A LATTICE OF NORMAL SUBGROUPS
THAT IS NOT EMBEDDABLE INTO THE
SUBGROUP LATTICE OF AN ABELIAN GROUP

E. W. KISS and P. P. PÁLFY

1. Introduction.

In this paper we give a negative solution to the following problem of Bjarni Jónsson:

PROBLEM. Is the lattice of normal subgroups of every group embeddable into
the subgroup lattice of an abelian group?

The problem goes back to the famous 1953 paper of Jónsson [J] (see the
last sentence of the text there), and it is also mentioned in the third edition of
Birkhoff’s Lattice Theory [B] (Problem 63, p. 179).

We give a group of order 2^9 whose lattice of normal subgroups does not
have the desired embedding.

THEOREM. The lattice of normal subgroups of the three generator free
group G in the group variety defined by the laws $x^4 = 1$ and $x^2 y = y x^2$ cannot
be embedded into the subgroup lattice of an abelian group.

We obtained this negative solution in 1988 (see the account given by
McKenzie [M], p. 42), but the publication of the result has been delayed.
Meanwhile the second author and Csaba Szabó [PSz1], [PSz2] have obtained
a stronger result by exhibiting a lattice identity valid in subgroup lattices of
all abelian groups that fails in the lattice of normal subgroups of a certain
group of order 2^{20}. For the lattice of normal subgroups $\mathcal{N}(G)$ of our group G
this identity, however, does hold. We do not know, whether $\mathcal{N}(G)$ belongs
to the lattice variety generated by the subgroup lattices of abelian groups or
not. Our result shows only that it does not belong to the quasivariety
generated by them.

* Research of both authors was partially supported by the Hungarian National Science Founda-
tion, grant nos. 7442 and 16432.

Received July 24, 1996.
Our notation is mostly standard. For basic results from group theory used here the reader may consult [A]. The lattice of normal subgroups of a group \(G \) will be denoted by \(\mathcal{N}(G) \). If \(G \) is abelian, then \(\mathcal{N}(G) \) is simply the subgroup lattice of \(G \). For normal subgroups \(A \subseteq B \subseteq G \) we shall denote the interval in \(\mathcal{N}(G) \) consisting of the normal subgroups \(N \) with \(A \subseteq N \subseteq B \) by \(I[A, B] \). Sometimes we shall treat abelian groups of exponent \(k \) as \(\mathbb{Z}_k \)-modules. For a group \(G \) and a natural number \(m \) we use \(G^m \) to denote the subgroup generated by all \(m \)-th powers in \(G \). If \(G \) is an additively written abelian group then we write \(mG = \{mg \mid g \in G\} \) instead. (Notice that these elements already form a subgroup.)

2. The group \(G \).

As it was mentioned in the Introduction we consider the (relatively) free group \(G \) on three generators in the group variety defined by the laws

\[
\begin{align*}
x^4 &= 1, \\
x^2 y &= xy^2.
\end{align*}
\]

So the square of every element belongs to the center \(Z(G) \) of \(G \). Notice that the commutators \([x, y] = x^{-1}y^{-1}xy = (x^{-1})^2(xy^{-1})^2y^2 \) also belong to the center and have order at most two. From these observations it follows that \([xy, z] = [x, z][y, z] \), \((xy)^2 = x^2y^2[x, y] \), and \([y, x] = [x, y] \) (see [A], p. 26). Notice that our variety contains both the 8-element dihedral group and the quaternion group (in fact each of these groups generates the variety). Let the generators of \(G \) be \(a, b, \) and \(c \). It is easy to verify that every element of \(G \) can be written in the form

\[
da^\alpha b^\beta c^\gamma [a, b]^\rho[a, c]^\sigma [b, c]^\tau,
\]

where \(0 \leq \alpha, \beta, \gamma < 4 \), \(0 \leq \rho, \sigma, \tau < 2 \). By constructing appropriate homomorphisms into the quaternion group it is also straightforward to see that the above form of the elements of \(G \) is unique. Thus, the order of \(G \) is \(2^9 \). We have that the center \(Z(G) \) is elementary abelian of order \(2^6 \) with basis \(a^2, b^2, c^2, [a, b], [a, c], [b, c] \). The commutator subgroup \(G' \) has order \(2^3 \), the factor group \(G/G' \) is the direct product of three cyclic groups of order four. Furthermore, we have \(2(G/G') = Z(G)/G' \).

3. The lattice of normal subgroups.

To shorten notation let \(Z = Z(G) \) denote the center. Now the factor group \(G/Z \) is elementary abelian of order \(2^3 \), so it contains seven minimal subgroups \(U_i/Z \) \((i = 1, \ldots, 7)\). Each \(U_i \) is abelian. Let \(V_i = U_i^2[U_i, G] \).
Let us list all U_i’s and the corresponding V_i’s by giving their generators.

\[
\begin{align*}
U_1 &= \langle Z, a \rangle & V_1 &= \langle a^2, [a, b], [a, c] \rangle \\
U_2 &= \langle Z, b \rangle & V_2 &= \langle b^2, [a, b], [b, c] \rangle \\
U_3 &= \langle Z, c \rangle & V_3 &= \langle c^2, [a, c], [b, c] \rangle \\
U_4 &= \langle Z, ab \rangle & V_4 &= \langle a^2 b^2 [a, b], [a, b], [a, c] [b, c] \rangle \\
U_5 &= \langle Z, ac \rangle & V_5 &= \langle a^2 c^2 [a, c], [a, c], [a, b] [b, c] \rangle \\
U_6 &= \langle Z, bc \rangle & V_6 &= \langle b^2 c^2 [b, c], [a, b] [a, c], [b, c] \rangle \\
U_7 &= \langle Z, abc \rangle & V_7 &= \langle a^2 b^2 c^2 [a, b] [a, c], [a, b] [a, c], [a, b] [b, c] \rangle
\end{align*}
\]

Lemma 3.1. For each $1 \leq i \leq 7$ every subgroup between V_i and U_i is normal in G. Moreover, U_i / V_i is elementary abelian of order 2^4.

Proof. Let $V_i \subseteq H \subseteq U_i$. Since $[H, G] \subseteq [U_i, G] \subseteq V_i \subseteq H$, we see that H is normal indeed. As $U_i^0 \subseteq V_i$, it follows that U_i / V_i has exponent 2. For the orders we have $|U_i| = 2^7$ and $|V_i| = 2^3$, hence $|U_i / V_i| = 2^4$.

Though we do not need it for the proof of our main result, we describe the lattice of normal subgroups of G. We shall use the following simple

Lemma 3.2. If P is a finite p-group and M is a maximal subgroup of P, then $[M, P] = P'$.

Proof. Notice that $|P : M| = p$ and M is normal in P. Now $M / [M, P] \leq Z(P / [M, P])$ and $(P / [M, P]) / (M / [M, P])$ is cyclic (of order p), hence $P / [M, P]$ is abelian. Therefore we have $[M, P] \supseteq P'$. The converse inclusion is obvious.

Proposition 3.3. The lattice of normal subgroups of G is the union of the following nine intervals:

\[I[G', G], \ I[V_i, U_i] \ (i = 1, \ldots, 7), \ I[\{1\}, Z(G)].\]

Proof. Let N be an arbitrary normal subgroup of G. We consider the product NZ. If $NZ = Z$, then N is contained in Z. If $NZ = U_i$ for some i, $1 \leq i \leq 7$, then we have $N \supseteq N^2 [N, G] = (NZ)^2 [NZ, G] = U_i^2 [U_i, G] = V_i$, so N belongs to the interval $I[V_i, U_i]$. Finally, if $|G : NZ| \leq 2$, then $N \supseteq [N, G] = [NZ, G] = G'$.

4. **Embeddings of $\mathcal{N}(Z^n_p)$.**

The following lemma about embeddings of the subgroup lattice of Z^n_p ($n \geq 3$) will play a central role in our proof. Parts of its statement are well-known, but the freeness of X may not have been observed before.
Lemma 4.1. Let \(\varphi : \mathcal{N}(\mathbb{Z}_p^n) \to \mathcal{N}(A) \) be a lattice embedding, where \(p \) is a prime, \(k \geq 1 \), \(A \) is an abelian group, and assume that \(\varphi(\{0\}) = \{0\} \) and \(\varphi(\mathbb{Z}_p^n) = A \). If \(n \geq 3 \), then \(A \) is isomorphic to a direct power \(X^n \) of a free \(\mathbb{Z}_p \)-module \(X \). Moreover, having identified \(A \) and \(X^n \),

\[(1) \quad \varphi((z_1, \ldots, z_n)) = \{(z_1x, \ldots, z_nx) \mid x \in X\} \]

holds for all \((z_1, \ldots, z_n) \in \mathbb{Z}_p^n\).

Proof. For notational simplicity we deal with the case \(n = 3 \), the proof for \(n > 3 \) is similar. Let \(E_1 = \langle (1, 0, 0) \rangle \), \(E_2 = \langle (0, 1, 0) \rangle \), \(E_3 = \langle (0, 0, 1) \rangle \), and \(E_0 = \langle (1, 1, 1) \rangle \). These subgroups form a spanning 3-frame in \(\mathcal{N}(\mathbb{Z}_p^3) \), hence so do their images in \(\mathcal{N}(A) \). So by Lemma 1 of [HH2] we may assume that \(A = X^3 \) for some abelian group \(X \), and we have \(\varphi(E_1) = \{(x, 0, 0) \mid x \in X\} \), \(\varphi(E_2) = \{(0, x, 0) \mid x \in X\} \), \(\varphi(E_3) = \{(0, 0, x) \mid x \in X\} \), and \(\varphi(E_0) = \{(x, x, x) \mid x \in X\} \). We introduce the notation \(E_i^* = \varphi(E_i) \), \(i = 0, 1, 2, 3 \).

In [HH2] lattice terms \(f_j \) \((j = 1, 2, \ldots)\) are constructed such that \(f_j(E_0^*, E_1^*, E_2^*, E_3^*) = \{(0, jx, x) \mid x \in X\} \) (and also \(f_j(E_0, E_1, E_2, E_3) = \{(0, j, t) \mid t \in \mathbb{Z}_p\} \)). Since in \(\mathbb{Z}_p^3 \) we have \(f_p(E_0, E_1, E_2, E_3) = E_3 \), using the homomorphism \(\varphi \) we obtain \(f_p(E_0^*, E_1^*, E_2^*, E_3^*) = E_3^* \), i.e. \(p^kX = 0 \), so \(X \) can be considered as a \(\mathbb{Z}_p \)-module. Our goal is to prove that \(X \) is in fact a free \(\mathbb{Z}_p \)-module.

We have in \(\mathcal{N}(\mathbb{Z}_p^n) \):

\[
\langle (p, 0, 0) \rangle = \langle (1, 0, 0) \rangle \cap \langle (1, p^{k-1}, 0) \rangle = E_1 \cap f_{p^{k-1}}(E_0, E_3, E_2, E_1)
\]

and

\[
\langle (p, 0, 0) \rangle = \langle (1, 0, 0) \rangle \cap (\langle (p, 1, 0) \rangle + \langle (0, 1, 0) \rangle)
\]

\[
= E_1 \cap (f_p(E_0, E_3, E_1, E_2) + E_2).
\]

Using the lattice homomorphism \(\varphi \) we obtain

\[
E_1^* \cap f_{p^{k-1}}(E_0^*, E_3^*, E_2^*, E_1^*) = E_1^* \cap (f_p(E_0^*, E_3^*, E_1^*, E_2^*) + E_2^*),
\]

that is

\[
\{(x, 0, 0) \mid x \in X\} \cap \{(y, p^{k-1}y, 0) \mid y \in X\}
\]

\[
= \{(u, 0, 0) \mid u \in X\} \cap (\{(pv, v, 0) \mid v \in X\} + \{(0, w, 0) \mid w \in X\}),
\]

so

\[
\{(x, 0, 0) \mid x \in X, p^{k-1}x = 0\} = \{(pv, 0, 0) \mid v \in X\},
\]
from which it follows that X is a free \mathbb{Z}_{p^k}-module. Thus we can assume that X is equal to a direct sum of some, say κ, copies of \mathbb{Z}_{p^k}'s.

It remains to show (1). For every element

$$u = (\ldots, u_i, \ldots) \in \bigoplus_{\kappa} \mathbb{Z}_{p^k}$$

with

$$u_i = (u_i^1, u_i^2, u_i^3) \in \mathbb{Z}_{p^k}^3$$

define

$$\rho(u) = ((\ldots, u_i^1, \ldots), (\ldots, u_i^2, \ldots), (\ldots, u_i^3, \ldots)) \in X^3.$$

Clearly, $\rho : \bigoplus_{\kappa} \mathbb{Z}_{p^k}^3 \to X^3$ is a group-isomorphism. For a subgroup $U \subseteq \mathbb{Z}_{p^k}^3$ let $\psi(U) \subseteq X^3$ be the image of $\bigoplus_{\kappa} U$ under ρ. Then ψ is a lattice embedding of $\mathcal{N}(\mathbb{Z}_{p^k}^3)$ into $\mathcal{N}(X^3)$. An easy calculation shows that (1) holds, when φ is replaced by ψ. In particular, $\psi(E_i) = \varphi(E_i)$ for $i = 0, 1, 2, 3$. It is shown in [HH1] (see Section 3.2) that the 3-frame E_0, E_1, E_2, E_3 generates $\mathcal{N}(\mathbb{Z}_{p^k}^3)$. Therefore $\psi = \varphi$, proving (1).

Corollary 4.2. For every subgroup U of $\mathbb{Z}_{p^k}^n$ and for every positive integer m we have $\varphi(mU) = m\varphi(U)$.

Proof. By (1) the claim is obvious for cyclic subgroups U. If U is arbitrary, then write it as a sum of cyclic subgroups $U = \sum C_i$. Then it follows easily that $\varphi(mU) = \varphi(m \sum C_i) = \varphi(\sum mC_i) = \sum \varphi(mC_i) = m \sum \varphi(C_i) = m \varphi(\sum C_i) = m\varphi(U)$.

5. **Proof of the Theorem.**

Let us assume, by way of contradiction, that there exists an embedding of $\mathcal{N}(G)$ into $\mathcal{N}(A)$ for some abelian group A. Let us denote the image of a normal subgroup N of G under this embedding by N^\ast. Without loss of generality we may suppose that $\{1\}^\ast = \{0\}$ and $G^\ast = A$.

The interval between $\{1\}$ and $Z = Z(G)$ in $\mathcal{N}(G)$ is isomorphic to $\mathcal{N}(\mathbb{Z}_2^k)$ and the interval between Z and G is isomorphic to $\mathcal{N}(\mathbb{Z}_3^2)$. Hence by Lemma 4.1 both Z^\ast and A/Z^\ast have exponent 2, hence the exponent of A divides 4, so in other words A is a \mathbb{Z}_4-module. Moreover, the interval between $D = G^\ast$ and G is isomorphic to $\mathcal{N}(\mathbb{Z}_4^2)$, hence – again by Lemma 4.1 – it follows that A/D^\ast is a free \mathbb{Z}_4-module. Since free modules are projective, we have that $A = D^\ast \oplus B$ for some subgroup B. Note that $2D^\ast = 0$, hence $2A = 2B$.
Now take the normal subgroups U_i, V_i defined in Section 3. Since U_i/V_i is elementary abelian of order 2^4, another application of Lemma 4.1 yields that U_i^*/V_i^* has exponent 2, i.e. $2U_i^* \subseteq V_i^*$. We also have $2U_i^* \subseteq 2A = 2B$.

Consider the embedding ψ of $\mathcal{N}(G/D) \cong \mathcal{N}(Z_4^2)$ into $\mathcal{N}(A/D^*)$ induced by ι. Applying Corollary 4.2 we get that $2\psi(U_iD/D) = \psi(2(U_iD/D))$. But we have $V_iD = U_i^2D$ in G, so $2(U_iD/D) = V_iD/D$. Thus, $(D^* + V_i^*)/D^* = \psi(V_iD/D) = 2((D^* + U_i^*)/D^*)$, hence

$$D^* + V_i^* = D^* + 2U_i^*.$$ From $A = D^* \oplus B$ we get for every $C \supseteq D^*$ that $C = D^* \oplus (B \cap C)$. The mapping $\iota: (B \cap C)$ is a lattice isomorphism $\mathcal{N}(A/D^*) \rightarrow \mathcal{N}(B)$. Denote by $\psi: \mathcal{N}(G/D) \rightarrow \mathcal{N}(B)$ the embedding obtained from ψ by composing it with this isomorphism. Applying Corollary 4.2 again we get that $\psi'(2(G/D)) = 2\psi'(G/D)$. We have seen that $2(G/D) = Z/D$, so from $\psi'(G/D) = B$ we obtain that $\psi'(Z/D) = 2B$. On the other hand, $\psi'(Z/D) = Z^* \cap B$. Therefore we get that

$$Z^* = D^* \oplus 2B.$$ Notice that we do not claim that $2B$ or $2U_i^*$ corresponds to any normal subgroup of G.

We will show that

$$V_i^* = (D^* \cap V_i^*) \oplus (2B \cap V_i^*)$$

holds for each $1 \leq i \leq 7$. Let us denote the right-hand side of the equation by W_i. We obviously have $V_i^* \supseteq W_i$. We take intersection and sum of both V_i^* and W_i with D^*. The equation

$$D^* \cap W_i = D^* \cap V_i^*$$

is trivial. On the other hand, we have

$$D^* + W_i = D^* \oplus (2B \cap V_i^*) \supseteq D^* \oplus 2U_i^* = D^* + V_i^*.$$ By modularity, we infer that $V_i^* = W_i$, indeed.

We will reach the contradiction by showing that no such subgroup K exists for which $Z^* = D^* \oplus K$ and $V_i^* = (D^* \cap V_i^*) \oplus (K \cap V_i^*)$ for all $1 \leq i \leq 7$ hold. Using the basis $[a, b], [a, c], [b, c], a^2, b^2, c^2$ of Z, Lemma 4.1 provides a decomposition $Z^* \cong X^6$ such that we have
From the direct decomposition that 2 proves our theorem. The latter condition means $t \neq 0$.

Now $D^* \cap V_1^* = \{(x, y, 0, 0, 0) \mid x, y \in X\}$, hence $V_1^* = (D^* \cap V_1^*) \oplus (K \cap V_1^*)$ implies that

$$V_1^* \cap K = \{(\alpha_1 t, \alpha_2 t, 0, 0, 0) \mid t \in X\}$$

for suitable maps α_1, α_2 from X to X. It is easy to check that in fact α_1 and α_2 are endomorphisms of X. Similarly,

$$V_2^* \cap K = \{(\alpha_2 t, 0, 0, 0, 0) \mid t \in X\},$$

$$V_3^* \cap K = \{(0, \alpha_3 t, 0, 0, 0) \mid t \in X\}.$$

Hence we have

$$K \supseteq \{ (\alpha_1 r + \alpha_2 s, \alpha_1 r + \alpha_3 s, \alpha_2 r + \alpha_3 s, r, s, t) \mid r, s, t \in X \}.$$

From $Z^* = D^* \oplus K$ it follows that we have equality here. Then

$$V_4^* \cap K = \{((\alpha_1 + \alpha_2) r, \alpha_1 r, \alpha_2 r, r, 0) \mid r \in X, \alpha_1 r = \alpha_2 r\}.$$

From the direct decomposition $V_4^* = (D^* \cap V_4^*) \oplus (K \cap V_4^*)$ we infer that $\alpha_1 r = \alpha_2 r$ holds for every $r \in X$, i.e. $\alpha_1 = \alpha_2$. Similarly, calculating $V_5^* \cap K$ and $V_6^* \cap K$ we obtain $\alpha_1 = \alpha_3$ and $\alpha_2 = \alpha_3$. Finally, using that $2X = 0$ we get

$$V_7^* \cap K = \{((\alpha_1 + \alpha_2) t, (\alpha_1 + \alpha_2) t, (\alpha_2 + \alpha_3) t, t, t) \mid t \in X, \alpha_1 + \alpha_2 + \alpha_3 = 0\}.$$

The latter condition means $t = 0$, so $V_7^* \cap K = \{0\}$, a contradiction. This proves our theorem.

REFERENCES

EÖTVÖS UNIVERSITY
DEPARTMENT OF ALGEBRA AND NUMBER THEORY
BUDAPEST
HUNGARY
Email: ewkiss@cs.elte.hu

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST
HUNGARY
Email: ppp@math-inst.hu