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A LATTICE OF NORMAL SUBGROUPS
THAT IS NOT EMBEDDABLE INTO THE

SUBGROUP LATTICE OF AN ABELIAN GROUP

E. W. KISS and P. P. PÄLFY

1. Introduction.

In this paper we give a negative solution to the following problem of Bjarni
Jönsson:

Problem. Is the lattice of normal subgroups of every group embeddable into
the subgroup lattice of an abelian group?

The problem goes back to the famous 1953 paper of Jönsson [J] (see the
last sentence of the text there), and it is also mentioned in the third edition of
Birkhoff's Lattice Theory [B] (Problem 63, p. 179).
We give a group of order 29 whose lattice of normal subgroups does not

have the desired embedding.

Theorem. The lattice of normal subgroups of the three generator free
group G in the group variety defined by the laws x4 � 1 and x2y � yx2 cannot
be embedded into the subgroup lattice of any abelian group.

We obtained this negative solution in 1988 (see the account given by
McKenzie [M], p. 42), but the publication of the result has been delayed.
Meanwhile the second author and Csaba Szabö [PSz1], [PSz2] have obtained
a stronger result by exhibiting a lattice identity valid in subgroup lattices of
all abelian groups that fails in the lattice of normal subgroups of a certain
group of order 220. For the lattice of normal subgroupsn�G� of our group G
this identity, however, does hold. We do not know, whether n�G� belongs
to the lattice variety generated by the subgroup lattices of abelian groups or
not. Our result shows only that it does not belong to the quasivariety gen-
erated by them.
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Our notation is mostly standard. For basic results from group theory used
here the reader may consult [A]. The lattice of normal subgroups of a
group G will be denoted by n�G�. If G is abelian, then n�G� is simply the
subgroup lattice of G. For normal subgroups A � B � G we shall denote the
interval in n�G� consisting of the normal subgroups N with A � N � B
by I �A;B�. Sometimes we shall treat abelian groups of exponent k as Zk-
modules. For a group G and a natural number m we use Gm to denote the
subgroup generated by all m-th powers in G. If G is an additively written
abelian group then we write mG � fmg j g 2 Gg instead. (Notice that these
elements already form a subgroup.)

2. The group G.

As it was mentioned in the Introduction we consider the (relatively) free
group G on three generators in the group variety defined by the laws

x4 � 1; x2y � yx2:

So the square of every element belongs to the center Z�G� of G. Notice that
the commutators �x; y� � xÿ1yÿ1xy � �xÿ1�2�xyÿ1�2y2 also belong to the
center and have order at most two. From these observations it follows that
�xy; z� � �x; z��y; z�, �xy�2 � x2y2�x; y�, and �y; x� � �x; y� (see [A], p. 26). No-
tice that our variety contains both the 8-element dihedral group and the
quaternion group (in fact each of these groups generates the variety). Let the
generators of G be a, b, and c. It is easy to verify that every element of G can
be written in the form

a�b�c
�a; b���a; c���b; c�� ;
where 0 � �; �; 
 < 4, 0 � �; �; � < 2. By constructing appropriate homo-
morphisms into the quaternion group it is also straightforward to see that
the above form of the elements of G is unique. Thus, the order of G is 29. We
have that the center Z�G� is elementary abelian of order 26 with basis
a2; b2; c2; �a; b�; �a; c�; �b; c�. The commutator subgroup G0 has order 23, the
factor group G=G0 is the direct product of three cyclic groups of order four.
Furthermore, we have 2�G=G0� � Z�G�=G0.

3. The lattice of normal subgroups.

To shorten notation let Z � Z�G� denote the center. Now the factor
group G=Z is elementary abelian of order 23, so it contains seven minimal
subgroups Ui=Z (i � 1; . . . ; 7). Each Ui is abelian. Let Vi � U2

i �Ui;G�.

170 e. w. kiss and p. p. pälfy



{orders}ms/990063/kiss.3d -20.11.00 - 09:31

Let us list all Ui's and the corresponding Vi's by giving their generators.

U1 � hZ; ai V1 � ha2; �a; b�; �a; c�i
U2 � hZ; bi V2 � hb2; �a; b�; �b; c�i
U3 � hZ; ci V3 � hc2; �a; c�; �b; c�i
U4 � hZ; abi V4 � ha2b2�a; b�; �a; b�; �a; c��b; c�i
U5 � hZ; aci V5 � ha2c2�a; c�; �a; c�; �a; b��b; c�i
U6 � hZ; bci V6 � hb2c2�b; c�; �a; b��a; c�; �b; c�i
U7 � hZ; abci V7 � ha2b2c2�a; b��a; c��b; c�; �a; b��a; c�; �a; b��b; c�i

Lemma 3.1. For each 1 � i � 7 every subgroup between Vi and Ui is normal
in G. Moreover, Ui=Vi is elementary abelian of order 24.

Proof. Let Vi � H � Ui. Since �H;G� � �Ui;G� � Vi � H, we see that H
is normal indeed. As U2

i � Vi, it follows that Ui=Vi has exponent 2. For the
orders we have jUij � 27 and jVij � 23, hence jUi=Vij � 24.

Though we do not need it for the proof of our main result, we describe the
lattice of normal subgroups of G. We shall use the following simple

Lemma 3.2. If P is a finite p-group and M is a maximal subgroup of P, then
�M;P� � P0.

Proof. Notice that jP : Mj � p and M is normal in P. Now
M=�M;P� � Z�P=�M;P�� and �P=�M;P��=�M=�M;P�� is cyclic (of order p),
hence P=�M;P� is abelian. Therefore we have �M;P� � P0. The converse in-
clusion is obvious.

Proposition 3.3. The lattice of normal subgroups of G is the union of the
following nine intervals:

I �G0;G�; I �Vi;Ui� �i � 1; . . . ; 7�; I �f1g;Z�G��:

Proof. Let N be an arbitrary normal subgroup of G. We consider the
product NZ. If NZ � Z, then N is contained in Z. If NZ � Ui for some i,
1 � i � 7, then we have N � N2�N;G� � �NZ�2�NZ;G� � U2

i �Ui;G� � Vi, so
N belongs to the interval I �Vi;Ui�. Finally, if jG : NZj � 2, then
N � �N;G� � �NZ;G� � G0.

4. Embeddings ofn�Znpk�.
The following lemma about embeddings of the subgroup lattice of Znpk
(n � 3) will play a central role in our proof. Parts of its statement are well-
known, but the freeness of X may not have been observed before.
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Lemma 4.1. Let ' :n�Znpk� !n�A� be a lattice embedding, where p is a
prime, k � 1, A is an abelian group, and assume that '�f0g� � f0g and
'�Znpk� � A. If n � 3, then A is isomorphic to a direct power Xn of a free Zpk -
module X. Moreover, having identified A and Xn,

'�h�z1; . . . ; zn�i� � f�z1x; . . . ; znx� j x 2 Xg�1�
holds for all �z1; . . . ; zn� 2 Znpk .
Proof. For notational simplicity we deal with the case n � 3, the proof

for n > 3 is similar. Let E1 � h�1; 0; 0�i, E2 � h�0; 1; 0�i, E3 � h�0; 0; 1�i, and
E0 � h�1; 1; 1�i. These subgroups form a spanning 3-frame in n�Znpk�, hence
so do their images in n�A�. So by Lemma 1 of [HH2] we may assume
that A � X 3 for some abelian group X , and we have '�E1� � f�x; 0; 0� j
x 2 Xg, '�E2� � f�0; x; 0� j x 2 Xg, '�E3� � f�0; 0; x� j x 2 Xg, and '�E0� �
f�x; x; x� j x 2 Xg. We introduce the notation E�i � '�Ei�, i � 0; 1; 2; 3.
In [HH2] lattice terms fj (j � 1; 2; . . .) are constructed such that

fj�E�0 ;E�1 ;E�2 ;E�3� � f�0; jx; x� j x 2 Xg (and also fj�E0;E1;E2;E3� � f�0; jt; t� j
t 2 Zpkg). Since in Znpk we have fpk�E0;E1;E2;E3� � E3, using the
homomorphism ' we obtain fpk�E�0 ;E�1 ;E�2 ;E�3� � E�3 , i.e. p

kX � 0, so X can
be considered as a Zpk-module. Our goal is to prove that X is in fact a free
Zpk -module.
We have inn�Znpk�:

h�p; 0; 0�i � h�1; 0; 0�i \ h�1; pkÿ1; 0�i � E1 \ fpkÿ1�E0;E3;E2;E1�
and

h�p; 0; 0�i � h�1; 0; 0�i \ ÿh�p; 1; 0�i � h�0; 1; 0�i�
� E1 \

ÿ
fp�E0;E3;E1;E2� � E2

�
:

Using the lattice homomorphism ' we obtain

E�1 \ fpkÿ1�E�0 ;E�3 ;E�2 ;E�1� � E�1 \
ÿ
fp�E�0 ;E�3 ;E�1 ;E�2� � E�2

�
;

that is

f�x; 0; 0� j x 2 Xg \ f�y; pkÿ1y; 0� j y 2 Xg
� f�u; 0; 0� j u 2 Xg \ �f�pv; v; 0� j v 2 Xg � f�0;w; 0� j w 2 Xg�;

so

f�x; 0; 0� j x 2 X ; pkÿ1x � 0g � f�pv; 0; 0� j v 2 Xg;
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from which it follows that X is a free Zpk -module. Thus we can assume that
X is equal to a direct sum of some, say �, copies of Zpk 's.
It remains to show (1). For every element

u � �. . . ; ui; . . .� 2
M
�

Z3pk

with

ui � �u1i ; u2i ; u3i � 2 Z3pk
define

��u� � ��. . . ; u1i ; . . .�; �. . . ; u2i ; . . .�; �. . . ; u3i ; . . .�� 2 X 3 :

Clearly, � :
L

� Z
3
pk ! X 3 is a group-isomorphism. For a subgroup U � Z3pk

let  �U� � X 3 be the image of
L

�U under �. Then  is a lattice embedding
ofn�Z3pk� inton�X3�. An easy calculation shows that (1) holds, when ' is
replaced by  . In particular,  �Ei� � '�Ei� for i � 0; 1; 2; 3. It is shown
in [HH1] (see Section 3.2) that the 3-frame E0;E1;E2;E3 generates n�Z3pk�.
Therefore  � ', proving (1).
Corollary 4.2. For every subgroup U of Znpk and for every positive

integer m we have '�mU� � m'�U�.
Proof. By (1) the claim is obvious for cyclic subgroups U . If U is arbi-

trary, then write it as a sum of cyclic subgroups U �PCi. Then it follows
easily that '�mU� � '�mPCi� � '�

P
mCi� �

P
'�mCi� �

P
m'�Ci� �

m
P
'�Ci� � m'�PCi� � m'�U�.

5. Proof of the Theorem.

Let us assume, by way of contradiction, that there exists an embedding
ofn�G� inton�A� for some abelian group A. Let us denote the image of a
normal subgroup N of G under this embedding by N�. Without loss of gen-
erality we may suppose that f1g� � f0g and G� � A.
The interval between f1g and Z � Z�G� inn�G� is isomorphic ton�Z62�

and the interval between Z and G is isomorphic to n�Z32�. Hence by
Lemma 4.1 both Z� and A=Z� have exponent 2, hence the exponent of A
divides 4, so in other words A is a Z4-module. Moreover, the interval be-
tween D � G0 and G is isomorphic ton�Z34�, hence ^ again by Lemma 4.1 ^
it follows that A=D� is a free Z4-module. Since free modules are projective,
we have that A � D� � B for some subgroup B. Note that 2D� � 0,
hence 2A � 2B.
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Now take the normal subgroups Ui, Vi defined in Section 3. Since Ui=Vi is
elementary abelian of order 24, another application of Lemma 4.1 yields that
U�i =V

�
i has exponent 2, i.e. 2U�i � V �i . We also have 2U�i � 2A � 2B.

Consider the embedding  of n�G=D� �n�Z3
4� into n�A=D�� induced

by �. Applying Corollary 4.2 we get that 2 �UiD=D� �  �2�UiD=D��. But we
have ViD � U2

i D in G, so 2�UiD=D� � ViD=D. Thus, �D� � V �i �=D� �
 �ViD=D� � 2��D� �U�i �=D��, hence

D� � V �i � D� � 2U�i :

From A � D� � B we get for every C � D� that C � D� � �B \ C�. The
mapping C 7!�B \ C� is a lattice isomorphism n�A=D�� !n�B�. Denote
by  0 :n�G=D� !n�B� the embedding obtained from  by composing it
with this isomorphism. Applying Corollary 4.2 again we get that
 0�2�G=D�� � 2 0�G=D�. We have seen that 2�G=D� � Z=D, so from
 0�G=D� � B we obtain that  0�Z=D� � 2B. On the other hand,
 0�Z=D� � Z� \ B. Therefore we get that

Z� � D� � 2B :

Notice that we do not claim that 2B or 2U�i corresponds to any normal
subgroup of G.
We will show that

V�i � �D� \ V�i � � �2B \ V�i �
holds for each 1 � i � 7. Let us denote the right-hand side of the equation
by Wi. We obviously have V �i �Wi. We take intersection and sum of both
V �i and Wi with D�. The equation

D� \Wi � D� \ V �i
is trivial. On the other hand, we have

D� �Wi � D� � �2B \ V �i � � D� � 2U�i � D� � V�i :

By modularity, we infer that V�i �Wi, indeed.
We will reach the contradiction by showing that no such subgroup K ex-

ists for which Z� � D� � K and V �i � �D� \ V �i � � �K \ V �i � for all 1 � i � 7
hold. Using the basis �a; b�; �a; c�; �b; c�; a2; b2; c2 of Z, Lemma 4.1 provides a
decomposition Z� � X6 such that we have
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D� � f�x; y; z; 0; 0; 0� j x; y; z 2 Xg;
V�1 � f�x; y; 0; t; 0; 0� j x; y; t 2 Xg;
V�2 � f�x; 0; y; 0; t; 0� j x; y; t 2 Xg;
V�3 � f�0; x; y; 0; 0; t� j x; y; t 2 Xg;
V�4 � f�x; y; y; t; t; 0� j x; y; t 2 Xg;
V�5 � f�x; y; x; t; 0; t� j x; y; t 2 Xg;
V�6 � f�x; x; y; 0; t; t� j x; y; t 2 Xg;
V�7 � f�x� y� t; x� t; y� t; t; t; t� j x; y; t 2 Xg:

Now D� \ V �1 � f�x; y; 0; 0; 0; 0� j x; y 2 Xg, hence V �1 � �D� \ V �1 � �
�K \ V �1 � implies that

V �1 \ K � f��11t; �12t; 0; t; 0; 0� j t 2 Xg
for suitable maps �11, �12 from X to X . It is easy to check that in fact �11
and �12 are endomorphisms of X . Similarly,

V �2 \ K � f��21t; 0; �23t; 0; t; 0� j t 2 Xg;
V �3 \ K � f�0; �32t; �33t; 0; 0; t� j t 2 Xg:

Hence we have

K � f��11r� �21s; �12r� �32t; �23s� �33t; r; s; t� j r; s; t 2 Xg:
From Z� � D� � K it follows that we have equality here. Then

V �4 \ K � f���11 � �21�r; �12r; �23r; r; r; 0� j r 2 X ; �12r � �23rg:
From the direct decomposition V �4 � �D� \ V �4 � � �K \ V �4 � we infer that
�12r � �23r holds for every r 2 X , i.e. �12 � �23. Similarly, calculating
V �5 \ K and V�6 \ K we obtain �11 � �33 and �21 � �32. Finally, using
that 2X � 0 we get

V�7 \ K � f���11 � �21�t; ��12 � �21�t; ��12 � �11�t; t; t; t� j t 2 X ;
��11 � �21�t� ��12 � �21�t� ��12 � �11�t� t � 0g:

The latter condition means t � 0, so V �7 \ K � f0g, a contradiction. This
proves our theorem.
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