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ALGEBRAS WITH VANISHING Ext2�X ;X� FOR
INDECOMPOSABLE MODULES

G. BOLANì OS and J. A. DE LA PENì A

Let k be an algebraically closed ¢eld and A be a ¢nite dimensional k-algebra.
We denote by modA the category of ¢nitely generated left A-modules. Recall
that A is said to be representation-¢nite if there are only ¢nitely many in-
decomposable A-modules up to isomorphism. The algebra A is tame if the
indecomposables occur, in each dimension, in a ¢nite number of discrete and
a ¢nite number of one-parameter families. If the number of discrete families
growths polynomially with the dimension, then A is said to be of polynomial
growth. See [11,15,17] and section 1 for these concepts.
In this work we shall say that A satisfies the condition �Es� for some s 2 N

if ExtsA�X ;X� � 0 holds for every indecomposable A-module X . Important
classes of algebras satisfying �Es� for some s have been studied. If �E1� is
satis¢ed, then A is representation-¢nite [9,10]. Tilted, and more generaly,
quasi-tilted algebras satisfy �E2� [7,15]. Strongly simply connected algebras
of (tame) polynomial growth satisfy �E2� [12]. In this paper we study tame
algebras satisfying �E2�.
Let A be a basis connected ¢nite dimensional k-algebra. Then A has a

presentation A � kQ=I , where Q � �Q0;Q1� is the ordinary quiver of A with
set of vertices (resp. arrows) Q0 (resp. Q1). By modA�v� we denote the variety
of A-modules with dimension vector v. We recall from [6] that the condition
ExtsA�X ;X� � 0 for some module X 2 modA�v� implies the existence of an
open neighborhood u of X such that ExtsA�Y ;Y� � 0 for any Y 2 u.
The main results of the paper are the following

Theorem 1. Let A be an algebra satisfying �E2�. Then the following are
equivalent:
(a) A is tame;
(b) for every v 2 NQ0 , there is an open and dense subset u of modA�v� such

that for any X 2 u, dimk Ext1A�X ;X� � dimk X holds.
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Moreover, in this case the following property is satisfied:
(c) dimk EndA�X� ÿ dimk Ext1A�X ;X� � 0, for every indecomposable

X 2 modA.

An algebra A is strongly simply connected if every convex subcategory B
of A satis¢es that the ¢rst Hochschild cohomology group H1�B;B� vanishes,
[16]. Strongly simply connected algebras of polynomial growth have been
extensively studied, see [12,17].

Theorem 2. Let A be a strongly simply connected algebra satisfying �E2�.
The following are equivalent:

(a) A is of polynomial growth.
(b) A is tame.
(c) For every indecomposable X 2 modA, we have dimk Ext1A�X ;X� �

dimk X.
(d) For every indecomposable X 2 modA, we have dimk EndA�X� �

dimk X .

We shall prove the theorem and some consequences in section 2, after
some general remarks in section 1. In section 3 we shall consider some
properties of the structure of the Auslander-Reiten quiver ÿA of tame alge-
bras A satisfying �E2�. In section 4 we give some examples.
We gratefully acknowledge support from CONACYT and DGAPA,

UNAM.

1. Module varieties.

1.1. Let A � kQ=I be a ¢nite dimensional k-algebra. A module X 2 modA
will be considered as a representation of Q satisfying the ideal I , see [4]. The
dimension vector X � �dimk X�i��i2Q0

is the class of X in the Grothendieck
group K0�A� � ZQ0 .
We denote by modA�v� the closed subset of kv :� Q

�i!v j�2Q0

kv�j��v�i� of those

tuples �X�����2Q1
satisfying the relations imposed by I . The set modA�v� is

called the variety of modules of dimension v. The a¤ne group
G�v� � Q

i2Q0

GLv�i��k� acts on modA�v� in such a way that the orbits form the

isoclasses of A-modules. The indecomposable modules in modA�v� form the

constructible set indA�v�.
The following lemma is well-known, see for example [6].

Lemma. a) For given v 2 NQ0 and s 2 N, the function
es:modA�v� ! N; X 7! dimk ExtsA�X ;X�
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is upper semicontinuous.
b) If ExtsA�X ;X� � 0 for some X 2 modA�v�, there exists an open neigh-

borghood of X in modA�v� and an integer cX such that for all Y 2 u we have,
(i) ExtsA�Y ;Y � � 0;

(ii)
Psÿ1
i�0
�ÿ1�i dimk ExtiA�Y ;Y� � cX

1.2. We recall that as examples of algebras satisfying �E1�we have the re-
presentation-¢nite algebras A whose Auslander-Reiten quiver ÿA has no or-
iented cycles.

Lemma. [9] If A satisfies �E1�, then A is representation-finite.

We recall the argument of the proof as an opportunity to introduce some
concepts.
Let X 2 modA�v�. By TX we denote the tangent space to modA�v� at the

point X and by T 0
X the tangent space to the orbit G�v�X at X . By Voigt's

theorem [18] (see also [11]), there is a vector space embedding,
TX=T 0

X ,! Ext1A�X ;X�. In case Ext1A�X ;X� � 0, then dimTX � dimG�v�X
which implies that G�v�X is open in modA�v�. Obviously this may happen
only for ¢nitely many G�v�-orbits in modA�v�. The result follows.
1.3. Using the scheme of modules mod

A�v�, the following is shown.

Proposition. [6] Let X 2 modA�v� be a module satisfying Ext2A�X ;X� � 0,
then the following happens:
(i) modA�v� is smooth at X;
(ii) the inclusion TX=T0

X ,! Ext1A�X ;X� is an isomorphism.
Corollary. For X 2 modA�v� satisfying Ext2A�X ;X� � 0, the following

equality holds:

dimG�v� ÿ dimX modA�v� � dimk EndA�X� ÿ dimExt1A�X ;X�

Proof. Since modA�v� is smooth at X , then dimX modA�v� � dimTX .
Since the orbits are homogeneous spaces, then dimG�v� ÿ dimk EndA�X� �
dimG�v�X � dimT0

X . Then the result follows from (ii) above.

1.4. An algebra A is tame if for every d 2 N there is a ¢nite number of
Aÿ k�T �-bimodules M1; . . . ;MS�d� which are free as right k�T �-modules and
such that for almost every indecomposable A-module X with dimension d, X
is isomorphic to Mi 
k�T � k�T �=�T ÿ �� for some 1 � i � s�d� and some
� 2 k. In this case we denote ��d� the minimal number s�d� in the de¢nition.
We say that A is domestic (resp. of polynomial growth ) if there is a constant
m 2 N such that ��d� � m (resp. ��d� � dm� for all d 2 N.
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For a tame algebra A the following is known:
(i) [3] for every v 2 NQ0 , almost all X 2 indA�v� lie in homogeneous tubes

of ÿA;
(ii) [9] for every v 2 NQ0 , the inequality dimG�v� ÿ dimmodA�v� � 0

holds.
For v 2 NQ0 and t 2 N, let modA�v; t� � fX 2 modA�v�: dimG�v�X � tg

which by (1.1) is a closed subset of modA�v�. By [5], A is tame if and only if
dimmodA�v; t� � jvj � t, for every v 2 NQ0 (here jvj � P

i2Q0

v�i�).

1.5. For a module X 2 modA, let � � � ! P1�X� !p1 P0�X� !p0 X ! 0 be a
minimal projective resolution and let 
i�1�X� � ker pi be the corresponding
syzygies.
For any Y 2 modA, Auslander and Reiten [2] showed the following for-

mula:

dimkHomA�X ;Y � ÿ dimkHomA�Y ; �AX� �
� dimkHomA�P0�X�;Y� ÿ dimHomA�P1�X�;Y�:

2. On algebras satisfying �E2�.
2.1. We recall some examples of algebras satisfying �E2�.
(a) Obviously, hereditary algebras A � k� (which satisfy g` dimA � 1)

have property �E2�. More generaly, tilted algebras A satisfy that for every
indecomposable A-module X , either p dimA X � 1 or i dimA X � 1, hence
�E2� holds.
(b) An algebra A is said to be quasi-tilted if g` dimA � 2 and for every

indecomposable A-module X , either p dimA X � 1 or i dimA X � 1, see [7].
Thus these algebras satisfy �E2�.
(c) For strongly simply connected algebras the main result in our context

is the following.

Theorem. [12] Let A be a strongly simply connected algebra. Then the
following are equivalent:
(a) A is of polynomial growth.
(b) For every v 2 NQ0 and every

indecomposable X 2 modA�v�, dimk Ext1A�X ;X� � dimk EndA�X� and
Ext2A�X ;X� � 0.

Moreover, if this holds, then ExtsA�X ;X� � 0 for every v 2 NQ0 , X 2 indA�v�
and every s � 2.

Corollary. Let A be a strongly simply connected algebra satisfying �E2�.
Then the following are equivalent:
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(a) A is of polynomial growth.
(b) For every X 2 indA, we have dimk Ext1A�X ;X� � dimEndA�X�.
(c) A is tame.

Proof. Obviously, it is enough to show (c) ) (a). By [17], A is of poly-
nomial growth if it does not contain a convex subcategory B which is either
hypercritical or pg-critical. A hypercritical algebra B is not tame. Moreover,
in [14] it was shown that pg-critical algebras do not satisfy �E2�. Therefore,
A is of polynomial growth.

In section 4 we will show more examples.

2.2. We shall prove our characterization of algebras satisfying �E2�.
Proof of Theorem 1: Implication (b) ) (a) was shown in [10]. Nevertheless

it follows as part of the following argument. Assume ¢rst that A is tame.
Let v 2 NQ0 and C be an irreducible component of modA�v�. Let t 2 N be

such that C \modA�v; t� is dense in modA�v�.
Assume ¢rst that C \ indA�v� is dense in C. Then there is an open and

dense subset u of C such that every Y 2 u satis¢es Ext2A�Y ;Y� � 0 and
dimG�v�Y � t. By (1.3) and (1.4), the following holds for any Y 2 u

dimk Ext1A�Y ;Y� � dimk EndA�Y � ÿ dimG�v� � dimC

� ÿt� �jvj � t� � jvj � dimk Y :

In the general case, consider the generic decomposition v �Ps
i�1

wi of v in C,

[9]. That is, w1; . . . ;ws 2 NQ0 and the following conditions hold:

(i) v � fY 2 C:Y �Ls
i�1

Yi with Yi 2 uig is open and dense in C, where

ui is an open subset of modA�wi� formed by indecomposable modules;

(ii) if Y �Ls
i�1

Yi 2v, with Yi 2 ui, then Ext1A�Yi;Yj� � 0 for i 6� j.

For Y �Ls
i�1

Yi 2v, we get by the ¢rst case,

dimk Ext1A�Y ;Y � �
Ps
i�1

dimk Ext1A�Yi;Yi� �
Ps
i�1

dimk Yi � dimk Y . We are

done.
By [9] and (1.3), for every X 2 indA�v� the following holds:

0 � dimG�v� ÿ dimX modA�v� � dimk EndA�X� ÿ dimk Ext1A�X ;X�:

2.3. Proposition. Let A be a tame algebra satisfying �E2�. Then for every
X 2 indA�v� with �AX � X, there is an open neighborhood u of X such that for
all Y 2 u, the following equality holds:
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dimk EndA�Y� ÿ dimk Ext1A�Y ;Y� � dimkHomA�
2�X�;X�:

Proof. Let X 2 indA�v� with �AX � X and let u be as in (2.2). We get the
two exact sequences

0! EndA�X� ! HomA�P0�X�;X� ! HomA�
1�X�;X� ! Ext1A�X ;X� ! 0

0! HomA�
1�X�;X� ! HomA�P1�X�;X� ! HomA�
2�X�;X�
! Ext1A�
1�X�;X� � Ext2A�X ;X� � 0:

Hence by (1.5), we get

dimk EndA�X� ÿ dimk Ext1A�X ;X� �
� dimkHomA�P0�X�;X� ÿ dimkHomA�P1�X�;X� �
� dimkHomA�
2�X�;X� � dimk EndA�X� ÿ dimkHomA�X ; �AX� �
� dimkHomA�
2�X�;X�

and the result follows.

Corollary. Assume that A is a tame algebra satisfying �E2�. Then for any
X 2 indA�v� with �AX � X, there is an open subset u of modA�v� such that for
any Y 2 u, the following inequality holds:

dimk EndA�Y� � dimk Y � dimkHomA�
2�Y�;Y�:

2.4. In our proof of Theorem 2 we shall use results on the structure of
module categories of polynomial growth algebras proved in [17]. Namely,
any indecomposable module X over a polynomial growth strongly simply
connected algebra A is either directing or it lies in the coil of a multicoil
component of the Auslander-Reiten quiver ÿA. Any such coil c is obtained
from a tube by a sequence of admissible operations as de¢ned in [1]. This
component c is standard and the rank of c is de¢ned as the number of
modules in the mouth of c.

Lemma. Let c be a coil in the Auslander-Reiten quiver ÿB of a polynomial
growth strongly simply connected algebra B. Let X 2 c be a module with a
maximal sectional path

X � X1 ! X2 ! � � � ! Xm

in c (then Xm is in the mouth of c). Let m � sp� t with 0 � t < p, where p is
the rank of c. Then

dimk Ext1B�X ;X� � s� 2:
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Proof. Recall that Ext1B�X ;X� � D HomB��ÿBX ;X� and let Y � �ÿ
B
X .

We shall consider the values of dimk HomB�Y ;ÿ� in c. For this purpose we
shall use that c is a standard component of ÿB, [16].
Let P1; . . . ;Pt be all projective modules in the mouth of c. By [17, 4.5], we

may assume that HomB�Pi;Pj� 6� 0 implies i < j. Moreover, any projective P
in c which is not in the mouth of c, is injective. Consider a Galois covering
of translation quivers �:�! c de¢ned by the action of an in¢nite cyclic
group. Fix ��Y0� � Y and X0 � �ÿ�Y0. Examples of the values of
dimk Hom�Y0;ÿ� in � are the following:

In general, we observe that for the mesh category k��� we have:
(a) dimk Homk����Y0; �

ÿi
�
X0� � 1 for 1 � i � m;

(b) dimk Homk����Y0; �
ÿi
�
X0� � 2 for m� 1 � i � m� p;

(c) dimk Homk����Y0; �
ÿi
�
X0� � 0 for i > m� p.
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Since �ÿi
B
X � X for 1 � i � m at most s times and �ÿi

B
X � X for

m� 1 � i � m� p at most once, then

dimk Ext1B�X ;X� �
X

dimk Homk����Y0; �
ÿi
�
X0� � s� 2:

2.5. Proof of Theorem 2: In (2.1), we proved the equivalence of (a) and (b).
By Theorem 1, we have (c) ) (b). Moreover, by [10] we have (d) ) (b) and
then by Theorem 1 we get (d) ) (c).
(a) ) (d): Let X be an indecomposable A-module. If X is directing, then

dimk EndA�X� � 1. Assume that X is not directing, then there exists a con-
vex coil subcategory B of A and a coil c of ÿB such that X lies on c.
Let C be the tame concealed algebra which is a convex subcategory of B

such that c is obtained from a tube t of ÿC by a sequence of admissible
operations. Let p be the rank of c. Consider a sectional path

X � X1 ! X2 ! � � � ! Xm

in c such that Xm is at the mouth of c. Write m � sp� t with 0 � t < p, then
by (2.4) we have dimk Ext1A�X ;X� � s� 2.
On the other hand, let e�X� be the number of projective-injective in-

decomposable A-modules P such that P 2 c and HomA�P;X� 6� 0. By [13],
we have dimk EndA�X� ÿ dimk Ext1A�X ;X� � e�X� � 2. Altogether we get,
dimk EndA�X� � s� e�X� � 4.
Since C is a tame concealed simply connected algebra, the sum of the di-

mensions of the modules in the mouth of t is at least 5. Hence,
dimk X � 5s� e�X�. If s � 1, we get dimk EndA�X� � dimk X as desired. If
s � 0, then the arguments given in [13, (3.3)] show that dimk EndA�X� � 1.

2.6. We recall that the Tits form of A is the quadratic form qA:ZQ0 ! Z
such that

qA�v� �
X
i2Q0

v�i�2 ÿ
X

�i!j�2Q1

v�i�v�j� �
X
i;j2Q0

dimk Ext2A�Si;Sj�v�i�v�j�;

where Si denotes the simple module corresponding to the vertex i of Q, see
[11].
For A a tame algebra, qA is weakly non-negative, [9]. From [12] we get

that for A strongly simply connected satisfying �E2�, A is tame if and only if
qA is weakly non-negative. We obtain also the more general result.

Proposition. Let F : ~A � k~Q=~I ! A � kQ=I be a Galois covering defined
by the action of the group G. Assume that (i) A satisfies �E2� and (ii) ~A is
strongly simply connected. Then the following are equivalent:
(a) ~A is tame.
(b) ~A is of polynomial growth.

184 b. bolan¬ os and j. a. de la pen¬ a



{orders}ms/990063/bolanos.3d -20.11.00 - 10:06

(c) A is tame.
(d) The Tits form q~A:Z�~Q0� ! Z is weakly non-negative.
(e) ~A does not contain any hypercritical convex subcategory.

For concepts not de¢ned before, see [11,17].

Proof. Let F�:mod~A ! modA be the push-down functor. By [17], G is
torsion-free and F� preserves indecomposable modules. For any X 2 ind~A we
get

0 � Ext2A�F�X ;F�X� �
M
g2G

Ext2~A�X ;Xg�;

where Xg is the shift of X de¢ned by the action of G on mod~A. Therefore,
Ext2~A�X ;X� � 0 and ~A satis¢es �E2�. The equivalence of (a), (b), (d) and (e)
follows from [12], see (2.1). The equivalence of (a) and (c) follows from [17].

3. On the structure of the Auslander-Reiten quiver of a tame algebra
satisfying �E2�.
3.1. Recall that the number of arrows from X to Y in ÿA is the dimension of
the space radA�X ;Y�=rad2A�X ;Y�. The powers radnA of the radA are ideals of
the category modA, as well as rad1A de¢ned by rad1A �X ;Y� �

T
n2N

radnA�X ;Y�.
If X ;Y belong to two di¡erent components of ÿA and HomA�X ;Y � 6� 0,
then rad1A �X ;Y � 6� 0.
We recall that a component c of ÿA is standard if the full subcategory of

modA induced by the modules in c is equivalent to the mesh-category k�c�,
see [4].

Lemma. Let A � kQ=I be an algebra satisfying �E2�. The following condi-
tions are equivalent:
(a) for every v 2 NQ0 , almost every X 2 indA�v� lies in a homogeneous

standard tube in ÿA;
(b) for every v 2 NQ0 , almost every X 2 indA�v� has rad1A �X ;X� � 0.

Moreover, if these conditions are satisfied, then A is tame.

Proof. First observe that in [10] it was shown that condition (a) implies
that A is tame. That (b) implies tameness is left as an easy exercise.
(a) ) (b): If X is an indecomposable module in a homogeneous standard

tube of ÿA, clearly rad1A �X ;X� � 0.
If (b) is satis¢ed, then A is tame and by [3], almost every X 2 indA�v� lies

in a homogeneous tube of ÿA. If X is in the mouth of a homogeneous tube T
and rad1A �X ;X� � 0, then EndA�X� � k. Moreover, Ext2A�X ;X� � 0 implies
that T is standard by [15].

algebras with vanishing... 185



{orders}ms/990063/bolanos.3d -20.11.00 - 10:06

3.2. A well-known conjecture says that a homogeneous tube in a tame
algebra always belongs to a tubular family. For algebras satisfying �E2� we
may prove the following.

Proposition. Let A be a tame algebra satisfying �E2�. Let T be an homo-
geneous tube in ÿA. Assume that the indecomposable module Y in the mouth of
T satisfies EndA�Y� � k. Then there exists an infinite family �T��� of homo-
geneous tubes in ÿA such that the module X� in the mouth of T� has
dim X� � dim Y.

Proof. Consider the point Y 2 modA�v� satisfying Ext2A�Y ;Y� � 0. By
(1.2) and (1.3), there is an open neighbourhood u of Y in modA�v� such that
for any X 2 u the following are satis¢ed:
(i) dimk EndA�X� � 1, hence X is indecomposable.
(ii) dimG�v� ÿ dimX modA�v� � dimk EndA�X� ÿ dimk Ext1A�X ;X�

is a constant c � 0.
(iii) Ext2A�X ;X� � 0; hence modA�v� is smooth at X .

Evaluating the di¡erence (ii) at Y we get c � 0. Let C be the unique irre-
ducible component of modA�v� containing Y . Consider any X 2 C \u.
Then

dimX modA�v� � dimTX � dimk Ext1A�X ;X� � dimG�v� ÿ dimk EndA�X�
� dimk Ext1A�Y ;Y � � dimG�v� ÿ dimk EndA�Y� > dimG�v�X ;

where we have use (iii), (1.3), (ii) and (i) for the succesive steps. Therefore
there is an in¢nite family �X��� of pairwise non-isomorphic modules in
C \u. Most of these modules lie on homogeneous tubes of ÿA.

3.3. By [12], coil algebras and strongly simply connected polynomial
growth algebras are examples of algebras A satisfying �E2� and such that for
every v 2 NQ0 , almost every X 2 indA�v� lies on a homogeneous standard
tube. These algebras are also cycle-finite.
Recall that a cycle in indA is a chain X � X0 !f1 X1 ! � � � !fs Xs � X of

non-zero non-isomorphisms between indecomposable A-modules. Such a
cycle is in¢nite if fi 2 rad1A �Xiÿ1;Xi� for some 1 � i � s. The algebra A is
cycle-finite if it does not accept any in¢nite cycle in indA. By [1], a cycle-¢-
nite algebra is tame.

Proposition. Let A � kQ=I be a cycle-finite algebra. Then
(a) for v 2 NQ0 and almost every indecomposable X 2 modA�v�, we have

Ext2A�X ;X� � 0 and X lies in a homogeneous standard tube.
(b) Assume that there are infinitely many G�v�-orbits of indecomposable A-

modules in modA�v�. Then supp v � fi 2 Q0: v�i� 6� 0g is convex in Q and the
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induced convex subcategory B is a tame quasi-tilted algebra (in particular,
satisfying �E2�).
Proof. (a): Since A is tame, almost every X 2 indA�v� lies in a homo-

geneous tube of ÿA. If X is in such a tube T , then rad1A �X ;X� � 0 because A
is cycle-¢nite. Then T is standard as in (3.1). Assume that Ext2A�X ;X� 6� 0.
Consider the exact sequence 0! 
1�X� ! P0�X� ! X ! 0 as in (1.5), then
0 6� Ext2A�X ;X� � Ext1A�
1�X�;X� � D HomA�X ; �A
1�X��. We get in-
decomposable direct summands Z of 
1�X�, P of P0�X� a non-zero maps

X ! �AX Z ! P ! X :
& %

�
Hence all these modules belong to T . In particular, P 2 T , which contra-

dicts that T is a stable tube.
(b) Assume �X��� is an in¢nite family of pairwise non-isomorphic mod-

ules in indA�v�. Since A is tame, we may assume X0 � X�0 belongs to a
homogeneous standard tube T0. By a standard argument, supp v � supp X0

is convex in Q.
Let B the convex subcategory of A induced by supp v. We show ¢rst that

g` dimB � 2. Otherwise, there is an indecomposable summand R of P for an
indecomposable projective B-module P, such that p dimB R>1, that is,
HomB�I ; �BR� 6� 0 for some indecomposable injective B-module I . Since X0 is
sincere as B-module, we get a chain of non-zero maps

X0 ! I ! �BR R ! P ! X0:
& %

�
Again, P 2 T0. Moreover, for any Y 2 T0, supp Y � supp v, hence T0 is a

component of ÿB, therefore T0 cannot contain projective B-modules, a con-
tradiction showing that g` dimB � 2.
Finally, if Y 2 indB�w� and p dimB Y > 1, i dimB Y > 1, we get a cycle

X0 ! I ! �BY Y �ÿ
B
Y ! P ! X0:

& % & %
� �

for some indecomposable projective (resp. injective) B-module P (resp. I).
As above, P 2 T0 and we get a contradiction.
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4. Some examples.

4.1. Consider the algebra Br given by the following quiver

with r squares and relations: �11�0, �0�11, �i;2�i�1;1, �i�1;1�i;2 �1 � i � rÿ 1�
and �i1�i1 ÿ �i2�i2 �1 � i � r�. The algebra Br is a coil algebra (obtained
from an algebra of type ~A2 by a sequence of admissible operations of type
(ad 1) and (ad 2�) as de¢ned in [1]) and therefore Br is cycle-¢nite. As ob-
served in (3.2), Br satis¢es �E2�.
Let X be the indecomposable Br-module whose dimension vector is as in-

dicated in the drawing. Since g` dimBr � 2, then

r � qBr�dimX� � dimk EndA�X� ÿ dimk Ext1A�X ;X�:
Moreover, we may check that Ext1A�X ;X� � 0 and hence
dimk EndA�X� � 1

6 �dimk X � 1�.
Finally, observe that Br is not simply connected and there is a Galois

covering ~Br ! Br de¢ned by the action of Z.

4.2. We shall show an example of a polynomial growth algebra satisfying
�E2� but not �E3�.
Consider the algebra A1 given by the quiver

with relations: �i�j � 0, for i 6� j and �1�1 � �2�2 � �3�3. We have num-
bered the vertices Q0 � f0; 1; 2; 3g.
There is a Galois covering F1: ~A1 ! A1 where ~A1 is given by the quiver
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with the relations: �i;s�1�j;s, for i 6� j, s 2 Z and
P3
i�1
�is�is for s 2 Z. The group

de¢ning F1 is Z acting as horizontal shifts.
It is an easy exercise to construct ÿ ~A1

. If X is an indecomposable ~A1-
module, then either supp X � f�0; s�; �1; s�; �2; s�; �3; s�; �0; s� 1�g for some
s 2 Z or X is a projective-injective module of the form P�i;s� � I�i;s�1� for
some i 2 f1; 2; 3g and some s 2 Z. It is easy to check that
Ext2~A1

�X ;Xg� !� Ext1~A1
�
1�X�;Xg� � 0 for any horizontal shift g 2 Z. It fol-

lows that A1 satis¢es �E2�.
The projective resolution of the simple ~A1-module S�0;0� is:

0! S�0;2� � S�0;2� ! P�0;1� !
L3
i�1
P�i;0� ! P�0;0� ! S�0;0� ! 0:

Hence Ext3A1
�S0;S0� 6� 0 and A1 does not satisfy �E3�.

We may apply (2.5) to obtain that A1 is tame. In fact, the Auslander-Re-
iten quiver ÿA1 is of the form ÿ ~A1

=Z and has the following shape,

There is a unique family t � �T���2P1k of (homogeneous) tubes in ÿA1 .

The module X� at the mouth of T� has dimension dim X� �
1
2

1 1
. Moreover

dimk EndA1�X�;X�� � 2 and hence rad1A1
�X�;X�� 6� 0. By (3.1), the tubes T�

are not standard.
We may consider the algebra A2 � ~A1=2Z which is a double covering of
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A1. As above, A2 is tame and satis¢es �E2�. Moreover ÿA2 has the following
shape:

The tubes in ÿA2 are all homogeneous and standard. Clearly, A2 is not
cycle-¢nite.

4.3. Consider the algebra A given by the quiver

with relations: �i�j � 0 for i 6� j; �3�3 ÿ �1�1 ÿ �3�2�2, �4�4 ÿ �1�1ÿ
�4�2�2 for some �3 6� �4 elements of k n f0g. Using covering techniques the
following is easy to verify:
(i) A is a tame algebra of polynomial growth but not domestic.
(ii) A does not satisfy �E2�. Indeed, there is an in¢nite family �X���2P1k of

pairwise non-isomorphic indecomposable modules with X� � 1
121

1 such
that Ext2

A�X�;X�� 6� 0.

(iii) The modules X� belong to homogeneous non-standard tubes of ÿA.
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