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BANACH SUBSPACES OF SPACES OF HOLOMORPHIC
FUNCTIONS AND RELATED TOPICS

VEROè NICA DIMANT AND SEAè N DINEEN

½1. Introduction.

Our initial interest in thê e topics discussed in this article was motivated by a
desire to extend to homogeneous polynomials the following result of Dimant
and Zalduendo [13];

(1.1) if the Banach space E has a shrinking unconditional Schauder basis
then c0 6,!l�nE� if and only if the monomials, with the square ordering, form a
basis for l�nE� (l�nE� is the space of continuous n-linear forms on E).
This is one of many results (see the references quoted in ½4 and ½5) which

have appeared in recent years dealing with the linear and geometric proper-
ties of the space of n-linear forms and homogeneous polynomials on a Ba-
nach space. The approach in many of these papers has followed the classical
methods of functional analysis. Indeed, following this approach and using
results in [9] and [10] yields, fairly rapidly, a generalization of (1.1) to poly-
nomials on stable Banach spaces (a Banach space is stable if E � E � E).
However, a recent result of D|̈az [11] indicates that the same approach is not
suitable for non-stable Banach spaces. Our approach was more function
theoretic, in that we treated polynomials as functions on a set rather than as
points in a Banach space. This broadened the scope of our investigation, led
to a closer examination of each of the concepts involved in (1.1), yielded re-
sults which uni¢ed those of previous authors and, at the same time, revealed
the natural setting for certain constructions.
We extended our investigation of the condition ``c0 6,! p�nE�'' to

``c0 6,!h�u�''. This prompted a look at the general question of lifting re-
sults from spaces of homogeneous polynomials to spaces of holomorphic
functions. Since this topic has only been brie£y touched upon in the litera-
ture we discuss it in ½2. In ½3 we return and solve the lifting problem asso-
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ciated with ``c0 6,!h�u�''. To illustrate the results in ½3 we looked at the
monomial basis with the square order. Our function theoretic approach un-
covered ¢nite dimensional decompositions as a more natural object of study
and we discuss these in ½4. In this section we also considered the following
result of Alencar [1] which may be readily compared with (1.1);

(1.2) if E is a re£exive Banach space with a Schauder basis then p�nE� is
re£exive if and only if the monomials, with the square order, are a Schauder
basis for p�nE� (p�nE� is the space of continuous n-homogeneous polynomials
on E).

We generalise and obtain an independent proof of this result. Finally, on
comparing once more (1.1) and (1.2) we found that we can bridge the gap
between the conditions of non-containment of c0 and re£exivity, by means of
an unconditionality hypothesis on the Schauder basis. This is discussed in ½5.
We refer to [12, 24] for Banach space theory and to [14, 16] for in¢nite di-
mensional holomorphy.

½2. Lifting results from homogeneous polynomials to holomorphic functions.

In this section we discuss the general problem of lifting results from spaces
of homogeneous polynomials to spaces of holomorphic functions on ba-
lanced domains. Spaces of homogeneous polynomials normally lie within a
more manageable collection than the corresponding space of holomorphic
functions. For instance, the space of C-valued continuous n-homogeneous
polynomials on a Banach space E, p�nE�, endowed with the strong topol-
ogy, is a Banach space, while the space of C-valued holomorphic functions
on E, h�E�, endowed with any of its natural topologies is never a Banach
space and, indeed, only a Fr�echet space when E is ¢nite dimensional (and in
this case it is even a Freè chet-nuclear space). Results for h�E� which only
require the result for some subspace of h�E� are often immediate from the
polynomial results but results which depend on all subspaces of h�E� gen-
erally require further analysis.
For example, if `1 ,!p�nE� for some positive integer n then we see im-

mediately that `1 ,!�h�E�; �!�, while p�nE� re£exive for all n implies
�h�E�; �!� is re£exive if E is separable and has the approximation property
but this latter result on re£exivity is not at all immediate ([14]). Another
non- trivial example is given in [3] where it is shown, for E Fr�echet-Montel,
that �0 � �! onh�E� if and only if �0 � �! on p�nE� for all n.
In this article we consider collections of holomorphic functions on a ba-

lanced domain in a Banach space. In this case the space of holomorphic
functions has a Schauder decomposition into a sequence of Banach spaces,
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e.g. �h�E�; �!� has f�p�nE�; k � k�g1n�0 as a Schauder decomposition. This
decomposition identi¢es a sequence of ``priviliged� Banach subspaces of
�h�E�; �!�. Finite sums, quotients, subspaces and the range by linear iso-
morphisms (of �h�E�; �!�) of p�nE� yield further Banach subspaces of
�h�E�; �!�. Are these ``essentially� all the Banach subspaces of �h�E�; �!�?
A slightly less general and more precise way of looking at this is as follows:
Let �T� denote a certain property of Banach spaces (e.g. re£exivity, weak

sequential compactness, the Dunford-Pettis property). If �p�nE�; k � k� has
�T� for all n, does every Banach subspace of �h�E�; �!� have property �T�?
Another variation of this question can be posed in the following way: if F

is a Banach subspace of �h�E�; �!� and �xj�j is a basic sequence in F , does
there exists a subsequence �yj�j of �xj�j, and a positive integer n such that
�yj�j is equivalent to a basic sequence in �p�nE�; k � k�?
The same problems can clearly be posed for di¡erent topologies and other

spaces of holomorphic functions and it is also obvious how the same ques-
tions may be phrased for s-absolute decompositions. We now give two ex-
amples which show that the general problems outlined above are reasonable.

Example 1. Let E denote a Banach space and let �nj�j denote a strictly
increasing sequence of positive integers. For each j let Pj denote a non-zero
element of p�njE�. Let F denote the closed subspace of �h�E�; �!� generated
by �Pj�j . Taylor series expansions at the origin show easily that �Pj�j is a
basis for F . Hence if f 2 F then f �P1j�0 �jPj for some sequence of scalars
��j�j.
Now the �! topology onh�E� is generated by the seminorms

p�f � �
X1
n�0

bdnf �0�
n!



K��nB

for f �P1n�0 bdnf �0�n! 2h�E�, where B is the open unit ball of E, K is a com-
pact subset of E and ��n�n 2 c0.
Hence

p
X1
j�0

�jPj

 !
�
X1
j�0
j�jj kPjkK��nj B

and �Pj�j is an absolute basis for F with weights �kPjkK��nj B�j where K is
compact in E and ��nj �j 2 c0. In particular, we see that
�kPjk2K�2�nj B�j � �2

njkPjkK��nj B�j is also a weight and, since
P

j
1
2nj <1, the

Grothendieck-Pietsch criterion implies that F is a nuclear subspace of
�h�E�; �!�. The nuclear space F , which is generated by homogeneous poly-
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nomials all of di¡erent degrees, may be regarded as the extreme example of a
space not contained in p�nE� for any n.
Example 2. Let �Pm�1m�n�1 denote a basic sequence of unit vectors in

p�nE�, n a positive integer and let �Qm�1m�n�1 denote a sequence of con-
tinuous polynomials, Qm being m-homogeneous. We suppose
kQmk1=mB ÿÿÿÿ!m!1 0, where B is the unit ball of E. Let F denote the (Banach)
subspace of p�nE� generated by �Pm�1m�n�1 and let G denote the closed sub-
space of �h�E�; �!� generated by �Pm �Qm�1m�n�1. We claim that F and G
are isomorphic as locally convex spaces and hence G is also a Banach sub-
space of �h�E�; �!�.

If f �
X1
j�0

bdjf �0�
j!
2 G then it is easily seen that

bdjf �0�
j!
�

0 if j < nX1
m�n�1

�mPm if j � n

�jQj if j > n:

8>>>><>>>>:
Since the mapping f 2 �h�E�; �!�7!

bdnf �0�
n!

2 �p�nE�; k � k� is continuous it
follows that the mapping

J :�
X1

m�n�1
�m�Pm �Qm� 2 G 7ÿ!

X1
m�n�1

�mPm 2 F

is continuous. It is also immediate that J is a bijection.
Let

Rj :�
X1

m�n�1
� j
mPm 2 Fÿ!0 as j !1:

Since �Pm�m is a basic sequence of unit vectors in a Banach space it follows
that

sup
m;j
j�jmj <1�2:1�

and

�jmÿÿÿÿ!j!1 0 8m > n:�2:2�

Hence supj;m k�jmQmkrB <1 for all r > 0 and, by (2.1),
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Jÿ1�Rj� �
X1

m�n�1
�jmPm �

X1
m�n�1

�jmQm

( )
j

is a bounded sequence in �h�E�; �!�.
Since a bounded sequence �fj�j in �h�E�; �!� is a null sequence if and only

if
bdkfj�0�

k! is a null sequence in p�kE� for all k [14, lemma 3.28], it follows, by
(2.2), that �Jÿ1�Rj��j is a null sequence in �h�E�; �!�. Hence Jÿ1 is con-
tinuous and J is a linear isomorphism from G onto F and G is a Banach
subspace of �h�E�; �!�.
The Banach space G is not one of the ``essential'' Banach spaces we men-

tioned earlier but was obtained by perturbing an essential Banach space. In
this case what might be deemed the nuclear perturbation was absorbed into
the more dominant Banach space structure to produce a Banach space. More
re¢ned examples of this type may suggest ways of constructing Banach
spaces which are not essential or at least point to the middle zone between
nuclear and Banach spaces where counterexamples might lie.

½3. Function Spaces containing c0.

In this section we give a positive solution to the lifting problem for the
property ``containment of c0''. In order to obtain the same result for di¡er-
ent spaces and topologies, e.g. holomorphic germs and holomorphic func-
tions of bounded type, we prove an abstract result using s-absolute de-
compositions. Let s � f��n�n : �n 2 C and lim sup

n!1
j�nj1=n � 1g.

Definition 3. A decomposition fEngn of a locally convex space E is an
s-absolute decomposition if
(a) for each ��n�n 2 s and each x �P1n�1 xn 2 E, xn 2 En 8n, we have

that
P1

n�1 �nxn 2 E.
(b) if p is a continuous semi-norm on E and ��n�n 2 s, then the semi-

norm

q
X1
n�1

xn

 !
:�
X1
n�1
j�njp�xn�; for x �

X1
n�1

xn 2 E; xn 2 En 8n

is continuous.

Theorem 4. Let fEngn denote an s-absolute decomposition of the locally
convex space E and suppose each En is a Banach space. If the sequence
fxm �

P1
n�1 xn;mg1m�1, where xn;m 2 En 8n;m, is equivalent to the unit vector

basis of c0, then for each integer n either
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(a) �xn;m�1m�1 is a null sequence in En, or
(b) there exists a strictly increasing sequence of positive integers �mj�j such

that the sequence �xn;m2j�1 ÿ xn;m2j �j is equivalent to the unit vector basis of c0.
Moreover, (b) occurs for some positive integer n and hence c0 ,!E if and

only if there exists a positive integer n such that c0 ,!En.

Proof. Fix a positive integer n and let k � kn denote the norm on the Ba-
nach space En. Let k

P1
m�1 �mxmk0 � supm j�mj.

By our hypothesis there exists C :� C�n� such that for any sequence of
scalars ��m�m and any positive integer k

Xk
m�1

�mxn;m



n

� C
Xk
m�1

�mxm



0

� C sup
m�k
j�mj:�3:1�

This implies in particular that �xn;m�1m�1 is a bounded sequence in
�En; k � kn�.
We ¢rst claim that �xn;m�1m�1 does not contain a subsequence �xn;mj �1j�1

equivalent to the unit vector basis of `1. Otherwise, there would exist C1 > 0
such that

C1

Xk
j�1
j�jj �

Xk
j�1

�jxn;mj



n

for any sequence of scalars ��j�j and any positive integer k. This contradicts
(3.1) for large k and establishes our claim.
By Rosenthal's `1 theorem [12, p. 201] or [24, p. 99] it follows that every

subsequence of �xn;m�1m�1 contains a weak Cauchy subsequence. Let �xn;mi�1i�1
denote a weak Cauchy subsequence of �xn;m�1m�1. We suppose that �xn;mi�1i�1
is not a norm Cauchy sequence. By taking a subsequence, if necessary, we
may suppose that there exists � > 0 such that

kxn;m2i�1 ÿ xn;m2ikn � � for all i:

Since �xn;mi�1i�1 is a weak Cauchy sequence it follows that �xn;m2i�1 ÿ xn;m2i�i
is a weakly null sequence and by the Bessaga-Pelczynski selection principle
[12, p.42] or [24, p.7] we may suppose, again by taking a subsequence, that it
is a basic sequence in En. For any sequence of scalars, ��i�i, and any positive
integer k we have by (3.1)

Xk
i�1

�i�xn;m2i�1 ÿ xn;m2i�



n

� C sup
i�k
j�ij:

Hence �xn;m2i�1 ÿ xn;m2i�i is equivalent to the unit vector basis of c0 and (b)
is satis¢ed by the sequence �xn;mi�1i�1.
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The remaining case is when every subsequence of �xn;m�1m�1 contains a
norm Cauchy subsequence. By choosing a subsequence if necessary we may
suppose that there exists x 2 En such that

kxn;m ÿ xkn � 1=2m for all m

By (3.1),

C �
Xk
m�1

xn;m



n

� kkxkn ÿ
Xk
m�1

1
2m

for all k. This implies x � 0. Hence every subsequence of �xn;m�1m�1 contains
a norm null subsequence and we conclude that �xn;m�1m�1 is a null sequence in
En. This shows that the sequence �xn;m�1m�1 satis¢es (a) and we conclude that
�xn;m�1m�1 always satis¢es either (a) or (b).
We now suppose that (a) is satis¢ed by �xn;m�1m�1 for all n. Since �xm�1m�1 is

a bounded sequence in E, lemma 3.28 of [14] implies that �xm�1m�1 is a null
sequence in E. However, �xm�1m�1 is equivalent to the unit vector basis of c0
and this is impossible. Hence condition (b) is satis¢ed by some n. This com-
pletes the proof.

Corollary 5. If E is a Banach space then �p�nE�; k � k� contains c0 for
some positive integer n if and only if the locally convex space �h; �� contains
c0, where �h; �� is any one of the following:
(1) h �h�u�, u balanced open in E, � � �! or ��,
(2) h �h�K�, K compact balanced in E and h�K� the space of holo-

morphic germs on K, � � �!,
(3) h �hb�u�, u balanced open in E, andhb�u� the subspace ofh�u�

consisting of functions which are bounded on the bounded subsets of u which lie
strictly inside u and � the topology of uniform convergence on such sets.

Proof. For each of the spaces �h; �� the sequence f�p�nE�; k � k�g1n�0 is
an s-absolute decomposition [14, chapter 3] and it su¤ces to apply theorem
4.

Further examples of a similar kind can also be found by considering
compact polynomials, weakly sequentially continuous polynomials, etc. It
su¤ces to verify that lemma 3.28 of [14] applies in each particular case.

Since �h�u�; �!� is not known to be a dual space the following corollary is
also of interest.

Corollary 6. If u is a balanced open subset of a Banach space then
c0 ,!�h�u�; �!� if and only if `1 ,!�h�u�; �!�.
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Proof. If c0 ,!�h�u�; �!� then corollary 5 implies that there exists a
positive integer n such that c0 ,!�p�nE�; k � k�. Since �p�nE�; k � k� is a dual
Banach space it follows that `1 ,!�p�nE�; k � k� ,!�h�u�; �!�. Since
c0 ,! `1 the converse is obvious and this completes the proof.

Example 7. (a) ([2]) If T is Tsirelson's space ([24, p. 95]) then
�p�nT 0�; k � k� is re£exive for all n hence c0 6,!�h�u�; �!� for any balanced
open subset u of T 0.
(b) By [4] (see also [5, example 7]), �p�nc0�; k � k� is a separable dual space

for any positive integer n and hence does not contain c0. By theorem 4,
�h�u�; �!� does not contain c0 for any balanced open subset u of c0.
(c) Let T 0J denote the James space modeled on the space T 0 of (a). By [5,

proposition 15], �p�nT 0J�; k � k� has RNP for any positive integer n. Hence
c0 6,!�h�u�; �!� for any balanced open subset u of T 0J .

½4. Finite Dimensional Decompositions.

We now examine the basis condition mentioned in (1.1) and (1.2). The fol-
lowing simple algebraic example motivated our move from Schauder basis to
¢nite dimensional decompositions. We need the following notation.
If m � �m1; . . . ;mk; 0; . . .� 2 N�N�, we let jmj �Pi mi denote the degree of

m and `�m� � supfi : mi 6� 0g, the length of m. We let m! � m1! . . .mk!.

Example 8. Let P denote an n-homogeneous polynomial on the space of
all ¢nite sequences of complex numbers. Then

P��zi�1i�1� �
X

m2N�N�
jmj�n

amzm; zm � zm1
1 . . . zmk

k ; `�m� � k

�
X1
k�1

X
jmj�n
`�m��k

amzm

8><>:
9>=>;

�
X1
k�1
fP��zi�ki�1� ÿ P��zi�kÿ1i�1 �g

� a�n;0;...�zn1 �
X

n1�n2�n
n2>0

a�n1;n2;0;...�z
n1
1 z

n2
2 � � � �

Note that since all the sequences are eventually zero, all the sums are ¢nite
and there is no di¤culty with convergence.

We now develop this example topologically. We suppose that E is a Ba-
nach space with Schauder decomposition fEjg1j�1. An element P 2 p�nE� is
called a monomial if there exists m � �mi�i 2 N�N� such that for all
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P1
i�1 xi 2 E, xi 2 Ei for all i, and any sequence of scalars ��i�1i�1 we have

P
X1
i�1

�ixi

 !
� �m1

1 . . .�mk
k P

X1
i�1

xi

 !
where k � `�m�. Clearly we must have n � jmj.
We denote by pk�nE� the space generated by

fP 2 p�nE�; P is a monomial of degree m; `�m� � kg:
If P 2 p�nE� and m � �mi�i 2 N�N�, `�m� � k, we let

Pm

X1
i�1

xi

 !
� jmj!

m!

1

�2�i�k
Z
j�1j�1

� � �
Z
j�kj�1

P
Xk
i�1

�ixi

 !
�m1�1
1 . . .�mk�1

k

d�1 . . . d�k:

We have Pm 2 p`�m��nE� and
P�x� �

X
m2N�N�
jmj�n

Pm�x�

for all x in the algebraic span of fEjg1j�1.
If P 2 p�nE� we let

P�k� �
X

m2N�N�
`�m��k

Pm:

Alternatively

P�k�
X1
i�1

xi

 !
� P

Xk
i�1

xi

 !
ÿ P

Xkÿ1
i�1

xi

 !
for all k and all

P1
i�1 xi 2 E.

We let p!�nE� denote the subspace of p�nE� consisting of all polynomials
which are weakly continuous on bounded subsets of E. By [7] this coincides
with the space of all n-homogeneous polynomials which are uniformly
weakly continuous on bounded subsets of E and if E 0 has the approximation
property, and in particular if E 0 has a ¢nite dimensional Schauder decom-
position, then p!�nE� is the closed subspace of p�nE� generated by
f'n : ' 2 E 0g.
If fEjgj is a ¢nite dimensional Schauder decomposition for the Banach

space E then pk�nE� is a ¢nite dimensional space for all k and n and if, in
addition, fEjgj is shrinking then fE 0jgj is a ¢nite dimensional Schauder de-
composition for E 0.
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In our next proposition we shall consider a Banach space with ¢nite di-
mensional decomposition fEjgj. If x 2 E we will write x �P1j�1 xj where
xj 2 Ej for all j and we let �k�

P1
j�1 xj� �

Pk
j�1 xj for any positive integer j.

The sequence ��k�1k�1 is an equicontinuous (or bounded) sequence of linear
mappings and by renorming E (if necessary) we can suppose that
supk k�kk � 1. In such a case we say that the decomposition is monotone.
We may assume without loss of generality that our decompositions are al-
ways monotone.

Proposition 9. If fEjgj is a shrinking ¢nite dimensional decomposition for
the Banach space E then, for any positive integer n, fpk�nE�g1k�1 is a monotone
¢nite dimensional decomposition for p!�nE�.
Proof. Let �Pk�1k�1 � p�nE� with Pk 2 pk�nE� for all k. SinceXk

i�1
Pi


 � sup

k
P1

j�1 xjk�1

Xk
i�1

Pi

X1
j�1

xj

 !�����
�����

� sup
k
Pk

j�1 xjk�1

Xk
i�1

Pi

Xk
j�1

xj

 !�����
�����

� sup
k
Pk

j�1 xjk�1

Xk�1
i�1

Pi

Xk
j�1

xj

 !�����
�����

� sup
k
P1

j�1 xjk�1

Xk�1
i�1

Pi

X1
j�1

xj

 !�����
�����

�
Xk�1
i�1

Pi




it follows that fpk�nE�g1k�1 is a (monotone) ¢nite dimensional decomposi-
tion for its closed linear span F in p�nE�. Since each monomial is a product
of continuous linear mappings it follows that F � p!�nE�. To complete the
proof we must show that 'n 2 F for all ' 2 E 0.
Let ' 2 E 0 and let  k � 'ÿ ' ��k � 'jfEjgj>k . Since the decomposition is

shrinking it follows that k kk ! 0 as k!1. We may suppose that the de-
composition fEjgj is monotone. From the identity

an ÿ bn � �aÿ b�
Xnÿ1
i�0

anÿ1ÿi bi
 !

we see that
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k'n ÿ �' ��k�nk � sup
kxk�1

j'n�x� ÿ 'n��k�x��j

� sup
kxk�1

j'�x� ÿ '��k�x��j
Xnÿ1
i�0
j'�x�jnÿ1ÿij'��k�x��ji

 !
� nk kk k'knÿ1ÿÿÿÿ!k!1 0:

Hence 'n 2 F for all ' 2 E 0 and this completes the proof.

If each Ej in proposition 9 is one dimensional then the Banach space E has
a shrinking Schauder basis. In general, however, pk�nE� will not be one di-
mensional for n > 1 and we cannot immediately deduce that p!�nE� has a
Schauder basis. To obtain this result we need to order a basis in each of the
¢nite dimensional spaces pk�nE� and in the process of de¢ning this, by in-
duction, we arrive at the square ordering given in [25, 1, 13, 26].
Let �en�1n�1 denote a shrinking monotone basis for E. The sequence �e0n�1n�1

is a basis for E 0 � p�1E� � p!�1E�. In monomial terminology this is the se-
quence of monomials of degree 1 and we denote it by �zn�1n�1. This places an
order on the basis for p�nE� when n � 1. Suppose fPn

k;jg`n�k�j�1 is the ordered
basis for pk�nE� then we de¢ne the ordered basis for pk�n�1E� as

fzkPn
1;jg`n�1�j�1 ; fzkPn

2;jg`n�2�j�1 ; . . . ; fzkPn
k;jg`n�k�j�1

i.e. zkPn
r;s precedes zkP

n
r0;s0 in the ordering of the basis if either r < r0 or r � r0

and s < s0. We refer to [16] for further details.

Proposition 10. If E has a shrinking Schauder basis then the monomials of
degree n with the square order form a Schauder basis for �p!�nE�; k � k�.
Proof. We may suppose that the basis for E is monotone and normalised.

Let Ck;n denote the basis constant for fPn
k;jg`n�k�j�1 for all k and n. Since

fpk�nE�gk is a ¢nite dimensional decomposition it su¤ces to show that
supk Ck;n is ¢nite for all n. We prove this by induction on n. Since the basis
for E is shrinking the result is true for n � 1. We suppose that the result is
true for n and that Cn is the resulting basis constant for p!�nE�.
Let fPn�1

k;j g`n�1�k�j�1 denote the basis for pk�n�1E�. We note that
Pn�1
k;j � Qk;j:zk where fQk;jg`n�1�k�j�1 is the basis for �k

s�1ps�nE�. Let
1 � N <M � `n�1�k� and let �ak;j�`n�1�k�j�1 denote an arbitrary sequence of
scalars. We have
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XN
j�1

ak;jPn�1
k;j


 � XN

j�1
ak;jQk;jzk




�
XN
j�1

ak;jQk;j


 kzkk

� 2
XN
j�1

ak;jQk;j




� 2Cn

XM
j�1

ak;jQk;j


:

We therefore have to prove that there exists C0 > 0 (independent of k and
M) such that

XM
j�1

ak;jQk;j


 � C0

XM
j�1

ak;jPn�1
k;j


:

We have

XM
j�1

ak;jQk;j


 � sup

x2E
kxk�1

XM
j�1

ak;jQk;j�x�
�����

�����
� sup

x��e1 ;...;ek �
kxk�1

XM
j�1

ak;jQk;j�x�
�����

�����
�
XM
j�1

ak;jQk;j�w�
�����

�����
for some w of the form w �Pk

i�1 wiei, kwk � 1.
If jwkj < 1=2, let g��� � �PM

j�1 ak;jQk;j��w� �ek�. The function g is a poly-
nomial over C and, by the maximum modulus theorem, we have

sup
j�j�1
jg���j � jg�0�j �

XM
j�1

ak;jQk;j


:

Choose �; j�j � 1, where the supremum is achieved, and let ew � w� �ek.
Then

XM
j�1

ak;jQk;j�ew�
�����

����� � XM
j�1

ak;jQk;j


�4:1�
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and

kewk � kwk � k�ekk � 2:�4:2�
If ew �Pk

i�1 ewiei then

jewkj � jwk � �j � j�j ÿ jwkj � 1=2:�4:3�
If jwkj � 1=2, let ew � w. It is easily checked that ew also satis¢es (4.1), (4.2)

and (4.3) in this case.
Hence

XM
j�1

ak;jPn�1
k;j �ew�

�����
����� � XM

j�1
ak;jQk;j�ew�

�����
����� � jewkj � 1

2

XM
j�1

ak;jQk;j




and

XM
j�1

ak;jPn�1
k;j �ew�

�����
����� � XM

j�1
ak;jPn�1

k;j


 � kewkn�1 � 2n�1

XM
j�1

ak;jPn�1
k;j


:

Hence

XM
j�1

ak;jQk;j


 � 2n�2

XM
j�1

ak;jPn�1
k;j




and this completes the proof.

In proposition 9 we obtained a monotone ¢nite dimensional decomposi-
tion for p!�nE� but in proposition 10 the estimates obtained suggest it is
extremely unlikely that the basis with the square ordering is monotone. This
important di¡erence allows us to lift the results in proposition 9 to holo-
morphic functions while the same extension is not possible for the results of
proposition 10.
If E is a Banach space and u is an open subset of E, we let

h!�u� � ff 2h�u� : for all x 2 u there exists a neighbourhood W of x
such that f jW is weakly continuousg;

i.e. h!�u� is the space of holomorphic functions on u which are locally
weakly continuous.
If fEjgj is a ¢nite dimensional decomposition for the Banach space E and

A is a subset of E we say that A is solid (with respect to the decomposition) if
�k�A� � A for all k. For example, E has a monotone decomposition if and
only if the unit ball is solid. Every open set is contained in a solid open set
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and the whole space is solid. If A is a solid open set and K is a compact
subset of A then [k�k�K� is a compact subset of A.
An ordering on the set of all pairs �k; n� 2 N2 is said to be natural in the

¢rst index if �k1; n� � �k2; n� whenever k1 � k2.
From proposition 9 we obtain the following result.

Proposition 11. If fEjgj is a ¢nite dimensional shrinking Schauder decom-
position for the Banach space E and u is a balanced convex solid open subset
of E, then fpk�nE�g1k�1;n�0 with any ordering which is natural in the ¢rst index
(k) is a ¢nite dimensional Schauder decomposition for �h!�u�; �!�.
Proof. We suppose the decomposition is monotone and let B denote the

unit ball of E. Since the polynomials are dense in �h�u�; �!�, proposition 9
shows that fpk�nE�g1k�1;n�0 spans a dense subspace of �h!�u�; �!�. Since u
is solid it contains a fundamental system of compact sets K which are convex
and balanced such that �n�K� � K for all K and n. Hence E normed with
the Minkowski functional of K � �B, � 6� 0, also has fEngn as a monotone
decomposition.
Let

p
X1
n�0

bdnf �0�
n!

 !
�
X1
n�0

bdnf �0�
n!



K��nB

for f 2 �h!�u�; �!�. Let J denote a non-empty subset of N2 such that
�k; n� 2 J implies �k0; n� 2 J for k0 � k. Let �k1; n1� 2 N2 n J be chosen such
that either

�k1 ÿ 1; n1� 2 J�4:4�
or

�1; n1� =2 J:�4:5�
Let J 0 � J [ f�k1; n1�g. Let ��j�j2J 0 denote an arbitrary set of scalars and

let �Pj�j2J 0 denote a sequence of polynomials with Pj 2 pk�nE� if j � �k; n�.
If (4.4) holds then
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p
X
j2J

�jPj

 !
� p

X
j2J

j 6��k;n1�

�jPj

0B@
1CA� p

X
j��k;n1�

k�1;...;k1ÿ1

�jPj

0B@
1CA

� p
X
j2J

j 6��k;n1�

�jPj

0B@
1CA� p

X
j��k;n1�
k�1;...;k1

�jPj

0B@
1CA by proposition 9

� p
X
j2J 0

�jPj

 !
:

If (4.5) holds then

p
X
j2J

�jPj

 !
� p

X
j2J

�jPj

 !
� p���k1;n1�P�k1;n1��

� p
X
j2J 0

�jPj

 !
:

Hence fpk�nE�g1k�1;n�0 is a ¢nite dimensional Schauder decomposition for
�h!�u�; �!�.

½5. Re£exivity.

We now return to the examples which motivated our investigations. In
dealing with re£exivity we shall use the following two results;

(5.1) if E is a re£exive Banach space with the approximation property then
p�nE� � p!�nE� if and only if �p�nE�; k � k� is re£exive ([25, 2]),
(5.2) if E is a separable re£exive Banach space with the approximation

property and u is a balanced open subset of E then �h�u�; �!� is re£exive if
and only if �p�nE�; k � k� is re£exive for all n ([14]).
Proposition 12. If E is a re£exive Banach space with a ¢nite dimensional

decomposition fEjgj then the following are equivalent:
(a) �p�nE�; k � k� is re£exive for all n,
(b) fpk�nE�g1k�1 is a ¢nite dimensional Schauder decomposition for p�nE�,

for all n,
(c) fpk�nE�g1k�1;n�0, with the order described in proposition 11, is a ¢nite

dimensional Schauder decomposition for �h�u�; �!� for any solid open subset
u of E,
(d) �h�u�; �!� is re£exive for any balanced open subset u of E,
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(e) h�u� �h!�u� for any open subset u of E.

Proof. Since E is re£exive the decomposition fEjgj is shrinking and E has
the approximation property. Using Taylor series expansions we see that
h�u� �h!�u� for arbitrary open subsets of E if, and only if,
p�nE� � p!�nE� for all n. Hence, by (5.1), (a), (e), and, by (5.2), (a), (d).
By proposition 9 and (5.1) we have (a), (b) and, by proposition 11,
(c), (e). This completes the proof.

Proposition 10 and (5.1) recovers the result (1.2) of Alencar.
Finally we return to our original motivation (1.1). We have the following

theorem which leads to an answer to our original problem.

Theorem 13. If fEjgj is a shrinking ¢nite dimensional unconditional
Schauder decomposition for the Banach space E then the following are
equivalent:
(1) p!�nE� � p�nE� for all n,
(2) fpk�nE�g1k�1 is a ¢nite dimensional decomposition for p�nE�, for all n,
(3) �p�nE�; k � k� is separable for all n,
(4) c0 6,!p�nE� for any positive integer n,
(5) c0 6,!�h�E�; �!�.
Proof. We may suppose, without loss of generality, that the un-

conditionality constant of the decomposition is 1. By corollary 5, (4), (5).
By proposition 9, (1), (2). Clearly (2)) (3) and since �p�nE�; k � k� is a dual
space (3)) (4). To complete the proof we show that (4)) (1).
We suppose that (1) holds for all l < n but that (1) does not hold for n.

Clearly we must have n � 2. Hence there exists P 2 p�nE� which is not
weakly continuous on bounded sets. Since E 0 has a ¢nite dimensional de-
composition it is separable and hence the weak topology on bounded subsets
of E is metrizable. We may therefore suppose that P is not weakly sequen-
tially continuous and by using the binomial theorem we see, as in [2], that P
is not weakly sequentially continuous at the origin. Hence there exists a
weakly null sequence �xk�k and " > 0 such that jP�xk�j � " for all k. We now
¢x an arbitrary positive integer l. Let yk � �l�xk� and zk � xk ÿ �l�xk� for
all k. We have kykk ! 0 as k!1 and �zk�k is a weakly null sequence in E.
Since

Pl
j�1 Ej is ¢nite dimensional it has a Schauder basis e1; . . . ; es. If Fi is

the one dimensional subspace of E spanned by ei; 1 � i � s, and Fs�1 denotes
the closed subspace spanned by fEj : j > lg then fFigs�1i�1 is a Schauder de-
composition for E. Since it is a decomposition into a ¢nite number of sub-
spaces it is an unconditional shrinking, not necessarily monotone, Schauder
decomposition. If we now take the monomial expansion of P with respect to
this decomposition, we obtain
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P
Xs
i�1

�i ei � x

 !
� P�x� �

X
m2Ns

0<jmj<n

am �mQm�x� �Q0��1; . . . ; �s�

where �i 2 C; x 2 Fs�1; Qm 2 p�nÿjmjFs�1�; am 2 C and Q0 is P restricted toPl
j�1 Ej.
Since Qm 2 p�nÿjmjFs�1� with jmj > 0 it follows by hypothesis that

Qm�zk� ! 0 as k!1. Hence jP�zk�j 6! 0 as k!1.
Using the Schauder decomposition and a diagonal process we can gen-

erate a disjointly supported bounded sequence of vectors �wk�k, such that
jP�wk�j � " for all k. Thus, there exists a strictly increasing sequence of po-
sitive integers �nk�k such that wk �

Pnk�1
j�nk�1 vj for all k, where vj 2 Ej for all j.

For each integer k, we let Pk � P � ��nk�1 ÿ �nk�. We have kPkk � kPk
k�nk�1 ÿ �nkkn � 2nkPk. Hence �Pk�k is a bounded sequence in �p�nE�; k � k�.
By our construction we have

jPk�wk�j � jP�wk�j � " 8k:
If x �P1j�1 xj 2 E, xj 2 Ej for all j, then for all positive integers l we have

Xl
k�1
jPk�x�j �

Xl
k�1

P
Xnk�1

j�nk�1
xj

 !�����
������5:3�

� sup
j�kj�1

P
Xl
k�1

�k
Xnk�1

j�nk�1
xj

 ! !�����
����� � 2nkPk kxkn

by unconditionality.
Since �Pk�k is not a null sequence in p�nE�, [18, theorem 2] implies that

c0 ,!p�nE�. Hence �4� ) �1� and this completes the proof.

Remark 14. It is rather easy to add extra conditions in theorem 13 and
we brie£y mention some possibilities in this direction.
(a) Usings-Schauder decompositions it is easy to see that condition (3) is

equivalent to the separability of �h�u�; �!�, for any balanced open subset u
of E (in fact this equivalence is true for any Banach space).
(b) If E has a shrinking Schauder basis then, by proposition 10, condition

(2) is equivalent to the condition that the monomials, with the square order,
are a Schauder basis for p�nE� for all n. The equivalence of (2) and (4) gives
(1.1) for homogeneous polynomials.
(c) If we assume in addition that E is re£exive in theorem 13, then pro-

position 12 shows that the conditions in theorem 13 are equivalent to the
condition that �p�nE�; k � k� is re£exive for all n. We note in passing that re-
£exivity always implies the property ``does not contain c0'' but for spaces of
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polynomials (or holomorphic functions) the unconditionality hypothesis im-
plies that they are equivalent.
A disjointly supported sequence of vectors �xk�1k�1 in a Banach space E

with a ¢nite dimensional decomposition fEjgj has a lower q estimate,
1 < q <1, if there exists C > 0 such that for any sequence of scalars ��k�1k�1
and for any l 2 N we have

Xl
k�1

�kxk



q

� C
Xl
k�1
k�kxkkq:

In the proof of the implication (4) ) (1) of theorem 13, we see that if
p!�nE� 6� p�nE� for some n then there exists a disjointly supported sequence
of unit vectors �wk�1k�1 and P 2 p�nE� such that jP�wk�j � " for all k. The
proof of this result did not use unconditionality. We can therefore apply
theorem II.4.4 of [21] to obtain the following.

Proposition 15. If fEjgj is a shrinking ¢nite dimensional Schauder decom-
position for the Banach space E and no disjointly supported sequence of vectors
in E has a lower q estimate, 1 < q <1, then p!�nE� � p�nE� for all n.
Proposition 15 applies, for instance, to c0 � T 0 and T 0J .
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