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SOME NOTEWORTHY PROPERTIES OF ZERO DIVISORS
IN INFINITE RINGS II

HOWARD E. BELL* and ABRAHAM A. KLEIN

In [3] we have considered four subsets of zero divisors of an in¢nite ring R
which is not a domain: D � D�R� ^ the set of all zero divisors; T � T�R� ^
the set of two-sided zero divisors; S � S�R� ^ the set of zero divisors with
nonzero two-sided annihilator; and N � N�R� ^ the set of nilpotent ele-
ments. Our main interest was in the sets SnN;TnS and DnT . We have seen
that these sets are power closed and root closed, where a subset of a ring is
said to be root closed if whenever it contains a positive power of an element,
it also contains the element itself. The main results of [3] were: If S 6� N then
SnN is in¢nite; and if N is in¢nite, then each of the sets TnS and DnT is
in¢nite provided it is nonempty. We have also constructed examples showing
that among the eight formal conditions obtainable by choosing sequences of
equalities and proper inclusions in D � T � S � N, all except perhaps
D 6� T 6� S � N can be satis¢ed. In the present paper we construct a ring
satisfying D 6� T 6� S � N. The main results of the paper refer to a ¢fth set
of zero divisors which is located between S and N. We ¢rst consider the
subset of S of elements for which the left and right annihilator coincide, and
we denote this set by S1. For example, all zero divisors belonging to the
center are in S1. The set S1 need not contain N, so we prefer to consider the
set of elements radical over S1; and we denote it by W . We clearly have
S �W � N. We prove that W is in¢nite, and if W 6� N, then WnN is in-
¢nite. If S 6�W , then SnW may be ¢nite; but it is in¢nite when N is in¢nite
or when R has 1. As regards S1, we prove that it is in¢nite when N is ¢nite;
and if R has 1 and S1nN is nonempty, then S1nN is in¢nite.
We close the paper with the result that S has the same cardinal number as

R. This improves the similar result for T which was proved by Lanski [4].
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1. A ring with D 6� T 6� S � N:

We ¢rst construct a ring with 1 for which D � T 6� S � N. We start with the
ring of integral polynomials Z�t� and its subring (ideal) P � tZ�t�. Let V be
the zero ring on the additive group of P. Consider V as a P-module (left and
right) under the multiplication of elements of P. Let

R � P V
V 0

� �
with the obvious multiplication. We have D � T 6� S � N as in Example 5
of [3]. In that example, the property D � T 6� S � N is lost when 1 is ad-
joined, but here this property is preserved. Indeed, if R1 denotes the ring
obtained from R by adjoining 1, then the elements of R1nR are easily seen to
be regular in R1 and therefore the sets D;T ;S;N remain unchanged. Note
that the same idea may be used to construct rings with 1 satisfying the other
conditions considered in [3].
The desired example is the ring Q � R1�x;�� of skew left polynomials in x,

where xa � ��a�x for a 2 R1 and � is the endomorphism of R1 sending 1 to 1

and p v0

v 0

� �
to p v0

0 0

� �
. We proceed to show that D�Q� 6� T�Q� 6�

S�Q� �N�Q�.
We shall use the same notation for annihilators as in [3]. Let J � 0 0

V 0

� �
and J 0 � 0 V

0 0

� �
, and note that J � ker�. We have x 2 D�Q�nT�Q�, since

A`�x� � 0 and Ar�x� � J. If a 2 T�R�nN�R�, then we clearly have
A`�a� � J 0�x;�� and Ar�a� � J�x;��, so a 2 T�Q�nS�Q�, since J \ J 0 � f0g. It
remains to show that S�Q� � N�Q�.
Any f �x� 2 Q has a unique decomposition f �x� � f0�x� � f1�x� with

f0�x� 2 R�x;�� and f1�x� 2 Z�x�. If g�x� 2 Q, then �fg�1�x� � f1�x�g1�x�, so
�f n�1�x� � �f1�x��n; therefore, if f �x� 2 N�Q�, then f1�x� � 0. Thus if

f �x� 2 N�Q�, we may identify f �x� � �
pi v0i
vi 0

� �
xi with �pixi �v0ix

i

�vixi 0

� �
. The

�1; 1�-entry of f n�x� is ��pixi�n; and since f �x� is nilpotent, we have

�pixi � 0, so that pi � 0 for all i. Thus f �x� is a polynomial with coe¤cients
in N�R�; and since the square of any such polynomial is 0, we can conclude
that N�Q� � N�R��x;��.
To prove S�Q� � N�Q�, we take f �x� 2 T�Q�nN�Q� and show that

A`�f �x�� � J 0�x;�� and Ar�f �x�� � J�x;��, so that f �x� =2S�Q�. Our argument
will make use of the following lemma:
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Lemma 1. If f �x�; g�x� 2 Qnf0g and g�x�f �x� � 0, then either f1�x� � 0 or
A`

ÿ
f �x�� � 0.

Proof. Assume f1�x� � �mixi 6� 0, and let g�x�f �x� � 0 with g�x� �
g0�x�� g1�x�, g0�x� 2 R�x;��, g1�x� 2 Z�x�. Then g1�x�f1�x� � 0, so g1�x� � 0

and g�x� � �
bj w0j
wj 0

� �
xj. We have

0 � g�x�f �x� �
b0 w00
w0 0

� �
�

ai �mi v0i
vi mi

� �
xi � �j�1

bj w0j
wj 0

� �
xj�

ai �mi v0i
vi mi

� �
xi ;

and since for j � 1 xj
ai v0i
vi 0

� �
� ai v0i

0 0

� �
xj � xj

ai v0i
0 0

� �
, we obtain

0 � b0 w00
w0 0

� �
��ai �mi�xi �v0ix

i

�vixi �mixi

� �

�
�j�1bjxj �j�1w0jx

j

�j�1wjxj 0

" #
��ai �mi�xi �v0ix

i

0 �mixi

� �
:

The �1; 1�-entry is �bjxj��ai �mi�xi � 0; and since ��ai �mi�xi 6� 0, we get
bj � 0 for all j. In a similar way, considering the �2; 1�-entry, we get wj � 0
for all j, hence w0j � 0 for all j since �mixi 6� 0. Thus, A`

ÿ
f �x�� � 0; and the

lemma is established.
Returning to our main argument, let f �x� 2 T�Q�nN�Q�; and note that by

Lemma 1, f1�x� � 0. Let g�x� 2 Ar
ÿ
f �x��. Since 0 6� f �x� 2 A`

ÿ
g�x��, Lemma

1 gives g1�x� � 0; therefore,

0 � f �x�g�x� � a0 v00
v0 0

� �
�bjxj �w0jx

j

�wjxj 0

" #

� �i�1aixi �i�1v0ix
i

�i�1vixi 0

� �
�bjxj �w0jx

j

0 0

� �
:

Then �aixi�bjxj � 0; but �aixi 6� 0 since f �x� =2N�Q�, so bj � 0 for all j. Si-
milarly we get w0j � 0 for all j, so g�x� 2 J�x;�� and therefore
Ar�f �x�� � J�x;��.
Now consider g�x� 2 A`�f �x��, g0�x� � �

bj w0j
wj 0

� �
xj, g1�x� � �njxj. Cal-

culating the product g�x�f �x�, we obtain ��bj � nj�xj�aixi � 0, so
��bj � nj�xj � 0 and bj � 0, nj � 0 for all j. Similarly we get wj � 0 for all j,
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so g�x� 2 J 0�x;�� and therefore A`�f �x�� � J 0�x;��. Thus S�Q� � N�Q�, hence
for the ring Q we have D 6� T 6� S � N.

2. The sets S1 and W .

Consider the following set of zero divisors:

S1 � fa 2 S j A`�a� � Ar�a�g:
For a 2 S1, A�a� � A`�a� � Ar�a� is a nonzero ideal, so S1 � f0g if the ring is
prime. It is easy to show that S1 is power closed, however S1 is not in general
root closed. For example, if R is a prime ring which is not a domain, R has
nonzero nilpotent elements but S1 � f0g.
Given a subset V of a ring R, one may de¢ne its root closure by

V � fa 2 R j an 2 V for some n � 1g:
Clearly V is root closed, it contains V , and it is the minimal root closed
subset of R containing V . Moreover, if V is power closed, then V is power
closed. Note that N � f0g.
Now let W � S1. Since S is root closed and S � S1 � f0g, we have

S �W � N; and W � N if and only if S1 � N. We may have S
�
6�W

�
6� N ^

for example in R �M2�Q� � Z6, where �e11; 0� 2 SnW and �0; 1� 2WnN. In
any ring, W is power closed, since S1 is power closed.
Recall that we consider only in¢nite rings with D 6� f0g. As mentioned in

[3], S is in¢nite, and this result is improved as follows.

Theorem 1. If R is any in¢nite ring with D 6� f0g, then W is in¢nite.

Proof. If N is in¢nite, we are done, since W � N. Let N be ¢nite and R
semiprime. Then, by [2, Cor. 5], R � R1 � R2 where R1 is reduced and R2 is
¢nite; and clearly R1 is in¢nite. If R2 6� f0g, then S1 � R1; and if R2 � f0g,
then S1 � D. Thus S1 is in¢nite and so is W .
Now assume N is ¢nite and the prime radical p�R� is nonzero, and let

R � R=p�R�. Then, again by [2, Cor. 5], R is a direct sum of a reduced ring
and a ¢nite ring; and we denote their inverse images in R by R1 and R2 re-
spectively. We have R � R1 � R2, and R1 has ¢nite index in R, since R1 has
¢nite index in R. By [3, Lemma 1], A � A�p�R�� is an ideal ofR of ¢nite in-
dex, since p�R� is a ¢nite ideal. It follows that A1 � A \ R1 has ¢nite index,
so A1 is in¢nite; and we proceed to prove that A1 �W .
For any two elements u; v of a reduced ring, it is easy to see that if one of

the products uv, vu, u2v, vu2 is 0, so are all others. Since R1 is reduced and
R � R1 � R2, we get for x 2 R1, y 2 R the result that if one of the products
x y,y x, x2y, y x2 is 0, so are all others; otherwise put, if one of the products
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xy; yx; x2y; yx2 is in p�R�, so are all others. It follows for x 2 A1, y 2 R that
x2y � 0 implies yx 2 p�R�, hence yx2 � 0; and similarly yx2 � 0 implies
x2y � 0. We have shown that A`�x2� � Ar�x2�,so x2 2 S1 and x 2W . Thus
A1 �W , as we wished to prove.

Corollary. If R is an in¢nite ring with D 6� f0g and N ¢nite, then S1 is
in¢nite.

Proof. The case when R is semiprime is considered at the beginning of
the proof of Theorem 1.
If R is not semiprime, we have seen in the proof of Theorem 1 that x2 2 S1

if x 2 A1. Now A1 is an in¢nite subring of R1, so A1 is an in¢nite reduced
ring. Assuming S1 is ¢nite, we have that fx2 j x 2 A1g is ¢nite, so
fx2 j x 2 A1g is ¢nite. But by [1, Th. 4.1] it follows that A1 is ¢nite -- a con-
tradiction.

3. The sets WnN and S1nN.

Since N;W ;S are power closed and root closed, so are WnN and SnW .
From now on, the results will be stated without saying that it is assumed

that R is in¢nite and D 6� f0g. The center of R is denoted by Z.

Lemma 2. If e 2W is an idempotent, then e 2 Z.
Proof. We have e � e2 � � � �, so e 2 S1 and A`�e� � Ar�e�. Since

e�xeÿ exe� � 0 and �exÿ exe�e � 0, we obtain xeÿ exe � 0 and
exÿ exe � 0, so xe � ex.

Theorem 2. If WnN is nonempty, then it is in¢nite.

Proof. If N is ¢nite, the result follows by Theorem 1.
Let N be in¢nite and a 2WnN. Then am 2WnN for any m � 1, so if a has

in¢nitely many distinct powers, we are done. Otherwise some power of a is a
nonzero idempotent e, and e 2 Z by Lemma 2.
Now ne 2 Z for any integer n, hence ne 2W ; thus, if e has in¢nite additive

order, we are done. Assume ke � 0 for some k > 1. Since N is in¢nite, there
are in¢nitely many elements squaring to 0 [2, Th. 6]; and for each such ele-
ment u, �e� u�k � e� keu � e. Therefore the in¢nite set fe� u j u2 � 0g is
contained in WnN.

Theorem 3. If R has 1 and S1nN is nonempty, then S1nN is in¢nite.

Proof. When N is ¢nite, the result follows from the corollary in the pre-
vious section. When N is in¢nite we follow the arguments given in the proof
of Theorem 2, starting with a 2 S1nN and obtaining an idempotent e 2 S1nN
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with ke � 0 for some k > 1. By [2, Th. 6] R has an in¢nite zero subring U ,
and either eU or �1ÿ e�U is in¢nite. Since R has 1, 1ÿ e is an idempotent
belonging to S1nN, so we may assume without loss that eU is in¢nite. For
u 2 U we have �e� eu�k � e, so e� eu =2N and A`�e� eu� � A`�e�. Similarly
Ar�e� eu� � Ar�e�, so e� eu 2 S1 since e 2 S1. Thus S1nN contains the in-
¢nite set e� eU .

4. The set SnW .

We start with an example showing that SnW may be ¢nite and nonempty.
Let Zp be the ¢eld of p elements, let Cp be the zero ring on the cyclic group

of order p with generator u, and let J be an in¢nite domain. Let
R � Zp � Cp � J with addition as in Zp � Cp � J and multiplication de-
termined by eu � u, ue � 0, eJ � Je � 0 and uJ � Ju � 0. This gives a ring
structure on R. We have D � R since uR � 0; and T � S �
�Zp � Cp� [ �Cp � J�. Now if 0 6� a 2 J, then A`�a� � Ar�a� � Zp � Cp, so
J � S1 �W ; and since C2

p � 0 we have Cp � J �W , and it follows easily
that Cp � J �W . Thus SnW � �Zpnf0g� � Cp is ¢nite and nonempty.
In the previous example, N is ¢nite. We now proceed to consider SnW

when N is in¢nite. We start with a simple result, which holds in arbitrary
rings.

Lemma 3. (1) Let e be a noncentral idempotent. Then either there is an ele-
ment v 6� 0 satisfying ev � v, ve � v2 � 0, or there is an element u 6� 0 satisfy-
ing ue � u,eu � u2 � 0.
(2) If for an element v 6� 0 �u 6� 0� there is an element a satisfying

av � v,va � 0 �ua � u; au � 0�, then a 2 DnW.

Proof. (1) Since e =2Z, we have eR�1ÿ e� 6� 0 or �1ÿ e�Re 6� 0. If
eR�1ÿ e� 6� 0, take v 6� 0 in eR�1ÿ e�; otherwise take u 6� 0 in �1ÿ e�Re.
(2) By symmetry it su¤ces to prove the result for v. We have a 2 D since

v 6� 0; and akv � v, vak � 0 for any k � 1, so a =2W .

Theorem 4. If N is in¢nite and SnW is nonempty, then SnW is in¢nite.

Proof. As in the proof of Theorem 2, we may assume there is an idem-
potent e 2 SnW . Then e =2 Z; and applying Lemma 3, we may assume there
is an element v 6� 0 satisfying ev � v, ve � v2 � 0. As in the proof of Theorem
3, we let U be an in¢nite zero subring; and we consider separately the two
cases: (1) eUe in¢nite, (2) eUe ¢nite.
In case (1) eU is in¢nite; and if eu 2 eUnN, u 2 U , then for k � 1,�eu�ku �

0 6� u�eu�k, so eu =2W . Since e 2 S, A�e� 6� 0; and if 0 6� b 2 A�e�, then
b 2 A�eu� when ub � 0 and ub 2 A�eu� when ub 6� 0, so eu 2 SnW . Thus we
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may assume eUnN is ¢nite and therefore eU \N is in¢nite. It follows that
there are in¢nitely many elements of the form e� eue where eu 2 eU \N.
Clearly they are all in S, and we prove that none is in W . We have
v�e� eue�k � 0 for all k � 1. On the other hand, if �e� eue�kv � 0 for some
k, then since e commutes with eue and ev � v, we have

0 � v�
�Xk

i�1

k
i

� �
�eu�i

�
v :���

Since eu 2 N,
Pk
i�1

k
i

ÿ ��eu�i 2 N; and it follows from (�) that v � 0 -- a contra-
diction.
In case (2), if eU and Ue are ¢nite, then each of A`�e� \U and Ar�e� \U

has ¢nite index in �U ;�� and so does A�e� \U , which is therefore in¢nite. It
follows that either v�A�e� \U� is in¢nite or A�e� \U \ Ar�v� is in¢nite. If
v�A�e� \U� is in¢nite, we have in¢nitely many elements of the form e� vu
where u 2 A�e� \U . For each such element v�e� vu� � 0 and �e� vu�v � v,
so e� vu =2W ; moreover, e� vu 2 S, since u 2 A�e� vu�. If A�e� \U \ Ar�v�
is in¢nite, then for any u in this set we have �e� u�v � v and v�e� u� � 0, so
e� u =2W ; and also u 2 A�e� u�, so e� u 2 SnW .
It remains to consider case (2) with eU in¢nite or Ue in¢nite. If eU is in-

¢nite, then eU \ A`�e� is in¢nite, since eUe is ¢nite. For any nonzero element
eu 2 eU \ A`�e�, u 2 U , we have eu�e� eu� � 0 and�e� eu�eu � eu, so
e� eu =2W . If 0 6� b 2 A�e�, then 0 6� bÿ ub 2 A�e� eu�, hence e� eu 2 S.
In a similar way, when Ue is in¢nite, the in¢nite set e�Ue \ Ar�e� is con-
tained in SnW . This completes the proof of Theorem 4.

We have seen that SnW may be nonempty and ¢nite. However, we have

Theorem 5. If R has 1 and S 6�W, then SnW is in¢nite.

Proof. We may assume N is ¢nite and, as in the proof of Theorem 4, let e
be an idempotent in SnW and v a nonzero element satisfying ev � v,
ve � v2 � 0. Using the notation as in the proof of Theorem 1, we have
R � R=p�R� � R1 � R2, where R1 is in¢nite and reduced and R2 is ¢nite.
For x 2 R write x � x1 � x2,xi 2 Ri. Letting e � e1 � e2, we observe that e1 is
a central idempotent in R1 and �e; x� � �e2; x2�; and since p�R� and R2 are
¢nite, we see that there are only ¢nitely many commutators of the form
exÿ xe, x 2 R. Therefore C � CR�e� is of ¢nite index in R, hence in¢nite.
Assume eC is in¢nite. We have eCv � N, so eCv is ¢nite, and hence

eC \ A`�v� is in¢nite. For any u 2 eC \ A`�v�, �e� u�v � v and v�e� u� � 0,
so e� u =2W ; and since u 2 eC and C commutes with e, we see that
A�e� � A�e� u�, so e� u 2 SnW .
If eC is ¢nite, then �1ÿ e�C is in¢nite; also, 1ÿ e is an idempotent not in
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W and �1ÿ e�v � 0, v�1ÿ e� � v. Thus we may replace e by 1ÿ e and pro-
ceed as above.

If DnW is nonempty, then at least one of the sets SnW , TnS, DnT is
nonempty; hence by Theorem 4 and [3, Th. 4, Th. 5], if N is in¢nite, then
DnW is in¢nite. This conclusion may be established directly without assum-
ing that N is in¢nite.

Theorem 6. If DnW is nonempty, then it is in¢nite.

Proof. As before, we may assume there is an idempotent e in DnW and
an element v 6� 0 satisfying ev � v, ve � v2 � 0.
Let K be the kernel of the map a 7! vav from R onto vRv; and note that

vRv, Kv, vK � A�v�. Thus, if one of vRv, Kv, vK is in¢nite, then A�v� is in-
¢nite. On the other hand, if all three are ¢nite, then K is in¢nite and
K \ A`�v� and K \ Ar�v� have ¢nite index in K , in which case K \ A�v� has
¢nite index in K. Thus, in any event A�v� is in¢nite.
Now for u 2 A�v� we have �e� u�v � v and v�e� u� � 0, so the in¢nite set

e� A�v� is contained in DnW .

Note that the example given at the beginning of this section shows that in
the above theorem D cannot be replaced by T .
We close the paper by improving a result of Lanski [4, Th. 6], which states

that the cardinal number of T equals that of R. Our result is:

Theorem 7. Card�S� � Card�R�.
Proof. Simply repeat Lanski's proof with T replaced by S. For the con-

venience of the reader it is suggested to replace S;W appearing in Lanski's
proof by N;K respectively.
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