ implies that T is standard by [15]. **3.2.** A well-known conjecture says that a homogeneous tube in a tame algebra always belongs to a tubular family. For algebras satisfying (E^2) we may prove the following.

PROPOSITION. Let A be a tame algebra satisfying (E^2) . Let T be an homogeneous tube in Γ_A . Assume that the indecomposable module Y in the mouth of T satisfies $\operatorname{End}_A(Y) = k$. Then there exists an infinite family $(T_{\lambda})_{\lambda}$ of homogeneous tubes in Γ_A such that the module X_{λ} in the mouth of T_{λ} has dim $X_{\lambda} = \dim Y$.

PROOF. Consider the point $Y \in \text{mod}_A(v)$ satisfying $\text{Ext}_A^2(Y, Y) = 0$. By (1.2) and (1.3), there is an open neighbourhood \mathcal{U} of Y in $\text{mod}_A(v)$ such that for any $X \in \mathcal{U}$ the following are satisfied:

(i) $\dim_k \operatorname{End}_A(X) = 1$, hence X is indecomposable.

(ii) $\dim G(v) - \dim_X \operatorname{mod}_A(v) = \dim_k \operatorname{End}_A(X) - \dim_k \operatorname{Ext}_A^1(X, X)$ is a constant $c \ge 0$.

(iii) $\operatorname{Ext}_{A}^{2}(X, X) = 0$; hence $\operatorname{mod}_{A}(v)$ is smooth at X.

Evaluating the difference (ii) at Y we get c = 0. Let C be the unique irreducible component of $\text{mod}_A(v)$ containing Y. Consider any $X \in C \cap \mathcal{U}$. Then

$$\dim_X \operatorname{mod}_A(v) = \dim T_X = \dim_k \operatorname{Ext}_A^1(X, X) + \dim G(v) - \dim_k \operatorname{End}_A(X)$$
$$= \dim_k \operatorname{Ext}_A^1(Y, Y) + \dim G(v) - \dim_k \operatorname{End}_A(Y) > \dim G(v)X,$$

where we have use (iii), (1.3), (ii) and (i) for the succesive steps. Therefore there is an infinite family $(X_{\lambda})_{\lambda}$ of pairwise non-isomorphic modules in $C \cap \mathcal{U}$. Most of these modules lie on homogeneous tubes of Γ_A .

3.3. By [12], coil algebras and strongly simply connected polynomial growth algebras are examples of algebras A satisfying (E^2) and such that for every $v \in \mathbb{N}^{Q_0}$, almost every $X \in \operatorname{ind}_A(v)$ lies on a homogeneous standard tube. These algebras are also *cycle-finite*.

Recall that a *cycle* in ind_A is a chain $X = X_0 \xrightarrow{f_1} X_1 \to \cdots \xrightarrow{f_s} X_s = X$ of non-zero non-isomorphisms between indecomposable A-modules. Such a cycle is infinite if $f_i \in \operatorname{rad}_A^{\infty}(X_{i-1}, X_i)$ for some $1 \le i \le s$. The algebra A is *cycle-finite* if it does not accept any infinite cycle in ind_A . By [1], a cycle-finite algebra is tame.

PROPOSITION. Let A = kQ/I be a cycle-finite algebra. Then

(a) for $v \in \mathbb{N}^{Q_0}$ and almost every indecomposable $X \in \text{mod}_A(v)$, we have $\text{Ext}_A^2(X, X) = 0$ and X lies in a homogeneous standard tube.

(b) Assume that there are infinitely many G(v)-orbits of indecomposable Amodules in $\text{mod}_A(v)$. Then $\text{supp } v = \{i \in Q_0 : v(i) \neq 0\}$ is convex in Q and the induced convex subcategory B is a tame quasi-tilted algebra (in particular, satisfying (E^2)).

PROOF. (a): Since A is tame, almost every $X \in \text{ind}_A(v)$ lies in a homogeneous tube of Γ_A . If X is in such a tube T, then $\operatorname{rad}_A^{\infty}(X, X) = 0$ because A is cycle-finite. Then T is standard as in (3.1). Assume that $\operatorname{Ext}_A^2(X, X) \neq 0$. Consider the exact sequence $0 \to \Omega^1(X) \to P_0(X) \to X \to 0$ as in (1.5), then $0 \neq \operatorname{Ext}_A^2(X, X) \cong \operatorname{Ext}_A^1(\Omega^1(X), X) \cong D \operatorname{\overline{Hom}}_A(X, \tau_A \Omega^1(X))$. We get indecomposable direct summands Z of $\Omega^1(X)$, P of $P_0(X)$ a non-zero maps

$$X \rightarrow \tau_{\scriptscriptstyle A} X \qquad \qquad Z \rightarrow P \rightarrow X.$$

Hence all these modules belong to T. In particular, $P \in T$, which contradicts that T is a stable tube.

(b) Assume $(X_{\lambda})_{\lambda}$ is an infinite family of pairwise non-isomorphic modules in $\operatorname{ind}_{\mathcal{A}}(v)$. Since \mathcal{A} is tame, we may assume $X_0 = X_{\lambda_0}$ belongs to a homogeneous standard tube T_0 . By a standard argument, supp $v = \operatorname{supp} X_0$ is convex in Q.

Let *B* the convex subcategory of *A* induced by supp *v*. We show first that $g\ell \dim B \leq 2$. Otherwise, there is an indecomposable summand *R* of *P* for an indecomposable projective *B*-module *P*, such that $p \dim_B R > 1$, that is, $\operatorname{Hom}_B(I, \tau_B R) \neq 0$ for some indecomposable injective *B*-module *I*. Since X_0 is sincere as *B*-module, we get a chain of non-zero maps

$$X_0 \rightarrow I \rightarrow au_{_B} R \qquad R \rightarrow P \rightarrow X_0.$$

Again, $P \in T_0$. Moreover, for any $Y \in T_0$, supp Y = supp v, hence T_0 is a component of Γ_B , therefore T_0 cannot contain projective *B*-modules, a contradiction showing that $g\ell \dim B \leq 2$.

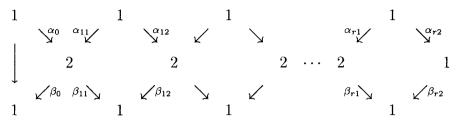
Finally, if $Y \in \text{ind}_B(w)$ and $p \dim_B Y > 1$, $i \dim_B Y > 1$, we get a cycle

$$X_0 \rightarrow I \rightarrow au_{_B} Y \qquad Y \qquad au_{_B}^- Y \rightarrow P \rightarrow X_0.$$

for some indecomposable projective (resp. injective) *B*-module *P* (resp. *I*). As above, $P \in T_0$ and we get a contradiction.

4. Some examples.

4.1. Consider the algebra B_r given by the following quiver



with *r* squares and relations: $\beta_{11}\alpha_0$, $\beta_0\alpha_{11}$, $\beta_{i,2}\alpha_{i+1,1}$, $\beta_{i+1,1}\alpha_{i,2}$ $(1 \le i \le r-1)$ and $\beta_{i1}\alpha_{i1} - \beta_{i2}\alpha_{i2}$ $(1 \le i \le r)$. The algebra B_r is a coil algebra (obtained from an algebra of type \tilde{A}_2 by a sequence of admissible operations of type (ad 1) and (ad 2^{*}) as defined in [1]) and therefore B_r is cycle-finite. As observed in (3.2), B_r satisfies (E^2) .

Let X be the indecomposable B_r -module whose dimension vector is as indicated in the drawing. Since $g\ell \dim B_r = 2$, then

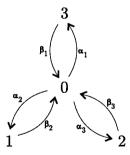
$$r = q_{B_r}(\operatorname{dim} X) = \dim_k \operatorname{End}_A(X) - \dim_k \operatorname{Ext}_A^1(X, X).$$

Moreover, we may check that $\operatorname{Ext}_{A}^{1}(X, X) = 0$ and hence $\dim_{k} \operatorname{End}_{A}(X) = \frac{1}{6} (\dim_{k} X + 1).$

Finally, observe that B_r is not simply connected and there is a Galois covering $\tilde{B}_r \to B_r$ defined by the action of Z.

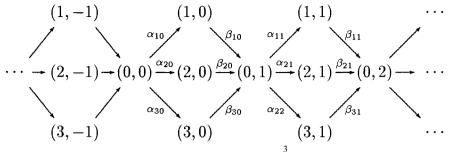
4.2. We shall show an example of a polynomial growth algebra satisfying (E^2) but not (E^3) .

Consider the algebra A_1 given by the quiver



with relations: $\alpha_i\beta_j = 0$, for $i \neq j$ and $\beta_1\alpha_1 + \beta_2\alpha_2 + \beta_3\alpha_3$. We have numbered the vertices $Q_0 = \{0, 1, 2, 3\}$.

There is a Galois covering $F_1: \tilde{A}_1 \to A_1$ where \tilde{A}_1 is given by the quiver



with the relations: $\alpha_{i,s+1}\beta_{j,s}$, for $i \neq j$, $s \in Z$ and $\sum_{i=1}^{s} \beta_{is}\alpha_{is}$ for $s \in Z$. The group defining F_1 is Z acting as horizontal shifts.

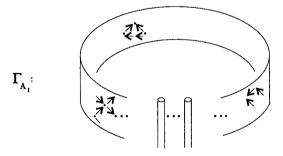
It is an easy exercise to construct $\Gamma_{\tilde{A}_1}$. If X is an indecomposable \tilde{A}_1 module, then either supp $X \subset \{(0,s), (1,s), (2,s), (3,s), (0,s+1)\}$ for some $s \in \mathbb{Z}$ or X is a projective-injective module of the form $P_{(i,s)} = I_{(i,s+1)}$ for some $i \in \{1,2,3\}$ and some $s \in \mathbb{Z}$. It is easy to check that $\operatorname{Ext}^2_{\tilde{A}_1}(X, X^g) \xrightarrow{\sim} \operatorname{Ext}^1_{\tilde{A}_1}(\Omega^1(X), X^g) = 0$ for any horizontal shift $g \in \mathbb{Z}$. It follows that A_1 satisfies (E^2) .

The projective resolution of the simple \tilde{A}_1 -module $S_{(0,0)}$ is:

$$0 S_{(0,2)} \oplus S_{(0,2)} P_{(0,1)} \oplus \bigoplus_{i=1}^{3} P_{(i,0)} P_{(0,0)} S_{(0,0)} 0.$$

Hence $\operatorname{Ext}_{A_1}^3(S_0, S_0) \neq 0$ and A_1 does not satisfy (E^3) .

We may apply (2.5) to obtain that A_1 is tame. In fact, the Auslander-Reiten quiver Γ_{A_1} is of the form $\Gamma_{\tilde{A}_1}/Z$ and has the following shape,



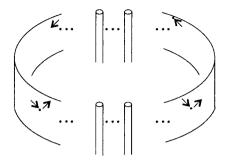
There is a unique family $\mathscr{T} = (T_{\lambda})_{\lambda \in \mathbf{P}_{1}k}$ of (homogeneous) tubes in $\Gamma_{A_{1}}$.

The module X_{λ} at the mouth of T_{λ} has dimension dim $X_{\lambda} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Moreover

 $\dim_k \operatorname{End}_{A_1}(X_{\lambda}, X_{\lambda}) = 2$ and hence $\operatorname{rad}_{A_1}^{\infty}(X_{\lambda}, X_{\lambda}) \neq 0$. By (3.1), the tubes T_{λ} are not standard.

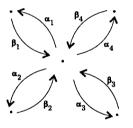
We may consider the algebra $A_2 = \tilde{A}_1/2Z$ which is a double covering of

 A_1 . As above, A_2 is tame and satisfies (E^2) . Moreover Γ_{A_2} has the following shape:



The tubes in Γ_{A_2} are all homogeneous and standard. Clearly, A_2 is not cycle-finite.

4.3. Consider the algebra A given by the quiver



with relations: $\alpha_i\beta_j = 0$ for $i \neq j$; $\beta_3\alpha_3 - \beta_1\alpha_1 - \lambda_3\beta_2\alpha_2$, $\beta_4\alpha_4 - \beta_1\alpha_1 - \lambda_4\beta_2\alpha_2$ for some $\lambda_3 \neq \lambda_4$ elements of $k \setminus \{0\}$. Using covering techniques the following is easy to verify:

- (i) A is a tame algebra of polynomial growth but not domestic.
- (ii) A does not satisfy (E^2) . Indeed, there is an infinite family $(X_\lambda)_{\lambda \in \mathbf{P}_1 k}$ of

pairwise non-isomorphic indecomposable modules with $X_{\lambda} = {}_{1}^{1}2_{1}^{1}$ such that $\operatorname{Ext}_{A}^{2}(X_{\lambda}, X_{\lambda}) \neq 0$.

(iii) The modules X_{λ} belong to homogeneous non-standard tubes of Γ_A .

REFERENCES

- I. Assem and A. Skowróński, *Multicoil algebras*, Proc. ICRA VI Canadian Math. Soc. Conference Proc. 14 (1993) 29–67.
- M. Auslander and I. Reiten, Modules determined by their compositon factors, Ill.J. of Math. 29 (1985) 280–301.
- 3. W. Crawley-Boevey, On tame algebras and BOCS's, Proc. London Math. Soc. 56 (1988), 451–483.

- P. Gabriel and A. V. Roiter, *Representations of finite-dimensional algebras*, Algebra VIII, Encyclopaedia of Math. Sc. Vol 73. Springer (1992).
- 5. Ch. Geiss, On degenerations of tame and wild algebras, Arch. Math. 64 (1995), 11-16.
- Ch. Geiss and J. A. de la Peña, On the deformation theory of finite dimensional algebras, Manuscripta Math. 88 (1995), 191–208.
- 7. D. Happel, I. Reiten and S. Smalø, *Tilting in abelian categories and quasi-tilted algebras*, Mem. Amer. Math. Soc. (1995).
- J. A. de la Peña, Algebras with hypercritical Tits form, In Topics in Algebra. Banach Center Publications, Vol. 26, Part I, PWN – Polish Scientific Publishers, Warsaw (1990) 353– 369.
- 9. J.A. de la Peña, On the dimension of the module-varietes of tame and wild algebras, Comm. in Algebra 19 (6) (1991) 1795–1807.
- J. A. de la Peña, On the number of parameters of indecomposable modules, C.R. Acad. Sci. Paris 312 (1991) 545–548.
- 11. J. A. de la Peña, *Tame algebras with sincere directing modules*, J. Algebra 161 (1993), 171-185.
- J. A. de la Peña and A. Skowroński, Geometric and homological characterizations of polynomial growth simply connected algebras, Invent. Math. 126 (1996), 287–296.
- 13. J. A. de la Peña and A. Skowroński, *The Tits and Euler forms of a tame algebra*, to appear in Math. Ann.
- J. A. de la Peña and B. Tomé, *Tame algebras with a weakly separating family of coils*, Proc. ICRA VII. CMS Proceedings Series AMS. Vol. 18 (1996), 555–569.
- 15. C. M. Ringel, *Tame algebras and integral quadratic forms*, Lecure Notes in Math. 1099, (1984).
- A. Skowroński, Simply connected algebras and Hochschild cohomologies, Proc. ICRA VI, Can. Math. Soc. Proceeding Series 14, AMS (1993) 431–447.
- 17. A. Skowroński, Polynomial growth simply connected algebras, To appear Compositio Math.
- D. Voigt, Induzierte Darstellungen in der Theorie der endlichen algebraischen Gruppen, Springer Lecture Notes in Math. 592 (1977).

INSTITUTO DE MATEMÁTICAS, UNAM CIUDAD UNIVERSITARIA MÉXICO 04510 D.F. email: jap@penelope.matem.unam.mx