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CONIC SINGULARITIES OF SOLUTIONS TO PROBLEMS
IN HYDRODYNAMICS OF A VISCOUS FLUID WITH A

FREE SURFACE

V. A. KOZLOV, V. MAZ'YA and J. RO�MANN

0. Introduction.

The present paper is concerned with some boundary value problems for the
Stokes system

ÿ�U � grad P � F ; div U � 0�0:1�
in a three-dimensional domain with conic points at the boundary. It is well-
known (see e.g. [5], [13]) that the solution �U ;P� of an elliptic boundary va-
lue problem for the system (0.1) in a neighbourhood of a vertex x�0� � 0 of a
cone k asymptotically behaves like a linear combination of terms of the
form

rz
Xs
k�0

1
k!
�log r�k u�sÿk��!�

rÿ1 p�sÿk��!�
� �

�0:2�

where r � jxj and ! are coordinates on the sphere S2 � fx 2 R3 : jxj � 1g: In
order to obtain this result, one applies the Mellin transformmr!�; � 2 C; to
the operator of the boundary value problem ink: In this way a pencil A of
boundary value problems on the spherical domain k \ S2 is generated. The
above mentioned asymptotic representation follows by applying the Cauchy
residual theorem to the inverse Mellin transform of the resolvent A���ÿ1:
The exponents z in (0.2) form a discrete sequence of eigenvalues of A���,
while �u�0�; p�0�� is an eigenvector and �u�1�; p�1��; . . . ; �u�s�; p�s�� are generalized
eigenvectors corresponding to z: Thus, the question of conic singularities has
been reduced to the spectral analysis of the operator pencil A��� which is, in
fact, the subject of the present paper.
We consider the following boundary conditions for the system (0.1):
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(i) U � 0;
(ii) Un � 0; "n;��U� � 0;
(iii) U� � 0; ÿP � 2 "n;n�U� � 0;

where n � �n1; n2; n3� is the exterior normal to @k; Un � U � n is the normal
component of the velocity U � �U1;U2;U3�; U� is the tangential component
of the vector U (i.e., the projection of U onto the tangent plane to @k�; and
" is the strain tensor. We admit that di¡erent boundary conditions may be
prescribed on di¡erent conic subdomains of @k: These boundary conditions
appear in analysis of the steady-state motion of a viscous £uid in a vessel
with a free surface having contact with the walls of the vessel (see for ex-
ample [15]).
Here we list the main results of the paper:
1. The strip f� : ÿ1 < Re� < 0g does not contain eigenvalues of the

pencil A:
2. The strip ÿ2 � Re� � 1 contains only real eigenvalues.
3. There are no generalized eigenvectors to the eigenvalues in the strip

ÿ2 < Re� < 1:
4. The numbers 0 and ÿ1 are eigenvalues of A if and only if there exists a

nonzero constant vector �u; p� � �c; 0� satisfying the boundary conditions.
5. We describe all eigenvectors and generalized eigenvectors correspond-

ing to � � 1; when this number is an eigenvalue of A���:
6. We derive a variational principle for the eigenvalues of A in the inter-

val �0; 1� and ¢nd the total multiplicity of the spectrum in �0; 1�: In the case
of the boundary conditions (i) and (iii) on di¡erent parts of @k; this multi-
plicity is an increasing function ofk (see Corollary 8.1).
In [11] similar results were obtained for the system (0.1) with the Dirichlet

boundary conditions. We remark that the Neumann condition

ÿP � 2 "n;n�U� � 0; "n;� �U� � 0 on @k

which appears in the hydrodynamic potential theory is not considered in the
present paper. For this problem it was shown in [8] that the strip
ÿ1 � Re� � 0 contains only the eigenvalues ÿ1 and 0; if @k admits a one-
to-one orthogonal projection onto a plane.
We give some consequences of our results for solutions of the mixed

boundary value problems under consideration in a bounded domain of
polyhedral type. Using the same technique as in [5], one can show that the
solution �U ;P� has the asymptotics
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U �
X
k

ck r�k u�k��!� �O�r�;

P �
X
k

ck r�kÿ1 p�k��!� �O�log r�

near every singular boundary point x�0�; where �k are eigenvalues of A��� in
the interval �0; 1�: (Here we assume for simplicity that the right-hand sides in
the Stokes system and the boundary conditions vanish near x�0�:) In com-
parison with the general asymptotic representation (0.2), the asymptotics
just written does not contain logarithmic terms and the powers of r are ne-
cessarily real.
As applications of our results, we consider two special cases in Section 9.

1. Formulation of the problem.

Let k be the cone fx � �x1; x2; x3� 2 R3 : x=jxj 2 
g; where 
 is a domain
on the unit sphere with Lipschitz boundary @
 � 1 [ . . . [ N : Here
1; . . . ; N are pairwise disjoint open connected arcs of @
: Then the bound-
ary of k is the union of faces, @k � ÿ 1 [ � � � [ ÿN ; where
ÿ k � fx : x=jxj 2 kg:
We divide the set of the indices 1; . . . ;N into three subsets I0; In; I� : Our

goal is to ¢nd solutions of the system

ÿ�U � gradP � 0; divU � 0 in k�1:1�
satisfying the boundary conditions

U � 0 on ÿ k for k 2 I0;
Un� 0; "n;��U� � 0 on ÿ k for k 2 In;
U� � 0; ÿP � 2

X3
i;j�1

"ij�U� ni nj � 0 on ÿ k for k 2 I� ;

8>>><>>>:�1:2�

which will be understood in the generalized sense.
In order to introduce the notion of generalized solutions, we need the fol-

lowing Green formula
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Z
k

2
X3
i;j�1

"ij�U� � "ij�V� ÿ P divV ÿ divU �Q
 !

dx�1:3�

�
Z
k

ÿÿ�U ÿ grad divU � gradP
�
V ÿ divU �Q

� �
dx

�
X3
j�1

Z
@knf0g

ÿP nj � 2
X3
i�1

"ij�U� ni
 !

Vj d�;

where

"ij�U� � 1
2

ÿ
@xjUi � @xiUj

�
:

If �U ;P� is a formal solution of the problem (1.1), (1.2), �V ;Q� vanishes for
large and small jxj; and V satis¢es the conditions

V � 0 on ÿ k for k 2 I0; Vn � 0 on ÿ k for k 2 In;�1:4�
V� � 0 on ÿ k for k 2 I� ;

then (1.3) impliesZ
k

�X3
i;j�1

"ij�U� � "ij�V� ÿ 1
2 P divV ÿ 1

2 divU �Q
�
dx � 0�1:5�

Hence it is natural to de¢ne generalized solutions by means of this integral
identity.
More precisely, let h be the space of all vector-functions u 2 H1�
�3 sa-

tisfying the conditions
(i) u � 0 on k for k 2 I0;
(ii) un � 0 on k for k 2 In;
(iii) u� � 0 on k for k 2 I� ;

where un � u � n; n denotes the exterior normal to @k; and u� is the projec-
tion of the vector u onto the tangent plane tok:We say that the pair �U ;P�
of the form

U�x� � r�0
Xs
k�0

1
k!
�log r�k u�sÿk��!� ; u�sÿk� 2h;�1:6�

P�x� � r�0ÿ1
Xs
k�0

1
k!
�log r�k p�sÿk��!� ; p�sÿk� 2 L2�
�;�1:7�

is a generalized solution of (1.1), (1.2), if (1.5) is satis¢ed for all
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�V ;Q� 2 H1�k�3 � L2�k� with compact support in knf0g such that V sa-
tis¢es the boundary conditions (1.4).

2. The operator pencil generated by the boundary value problem.

We rewrite the integral identity (1.5) in terms of the spherical components
Ur; U'; U�;

Ur

U�

U'

0@ 1A � J
U1
U2
U3

0@ 1A ; J � J��; '� �
sin � cos' sin � sin' cos �
cos � cos' cos � sin' ÿ sin �
ÿ sin' cos' 0

0@ 1A ;

of the vector U ; where r; �; ' are the spherical coordinates of the point
x � �x1; x2; x3�; i.e.,

x1 � r cos' sin �; x2 � r sin' sin �; x3 � r cos �:

Then (1.5) takes the formZ1
0

Z



�
"rr�U� "rr�V� � "���U� "���V� � "''�U� "''�V� � 2 "r��U� "r��V�

� 2 "r'�U� "r'�V� � 2 "�'�U� "�'�V� ÿ 1
2 P
�
"rr�V� � "���V� � "''�V�

�
ÿ 1

2

�
"rr�U� � "���U� � "''�U�

�
Q
�
r2 d! dr � 0;

where

"rr � @rUr ; "'' � 1
r sin �

@'U' �Ur

r
� cot �

U�

r

"�� � 1
r
@�U� �Ur

r
; "r' � 1

2

� 1
r sin �

@'Ur ÿU'

r
� @rU'

�
;

"r� � 1
2

� 1
r
@�Ur ÿU�

r
� @rU�

�
;

"�' � 1
2

� 1
r
@�U' ÿ cot �

U'

r
� 1
r sin �

@'U�

�
:

8>>>>>>>>>>><>>>>>>>>>>>:
�2:2�

We introduce the sesquilinear form
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a
��u

p

�
;
� v
q

�
; �
�

� 1
log 2

Z2
1

Z



�
"rr�U� "rr�V� � "���U� "���V� � "''�U� "''�V�

� 2 "r��U� "r��V� � 2 "r'�U� "r'�V� � 2 "�'�U� "�'�V�

ÿ 1
2 P
�
"rr�V� � "���V� � "''�V�

�
ÿ 1

2

�
"rr�U� � "���U� � "''�U�

�
Q
�
r2 d! dr;

where

U � r� u�!�; P � r�ÿ1 p�!�; V � rÿ1ÿ� v�!�;

Q � rÿ2ÿ� q�!�; d! � sin � d� d':

Using (2.1), we ¢nd

a
�� u

p

�
;
� v
q

�
; �
�
� �u!; v!� �

Z



�
1
2r!ur � r!vr � ��� 2� �1ÿ �� ur vr�2:2�

� 1
2 ��� 2� �1ÿ �� u! � v! � urr! � v! � �r! � u!� vr ÿ 1ÿ �

2
u! � r!vr

ÿ �� 2
2
�r!ur� � v! ÿ 1

2 p
�
�1ÿ �� vr �r! � v!

�
ÿ 1

2

�
��� 2� ur �r! � u!

�
q
�
d!;

where

u! � u�
u'

� �
; r! � u! � 1

sin �
@��sin � u�� � 1

sin �
@'u';

r!ur � @�ur
�sin ��ÿ1 @'ur

� �
;

�u!; v!� �
Z



�
@�u� � @�v� �

� 1
sin �

@'u' � cot � u�
�
�
� 1

sin �
@'v' � cot � v�

�

� 1
2

�
@�u' � 1

sin �
@'u� ÿ cot � u'

�
�
�
@�v' � 1

sin �
@'v� ÿ cot � v'

��
d!:

One directly veri¢es that
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�u!; u!� � 1
2

Z



jr! � u!j2 d!� 1
2

Z



���@�u� ÿ 1
sin �

@'u' ÿ cot � u�
���2 d!�2:3�

� 1
2

Z



���@�u' � 1
sin �

@'u� ÿ cot � u'
���2 d!:

Hence

�u!; u!� � 1
2

Z



jr! � u!j2 d!:

We denote by h1�
� the set of all vector-functions u! �
� u�
u'

�
such that the

quantity

ku!kh1�
� �
�Z



�
ju!j2 � j@�u�j2 � j@�u'j2 �

��� 1
sin �

@'u� ÿ cot �u'
���2�2:4�

�
��� 1
sin �

@'u' � cot �u�
���2� d!�1=2

is ¢nite and by h1
�
�
� the closure of C10 �
�2 with respect to the norm (2.4).

According to Proposition 1.1 in [10], the Cartesian components of the vec-
tor-valued function u � �u1; u2; u3� belong to H1�
� if and only if ur 2 H1�
�
and u! 2 h1�
�: The following lemma gives an equivalent norm in h1�
�:
Lemma 2.1. For all u! 2 h1�
� the inequality

�u!; u!� �
Z



ju!j2 d! � c0 ku!k2h1�
��2:5�

holds, where c0 is a positive constant.

Proof. Let k0 be the set fx 2k : 1
2 < jxj < 2g: Since the boundary of

k0 is Lipschitz, the Korn inequality (see [2])Z
k0

�X3
i;j�1
j"i;j�U�j2 � jU j2

�
dx � c

Z
k0

X3
i;j�1
j@xiUjj2 dx

is valid. Taking U�x� � u�!� and writing the last inequality in the spherical
components, we obtain

a
�� u

0

�
;
� u
0

�
; 0
�
�
Z



ÿju!j2 � jurj2� d! � c
�
ku!k2h1�
� � kurk2H1�
�

�
:

Setting ur � 0; we arrive at (2.5).
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We de¢ne the spacehs as the set of all �ur; u!� 2 H1�
� � h1�
� such that
the boundary conditions (i)--(iii) are satis¢ed, i.e., we have �u1; u2; u3� 2h if
and only if �ur; u!� 2hs:

The form a��; �;�� is continuous on
�
hs � L2�
�

�
�
�
hs � L2�
�

�
and

generates a continuous operator

A��� : hs � L2�
� !h�
s � L2�
�

by the equality�
A���

� u
p

�
;
� v
q

��
L2�
�4

� a
�� u

p

�
;
� v
q

�
;�
�
; u; v 2hs; p; q 2 L2�
�:

This is the operator pencil mentioned in the introduction. We shall study its
spectrum.

3. Basic properties of the pencil A.

We prove that the operator A��� is Fredholm for every ¢xed �; and in-
vertible for at least one �: For the proof of this assertion we need the fol-
lowing two lemmas.

Lemma 3.1. Let g be an arbitrary L2 function on 
: Then the equation

��� 2� ur �r! � u! � g

has a solution �ur; u!� 2 H1
�
�
�� h1

�
�
� satisfying the inequality

j�� 2j kurkH1�
� � ku!kh1�
� � c kgkL2�
�

with a constant c independent of g and �:

Proof. First let
R

 g d! � 0: Then according to Lemma 2.3 in [11], the

equation r! � u! � g has a solution u! 2 h
�
1�
�: Thus, the vector-function

�0; u!� satis¢es the desired equation.
In the case

R

 g d! � c 6� 0 we set ur � c ��� 2�ÿ1  ; where  is an arbi-

trary function in
�
H1�
� such that

R

  d! � 1: Then the integral of the

function gÿ ��� 2� ur over 
 vanishes, and we can solve the equation
r! � u! � gÿ ��� 2�ur: The so obtained vector-function �ur; u!� has the de-
sired properties.

Lemma 3.2. Let Re� � ÿ1=2; and let j�j be su¤ciently large. Then for ev-
ery f 2hs

�; g 2 L2�
� there exists a vector-function �u; p� satisfying the
equality

a
�� u

p

�
;
� v
q

�
;�
�
� �f ; v�
 �

Z



g q d!�3:1�
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for all v 2hs; q 2 L2�
�: Here and in what follows by ��; ��
 we denote the
continuation of the scalar product in L2�
�3 tohs

� �hs:

Proof. By Lemma 3.1, there exists a vector-function u�0� � �u�0�r ; u�0�! � 2
hs satisfying the equation ��� 2� u�0�r �r! � u�0�! � ÿ2g: Then according to
(2.2), we have

a
�� u�0�

0

�
;
� v
q

�
; �
�
� �F ; v�
 �

Z



g q d!;

where

�F ; v�
 � �u�0�! ; v!� �
Z



�
1
2r!u

�0�
r � r!vr � ��� 2� �1ÿ �� u�0�r vr

� 1
2 ��� 2� �1ÿ �� u�0�! � v! � u�0�r r! � v! � �r! � u�0�! � vr

ÿ 1ÿ �
2

u�0�! � r!vr ÿ �� 2
2
�r!u�0�r � � v!

�
d!:

Obviously, F is a continuous functional onhs:

We show now that there exists a vector-function �u�1�; p� 2hs � L2�
�
such that

��� 2� u�1�r �r! � u�1�! � 0

and

a
�� u�1�

p

�
;
� v
q

�
; �
�
� �f ÿ F ; v�


for v 2hs; q 2 L2�
�: Then the vector-function �u; p� with u � u�0� � u�1�

satis¢es (3.1).
For Re� � ÿ1=2 we have

a
�� u

0

�
;
� u
0

�
; �
�
�
Z



�
j�j2 jurj2 � j@�u� � urj2 �

��� 1
sin �

@'u' � u� cot �� ur
���2

� 1
2

���@�u' � 1
sin �

@'u� ÿ u' cot �
���2 � 1

2 j��ÿ 1�u� � @�urj2

� 1
2

�����ÿ 1�u' � 1
sin �

@'ur
���2� d!:

Since this form vanishes only for u � 0; it follows from Lemma 2.1 that
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���a�� u
0

�
;
� u
0

�
;�
���� � c kuk2hs

;�3:2�

if j�j is su¤ciently large, where the constant c depends on � but not on u: In
particular, (3.2) is satis¢ed for all u 2hs

��� �def fu 2hs : ��� 2�ur�
r! � u! � 0g: Consequently, by Lax-Milgram's theorem, there exists a solu-
tion u�1� 2h���s of the equation

a
�� u�1�

0

�
;
� v
0

�
;�
�
� �f ÿ F ; v�
 ; v 2hs

���:�3:3�

We consider the functional

v! G�v� �def a
�� u�1�

0

�
;
� v
0

�
;�
�
ÿ �f ÿ F ; v�
�3:4�

on hs: By (3.3), the functional G vanishes on the subspace hs��� of hs:

Hence we have

jG�v�j � min jG�w�j � c kwkhs
;

where the minimum is taken over all w 2hs such that
��� 2�wr �r! � w! � ��� 2� vr �r! � v!: Due to Lemma 3.1, we can
choose w 2 H

�
1�
�� h

�
1�
� such that

kwkhs
� ck��� 2� vr �r! � v!kL2�
� :

Therefore, G�v� can be understood as a linear and continuous functional
applied to ��� 2� vr �r! � v!: By the Riesz theorem, there exists a function
p 2 L2�
� such that

G�v� � 1
2

Z



p � ÿ��� 2�vr �r! � v!
�
d!

for all v 2hs: Using (3.6), we obtain

a
�� u�1�

p

�
;
� v
q

�
;�
�
� a
�� u�1�

0

�
;
� v
0

�
;�
�

ÿ 1
2

Z



p � ÿ��� 2�vr �r! � v!
�
d! � �f ÿ F ; v�
:

Thus, the vector-function �u�1�; p� satis¢es the desired equation. This proves
the lemma.
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Theorem 3.1. 1) The operator A��� is Fredholm for all �:
2) The spectrum of the pencil A��� consists of isolated eigenvalues with ¢-

nite algebraic multiplicities.
3) The line Re� � ÿ1=2 does not contain eigenvalues of the pencil A���:
4) The number �0 is an eigenvalue of the pencil A��� if and only if ÿ1ÿ �0

is an eigenvalue of this pencil. The geometric, algebraic and partial multi-
plicities of the eigenvalues �0 and ÿ1ÿ �0 coincide.
Proof. 1) We show ¢rst that the kernel of the operator A��� is trivial for

Re � � ÿ1=2: Let �u; p� be an element of the kernel of A���; where � is a
number on the line Re� � ÿ1=2: Then

0 � a
�� u

p

�
;
� 0
q

�
; �
�
� ÿ 1

2

Z



�
��� 2� ur �r! � u!

�
q d!

for all q 2 L2�
�: This implies

��� 2� ur �r! � u! � 0 in 
:�3:5�
Using (3.5) and the equality �� 2 � 1ÿ �; we obtain

0 � a
�� u

p

�
;
� u
p

�
; �
�
� �u!; u!� ÿ 1

2

Z



jr! � u!j2 d!

�
Z



�
1
2 jr!ur ÿ �1ÿ ��u!j2 � 1

2 jr! � u! � 2urj2 � �j1ÿ �j2 ÿ 2� jurj2
�
d!:

Since 2 �u!; u!� �
R

 jr! � u!j2 d! and j1ÿ �j2 � 9=4; the last equation is sa-

tis¢ed only, if ur � 0 and u! � 0: Furthermore, for u � 0 we get

a
�� u

p

�
;
� v
0

�
;�
�
� ÿ 1

2

Z



p
�
�1ÿ ��vr �r! � v!

�
d! � 0; �vr; v!� 2hs:

In particular, the last equation is satis¢ed for all vr 2 H
�
1�
�; v! � 0: From

this we conclude p � 0: Thus, the kernel of A��� is trivial for Re � � ÿ1=2:
If moreover j�j is su¤ciently large, then by Lemma 3.2, the operator A���

is an isomorphism. Since A��� ÿA��� is a compact operator for arbitrary �;
�; it follows that the operator A��� is Fredholm for every complex �: This
proves assertion 1).
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2) The second assertion follows from 1) and from the invertibility of A���
for � � ÿ1=2 (see e.g. [3]).
3) The proof of the third assertion is contained in the proof of assertion

1).
4) It can be easily seen that

a
�� u

p

�
;
� v
q

�
; �
�
� a
�� v

q

�
;
� u
p

�
; ÿ1ÿ �

�
;�3:6�

i.e., A���� � A�ÿ1ÿ ��: As a consequence of this equality, assertion 4)
holds.

In a standard way it can be shown that the integral identity (1.5) has a
solution of the form (1.6), (1.7) if and only if �0 is an eigenvalue of the pencil
A��� and the vector-functions �u�0�; p�0��; . . . ; �u�s�; p�s�� form a Jordan chain
to this eigenvalue, i.e., �u�0�; p�0�� is an eigenvector to �0 and �u�1�; p�1��; . . . ;

�u�s�; p�s�� are generalized eigenvectors associated with �u�0�; p�0��:
In the sequel the following properties of the spacesh andhs will play an

important role.

Lemma 3.3. 1) The subspacehs admits the representation

hs �hs
r �hs

! ;�3:7�
where hs

r is a subspace of H1�
�; H1
�
�
� �hs

r; and hs
! is a subspace of

h1�
�; h
�
1�
� �hs

!:

2) For all u; v 2h the equalityZ
@


un vr d!0 � 0�3:8�

or, equivalently, Z



�
�r! � u!� vr � u! � r!vr

�
d! � 0�3:9�

is valid.
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Proof. 1) In order to prove (3.7) we have to show that �ur; u!� 2hs im-
plies �ur; 0� 2hs:

Let �ur; u!� be an element ofhs: The Cartesian components of the vector-
function �ur; 0� are

w �
w1
w2
w3

0@ 1A � J� ur
0

� �
�

sin � cos'
sin � sin'

cos �

0@ 1A ur :

If k 2 I0 [ I� ; then ur � 0 on k and, therefore, w � 0 on k: Since the vector
�sin � cos'; sin � sin'; cos �� � x=jxj is orthogonal to n; we further have
wn � 0 on k for every k � 1; . . . ;N: Thus, w 2h and, consequently,
�ur; 0� 2hs:

2) If k 2 I0 [ I� ; then vr � 0 on k; while un � 0 on k for k 2 In: HenceZ
k

un � vr d!0 � 0

for k � 1; . . . ;N: This implies (3.8).
It remains to prove that the left sides of (3.8) and (3.9) coincide. Using the

representation of u! by the Cartesian components of u; we getZ



�
�r! � u!� vr � u! � r!vr

�
d!�3:10�

�
Z



�sin ��ÿ1
�
@��sin � u� vr� � @'�u'vr�

�
d!

�
Z



�
cos � cos'@��u1vr� � cos � sin'@��u2vr�

ÿ sin � @��u3vr� ÿ sin'

sin �
@'�u1vr�

� cos'

sin �
@'�u2vr� ÿ 2 sin � cos' u1vr

ÿ 2 sin � sin' u2vr ÿ 2 cos � u3vr

�
d!:
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Integrating by parts, we further obtain

1
log 2

Z
k

1<jxj<2

rx � �rÿ2u�!� vr�!�� dx�3:11�

� 1
log 2

Z
@k

1<jxj<2

n � rÿ2 u�!� vr�!� dx0 �
Z
@


un vr d!0:

The integrand on the right side of (3.11) is equal to

rx � �rÿ2u�!� vr�!��

� 1
r3

�
cos � cos'@��u1vr� � cos � sin'@��u2vr�

ÿ sin � @��u3vr� ÿ sin'

sin �
@'�u1vr�

� cos'

sin �
@'�u2vr� ÿ 2 sin � cos' u1vr ÿ 2 sin � sin' u2vr ÿ 2 cos � u3vr

�
:

Hence the integral on the left side of (3.11) coincides with the expression
(3.10). The lemma is proved.

Remark 3.1. In the following we will only use the properties (3.7) and
(3.8) of the space h: All results of this paper are also true for other sub-
spacesh � H1�
� � h1�
� satisfying these conditions.
Due to (3.8) the sesquilinear form a��; �;�� can be written on

�
hs � L2�
�

�2
in the form

a
�� u

p

�
;
� v
q

�
; �
�
� �u!; v!��3:12�

�
Z



�
1
2r!ur � r!vr � ��� 2� �1ÿ ��

�
ur vr � 1

2 u! � v!
�

�
��� 2

2
� 1
�
urr! � v! �

� 1ÿ �
2
� 1
�
�r! � u!� vr

ÿ 1
2 p
�
�1ÿ �� vr �r! � v!

�
ÿ 1

2

�
��� 2� ur �r! � u!

�
q
�
d!:
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We introduce the matrix

S��� �
�� 2 0 0 0
0 1ÿ � 0 0
0 0 1ÿ � 0

2� 4� 0 0 1ÿ �

0BB@
1CCA :

According to (3.7) the vector-function ���� 2�ur; �1ÿ ��u!� belongs tohs; if
�ur; u!� 2hs: Moreover, we have

a
�� u

p

�
; S���

� v
q

�
; �
�
� a
�
S���

� u
p

�
;
� v
q

�
; ÿ1ÿ �

�
for all u; v 2hs; p; q 2 L2�
�: Consequently, there is the equality

S���tA��� � A�ÿ1ÿ �� S���; � 2 C;�3:13�
where S���t is the transposed matrix to S���: This leads to the following
assertions.

Theorem 3.2. Let �0 be an eigenvalue of the pencil A��� and let
�u�0�; p�0��; . . . �u�s�; p�s�� be a Jordan chain to this eigenvalue.
1) If �0 62 f1;ÿ2g or �0 2 f1;ÿ2g and S��0�

�
u�0�
p�0�

�
6� 0; then ÿ1ÿ �0 is

also an eigenvalue of the pencil A��� and the vector-functions�
v�0�
q�0�

�
� S��0�

�
u�0�
p�0�

�
;

� v�k�
q�k�

�
� �ÿ1�k S��0�

� u�k�
p�k�

�
�

1 0 0 0
0 ÿ1 0 0
0 0 ÿ1 0
4 0 0 ÿ1

0BB@
1CCA� u�kÿ1�p�kÿ1�

�0BB@
1CCA;

k � 1; . . . ; s; form a Jordan chain to ÿ1ÿ �0:
2) If �0 2 f1;ÿ2g; S��0�

�
u�0�
p�0�

�
� 0 and s � 1; then ÿ1ÿ �0 is also an ei-

genvalue and the vectors

� v�k�
q�k�

�
� �ÿ1�k S��0�

� u�k�
p�k�

�
�

1 0 0 0
0 ÿ1 0 0
0 0 ÿ1 0
4 0 0 ÿ1

0BB@
1CCA� u�kÿ1�p�kÿ1�

�0BB@
1CCA;
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k � 1; . . . ; s; form a Jordan chain to ÿ1ÿ �0:
Proof. First note that

S��0�
� u�1�
p�1�

�
�

1 0 0 0
0 ÿ1 0 0
0 0 ÿ1 0
4 0 0 ÿ1

0BB@
1CCA� u�0�p�0�

�
6� 0;

if �0 2 f1;ÿ2g and S��0�
�
u�0�
p�0�

�
� 0:

By the assumptions of the lemma, the vector-functions �u�j�; p�j�� satisfy
the equations

Xk
j�0

1
�kÿ j�! A

�kÿj���0�
� u�j�
p�j�
�
� 0 for k � 0; 1; . . . ; s;

where A�j���� � djA���=d�j: We have to show that

Xk
j�0

1
�kÿ j�! A

�kÿj��ÿ1ÿ �0�
� v�j�
q�j�
�

�3:14�

� �ÿ1�kA�ÿ1ÿ �0� S��0�
� u�k�
p�k�

�
�
Xkÿ1
j�0

�ÿ1�j
�kÿ j�!

�
A�ÿ1ÿ �0� S��0�

ÿ �kÿ j�A�kÿjÿ1��ÿ1ÿ �0� S0��0�
�� u�j�

p�j�
�
� 0:

Di¡erentiating (3.13) with respect to �; we obtain

S��0�tA�kÿj���� � �kÿ j� S0���tA�kÿjÿ1����
� �ÿ1�kÿj

�
A�kÿj��ÿ1ÿ �� S��� ÿ �kÿ j�A�kÿjÿ1��ÿ1ÿ �� S0���

�
for j � kÿ 1: Hence the left side of (3.14) is equal to

�ÿ1�kS��0�t
Xk
j�0

1
�kÿ j�! A

�kÿj���0�
� u�j�
p�j�
�

� �ÿ1�kS0��0�t
Xkÿ1
j�0

1
�kÿ 1ÿ j�! A

�kÿ1ÿj���0�
� u�j�
p�j�
�
� 0:
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The theorem is proved.

4. On real eigenvalues of the pencil A:

The sesquilinear form (3.12) is not symmetric in its arguments. In order to
obtain a symmetric form, we introduce the matrix

J� �
c 0 0 0
0 1 0 0
0 0 1 0

2cÿ 2 0 0 1

0BB@
1CCA ; c � �� 2

1ÿ � :

Then the sesquilinear form

s
�� u

p

�
;
� v
q

�
; �
�
�def a
�� u

p

�
; J�

� v
q

�
; �
�

�4:1�

� �u!; v!� �
Z



�
c
2
�r!ur� � r!vr � ��� 2� �1ÿ c�� ur vr

� 1
2 ��� 2� �1ÿ �� u! � v! �

��� 2
2
� 1
�
urr! � v!

�
��� 2

2
� 1
�
�r! � u!� vr

ÿ 1
2 p
�
��� 2� vr �r! � v!

�
ÿ 1

2

�
��� 2� ur �r! � u!

�
q
�
d!

is obviously symmetric.

Theorem 4.1, The strip ���Re�� 1
2

��� � 3
2�4:2�

contains only real eigenvalues of the pencil A���:
Proof. Let � be a complex eigenvalue in the strip (4.2) such that

Re � 6� ÿ1=2; Im� 6� 0 and let �u; p� be an eigenvector corresponding to this
eigenvalue. Using (3.5), we obtain

0 � s
�� u

p

�
;
� u
p

�
; �
�
� �u!; u!� �

Z



�
�� 2

2�1ÿ �� jr!urj2 ÿ 3
�� 2
1ÿ � jurj

2

� 1
2 ��� 2� �1ÿ �� ju!j2

�
d!:
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Since

Im s
�� u

p

�
;
� u
p

�
; �
�
� 1

2 Im� �2Re �� 1�
Z



�
1

j1ÿ �j2 jr!urj2

ÿ 6

j1ÿ �j2 jurj
2 ÿ ju!j2

�
d!;

Re s
�� u

p

�
;
� u
p

�
; �
�
� �u!; u!�

�
Z



� �1ÿRe�� �2�Re�� � �Im��2
2 j1ÿ �j2 jr!urj2

ÿ 3
�1ÿRe�� �2�Re�� � �Im ��2

j1ÿ �j2 jurj2

� 1
2

�
�1ÿRe �� �2�Re�� � �Im��2

�
ju!j2

�
d!;

we get

Re s
��u

p

�
;
�u
p

�
; �
�
ÿ �1ÿRe�� �2�Re�� � �Im��2

Im� �2Re�� 1� Im s
��u

p

�
;
�u
p

�
; �
�

� �u!;u!� �
�
�1ÿRe�� �2�Re�� � �Im��2

� Z



ju!j2 d!:

If � satis¢es the inequality (4.2), then the right side of the last equation may
be zero only in the case u! � 0: Then from (3.5) it follows that ur � 0: Hence
the form (3.12) is zero only ifZ




p
�
�1ÿ �� vr �r! � v!

�
d! � 0 for all v 2hs:

The last equality impliesZ



p � vr d! � 0 for all vr 2
�
H1�
�

and, consequently, p � 0: Thus, the theorem is proved for the case
Re� 6� ÿ1=2: For Re � � ÿ1=2 the assertion of the theorem follows from the
third part of Theorem 3.1.
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5. On generalized eigenvectors.

By Theorem 4.1 the eigenvalues in the ÿ2 � Re� � 1 are real. Then the
quantity c in the de¢nition of the matrix J� is equal to ��� 2�=�1ÿ ��: In
this section we will use this expression for the de¢nition of the matrix J�:

Lemma 5.1. If �0 is a real eigenvalue of the pencil A��� in the interval
�ÿ1=2 ; 1� and �u�0�; p�0�� is an eigenvector corresponding to this eigenvalue,
then

d
d�

a
�� u�0�

p�0�
�
; J�

� u�0�
p�0�

�
; �
����

���0
< 0:�5:1�

Proof. The left side of (5.1) is equal to

d
d�

s
�� u�0�

p�0�
�
;
� u�0�
p�0�

�
; �
����

���0
�
Z



�
3

2�1ÿ �0�2
jr!u�0�r j2�5:2�

�
�
2�0 � 5ÿ �0 � 2

1ÿ �0 ÿ 3
�0 � 2

�1ÿ �0�2
�
ju�0�r j2 ÿ 1

2 �2�0 � 1� ju�0�! j2�

1
2 u
�0�
r r! � u�0�! � 1

2 �r! � u�0�! � u�0�r ÿ 1
2 p u

�0�
r ÿ 1

2 u
�0�
r p

�
d!:

Further, since �u�0�; p�0�� is an eigenvector, we have

a
�� u�0�

p�0�
�
;
� v
q

�
; �0

�
� 0 for all v 2hs; q 2 L2�
�:�5:3�

Inserting v � 0 into (5.3), we get

��0 � 2� u�0�r �r! � u�0�! � 0 in 
:�5:4�
Furthermore, substituting v � �u�0�r ; 0�; q � 0 into (5.3), we arrive at the
equality Z




�
1
2 jr!u�0�r j2 � ��0 � 2� �1ÿ �0� ju�0�r j2�5:5�

�
� 1ÿ �0

2
� 1
�
�r! � u�0�! � u�0�r ÿ

1ÿ �0
2

p�0� u�0�r

�
d! � 0:

Multiplying the real part of the left side of (5.5) by 2 ��0 ÿ 1�ÿ1 and adding
this to the right side of (5.2), we ¢nd that
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d
d�

s
�� u�0�

p�0�
�
;
� u�0�
p�0�

�
; �
����

���0

�
Z



�
1� 2�0

2 �1ÿ �0�2
jr!u�0�r j2 ÿ

� 1� 2�0
1ÿ �0 � 3

�0 � 2

�1ÿ �0�2
�
ju�0�r j2

ÿ 1
2 �2�0 � 1� ju�0�! j2 ÿ 1

1ÿ �0
�
u�0�r r! � u�0�! � �r! � u�0�! � u�0�r

��
d!:

We eliminate r! � u�0�! in the last equation by means of (5.4). Then we obtain

d
d�

s
�� u�0�

p�0�
�
;
� u�0�
p�0�

�
; �
����

���0

� 1� 2�0
2

Z



�
1

�1ÿ �0�2
jr!u�0�r j2 ÿ

6

�1ÿ �0�2
ju�0�r j2 ÿ ju�0�! j2

�
d!:

Since s
��

u�0�
p�0�

�
;
�
u�0�
p�0�

�
; �0

�
� 0 and ��0 � 2� u�0�r �r! � u�0�! � 0; it follows

that

ÿ ��0 � 2� �1ÿ �0�
1� 2�0

d
d�

s
�� u�0�

p�0�
�
;
� u�0�
p�0�

�
; �
����

���0

� s
�� u�0�

p�0�
�
;
� u�0�
p�0�

�
; �0

�
ÿ ��0 � 2� �1ÿ �0�

1� 2�0

d
d�

s
�� u�0�

p�0�
�
;

� u�0�
p�0�

�
; ��
���
���0

� �u!; u!� � ��0 � 2� �1ÿ �0�
Z



ju�0�! j2 d!:

The right side of the last equation is nonnegative and equals zero only in the
case u�0�! � 0; u�0�r � 0: Analogously to the proof of Theorem 3.1 we get
p�0� � 0 in the last case. Hence �0 can not be an eigenvalue. This proves the
lemma.

Theorem 5.1. The eigenfunctions of the pencil A��� which correspond to
eigenvalues in the strip jRe �� 1=2j < 3=2 do not have generalized eigenfunc-
tions.

Proof. By the last assertion of Theorem 3.1 and by Theorem 4.1, it suf-
¢ces to prove the theorem for real eigenvalues in the interval �ÿ1=2 ; 1�:
Let �0 2 �ÿ1=2 ; 1� be an eigenvalue of the pencil A���; �u�0�; p�0�� an ei-

genvector to this eigenvalue, and �u�1�; p�1�� a corresponding generalized ei-
genvector. Then the equations

a
�� u�0�

p�0�
�
;
� v
q

�
; �0

�
� 0;�5:6�
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a
�� u�1�

p�1�
�
;
� v
q

�
; �0

�
� ÿ d

d�
a
�� u�0�

p�0�
�
;
� v
q

�
; �
����

���0
�5:7�

are satis¢ed for all vector-functions �v; q� 2hs � L2�
�: Substituting�
v
q

�
� J�0

�
u�1�
p�1�

�
into (5.6), we get

s
�� u�0�

p�0�
�
;
� u�1�
p�1�

�
; �0

�
� 0:

By the symmetry of the form s we can conclude from this that

0 � s
�� u�1�

p�1�
�
;
� u�0�
p�0�

�
; �0

�
� a
�� u�1�

p�1�
�
; J�0

� u�0�
p�0�

�
; �0

�
:�5:8�

Using (5.8) and inserting
�

v
q

�
� J�0

�
u�0�
p�0�

�
into (5.7), we obtain

d
d�

a
�� u�0�

p�0�
�
; J�0

� u�0�
p�0�

�
; �
����

���0
� 0:

From this and (5.6) we get

d
d�

a
�� u�0�

p�0�
�
; J�

� u�0�
p�0�

�
; �
����

���0
� 0:

Since this contradicts Lemma 5.1, the theorem is proved.

6. The strip ÿ1 � Re� � 0.

We will show now that the strip ÿ1 � Re� � 0 may only contain the eigen-
values �0 � 0 and �1 � ÿ1: Furthermore, we will see that the numbers 0 and
ÿ1 are eigenvalues only in some special cases.

Theorem 6.1. 1) The set

f� 2 C : ÿ1 � Re � � 0gnf0;ÿ1g
does not contain eigenvalues of A���:
2) Let hc be the set of constant vectors u 2 C3 which belong to h: The

numbers 0 and ÿ1 are eigenvalues if and only ifhc 6� f0g: Both values have the
same geometric and algebraic multiplicities. The set of the eigenvectors to
�0 � 0 coincides with the set f�u; 0� : u 2hcg; while generalized eigenvectors
do not exist.

Proof. By Theorems 3.1 and 4.1 we can restrict ourselves in the proof to
real eigenvalues in the interval �ÿ1=2; 0�:
Suppose that �u; p� is an eigenvector to the eigenvalue � 2 �ÿ1=2; 0�: Then

according to (3.5) we get
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0 � s
�� u

p

�
;
� u
p

�
;�
�

�6:1�

� �u!; u!� �
Z



c
2

�
jr!urj2 � 1

2 ��� 2��1ÿ �� ju!j2 ÿ �� 2
2
�r!ur� �u!

ÿ �� 2
2

u! � r!�ur � ��� 2��1ÿ c�� jurj2

� urr! � �u! � �r! � u!� �ur
�
d!

� �u!; u!� ÿ 1
2

Z



jr! � u!j2 d!�
Z



�
�� 2

2�1ÿ �� jr!ur ÿ �1ÿ ��u!j2

� 1
2 jr! � u! � 2urj2 �

�
��� 2� �1ÿ c�� ÿ 2

�
jurj2

�
d!;

where as before c � ��� 2�=�1ÿ ��: By (2.3),

�u!; u!� ÿ 1
2

Z



jr! � u!j2 d!

� 1
2

Z



����@�u� ÿ 1
sin �

@'u' ÿ cot � u�
���2

�
���@�u' � 1

sin �
@'u� ÿ cot � u'

���2� d! � 0:

Since ��� 2�=�1ÿ �� > 0; it follows that ��� 2��1ÿ c�� ÿ 2 > 0 for
� 2 �ÿ1=2; 0�; and (6.1) implies ur � 0; u! � 0: This proves the ¢rst part of
the theorem. If � � 0; then (6.1) yields

r! � u! � 2ur � 0;�6:2�

r!ur ÿ u! � 0;�6:3�

@�u� ÿ 1
sin �

@'u' ÿ cot � u� � 0;�6:4�

@�u' � 1
sin �

@'u� ÿ cot � u' � 0:�6:5�

Adding the equations (6.2) and (6.4), we get ur � @�u� � 0: Furthermore, by
(6.3) we have u� � @�ur and, consequently, ur � @2�ur � 0: Hence the func-
tions ur; u� have the form

124 v. a. kozlov, v. maz'ya and j. roÞmann



{orders}ms/98896/kozlov.3d -20.11.00 - 09:05

ur � c1�'� cos �� c2�'� sin �;

u� � c2�'� cos �ÿ c1�'� sin �:

Inserting u! � r!ur (i.e., u� � @�ur; u' � �sin ��ÿ1 @'ur) into (6.5), we arrive
at

@�
ÿ�sin ��ÿ1 @'ur� � 0:

Consequently, the function c1 in the representation of ur is constant. More-
over, it holds u' � �sin ��ÿ1 @'ur � c02�'�:We insert this representation for u'
and the representations given above for ur and u� into (6.2). Then we obtain

c2�'� � c002�'� � 0:

This implies c2 � a cos'� b sin' and

ur
u�
u'

0@ 1A � sin � cos' sin � sin' cos �
cos � cos' cos � sin' ÿ sin �
ÿ sin' cos' 0

0@ 1A a
b
c1

0@ 1A � J
a
b
c1

0@ 1A ;

where a; b; c1 are constants. Furthermore, for v! � 0; q � 0 we have

s
�� u

p

�
;
� v
q

�
; 0
�
�
Z



�
r!ur � r!�vr � �2ur � 2r! � u! ÿ p��vr

�
d! � 0:

Using (6.2), (6.3) and (3.9), we get
R


 p�vr d! � 0 for all vr 2H
�
1�
�; i.e.,

p � 0:
Thus, �0 � 0 is the only possible eigenvalue in the strip ÿ1=2 � Re� � 0

and the corresponding eigenvectors (in the Cartesian coordinate system)
have the form �u; 0�; where u 2hc:

The assertions of the theorem for the number �1 � ÿ1 follow from Theo-
rem 3.1. The proof is complete.

Remark 6.1. The conditionhc 6� f0g in the second part of Theorem 6.1 is
satis¢ed only in the following three cases:
1. k is a dihedron bounded by two half-planes ÿ�; ÿÿ and

h � fu 2 H1�
�3 : un � 0 on �g; where � � ÿ� \ S2:

2. k is a dihedron bounded by two half-planes ÿ�; ÿÿ which are ortho-
gonal to each other andh � fu 2 H1�
�3 : un � 0 on �; u� � 0 on ÿg:
3. k is a half-space bounded by a plane ÿ andh � fu 2 H1�
�3; u� � 0

on  � ÿ \ S2g:
In all other cases the numbers 0 and ÿ1 do not belong to the spectrum of

the pencil A:
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7. The eigenvalue � � 1:

In this section we will investigate the number � � 1: By Theorem 4.1 this is
the only possible eigenvalue on the line Re � � 1: We will see that the ex-
istence and the number of eigenvectors and generalized eigenvectors to � � 1
depends on the properties of the spaceh:

Definition 7.1. The space h � H1�
�3 is said to be a subspace of the
¢rst kind, if Z

@


un d!0 � 0 for all u 2h:

Otherwise,h will be called a subspace of the second kind.

Remark 7.1. Obviously,h is a subspace of the ¢rst kind, if I� � ;; and a
subspace of the second kind, if I� 6� ;:
We further note that Z

@


un d!0 �
Z



r! � u! d!

for arbitrary u 2 H1�
�3: This equality holds, if we set vr � 1 in the second
part of the proof of Lemma 3.3.

Lemma 7.1. Let f be an arbitrary function in L2�
�:
1) Ifh is a subspace of the ¢rst kind, then for the solvability of the equation

r! � u! � f�7:1�
in spaceh!

s it is necessary and su¤cient thatZ



f d! � 0:�7:2�

2) If h is a subspace of the second kind, then equation (7.1) is always sol-
vable inh!

s :

3) There exists a constant c such that in both cases a solution u! 2h!
s of

equation (7.1) can be chosen in such a way that

ku!kh1�
� � c kf kL2�
� :�7:3�

Proof 1) It is evident that the condition (7.2) is necessary for the solva-
bility of (7.1). As it is known (see, e.g. [16]), this condition is also su¤cient for
the solvability of (7.1) in the space

�
h1�
�: This proves the ¢rst assertion.
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2) Let u�0�! 2h!
s and

R

r! � u�0�! d! 6� 0: We write the solution u! 2h!

s

of (7.1) in the form

u! � u�1�! � c u�0�! where c �
�Z



r! � u�0�! d!
�ÿ1 Z




f d!:

Then an equation of the form r! � u�1�! � g holds for u�1�! , where
R

 g d! � 0:

This equation is solvable in h
�
1�
�: Thus, the second assertion is proved.

3) We denote by X0 the space fu! 2h!
s : r! � u! � 0g and by X 1 any

direct complement in h!
s : Then by assertions 1), 2) the operator

u! ! r! � u! is an injective mapping from X 1 onto the space
ff 2 L2�
� :

R

 f d! � 0g; if h is a subspace of the ¢rst kind, and onto

L2�
�; ifh is a subspace of the second kind. Consequently, if we choose the
solution of (7.1) from the space X 1; the estimate (7.3) with a constant c in-
dependent of f is satis¢ed. The proof of the lemma is complete.

For � � 1 the sesquilinear form (3.12) takes the form

a
�� u

p

�
;
� v
q

�
; 1
�
� �u!; v!� �

Z



�
1
2r!ur � r!vr � 5

2 urr! � v! � �r! � u!� vr

ÿ 1
2 pr! � v! ÿ 1

2 �3 ur �r! � u!� q
�
d!:

Consequently, every eigenvector �u; p� satis¢es the equation
3 ur �r! � u! � 0 in 
�7:5�

(cf. (3.5)). Inserting v! � 0; q � 0 into (7.4) and using (7.5), we obtainZ



�
�r!ur� � r!vr ÿ 6 ur vr

�
d! � 0 for all vr 2h!

s :�7:6�

From (7.4)^(7.6) it follows that

�u!; v!� �
Z



�
5
2 urr! � v! ÿ 1

2 pr! � v!
�
d! � 0 for all v! 2h!

s :�7:7�

The equation (7.7) together with (7.5) can be considered as a variational
problem for the vector-function �u!; p�: We consider the following general-
ization of this problem.

Problem 1. Let the functions f ; g 2 L2�
� and the vector-function
F 2 L2�
�2 be given. One has to ¢nd a vector-function �u!; p� 2h!

s � L2�
�
satisfying the integral identity
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�u!; v!� �
Z



�
ÿ 1

2 pr! � v! � �r! � u!� q
�
d!�7:8�

�
Z



�
f r! � v! � F � v! � g q

�
d!

for all v! 2h!
s ; q 2 L2�
�:

Remark 7.2. From the integral identity (7.8) it follows that

r! � u! � g in 
:�7:9�
Therefore, (7.8) can be written in the form

�u!; v!� ÿ 1
2

Z



pr! � v! d!�7:10�

�
Z



�
f r! � v! � F � v!

�
d! for all v! 2h!

s :

Clearly, the integral identity (7.8) is equivalent to the validity of the equality
(7.9) and the relation (7.10).
Before we investigate the solvability of Problem 1, we prove the following

lemma.

Lemma 7.2. The set of the vector-functions u! 2 h1�
� satisfying the equa-
tion

�u!; u!� � 0�7:11�
is exhausted by the linear combinations of the vector-functions

u�1�! �
sin'

cos � cos'

� �
; u�2�! �

cos'

ÿ cos � sin'

� �
; u�3�! �

0
sin �

� �
:�7:12�

Proof. Equation (7.11) is equivalent to

@�u� � 0 in 
;�7:13�
@'u' � cos � u� � 0 in 
;�7:14�

@�

� u'
sin �

�
� 1

sin2 �
@'u� � 0 in 
:�7:15�

From (7.13) it follows that u� � u��'�: Hence from (7.14) we conclude that
u' has the form

u' � ÿ cos �F�'� � h���; where F 0 � u�:
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Using now (7.15), we ¢nd that

u' � cos � @'u� � sin � g�'�:
Consequently,

cos �
ÿ
@'u� � F�'��� sin � g�'� � h���:

This implies

F � a cos'� b sin'� c1; g � c2; h��� � c1 cos �� c2 sin �;

where a; b; c1; c2 are constants. Thus, we get

u��'� � b cos'ÿ a sin'; u' � ÿ cos � �a cos'� b sin'� � c2 sin �:

This proves the lemma.

Remark 7.3. 1) By the inequality (2.3), we have r! � u! � 0 for every
vector-function u! 2 h1�
� satisfying (7.11).
2) Let u�j�! ; j � 1; 2; 3; be the vectors (7.12). Then the vectors r

�
0
u�j�!

�
;

j � 1; 2; 3; have the form of rigid body rotations

0
x3
ÿx2

0@ 1A ;
x3
0
ÿx1

0@ 1A ;
ÿx2
x1
0

0@ 1A
in the Cartesian system of coordinates.
We denote byh0 the set of all linear combinations of the vector-functions

(7.12) which belong to the spaceh!
s :

Lemma 7.3. Let f � g � 0 and F � 0: Then the following assertions are va-
lid for the solutions of Problem 1.
1) If h is a subspace of the ¢rst kind, then the solutions of Problem 1 are

exhausted by the vector-functions �u!; p�; where u! 2h0; p � const 2 C:
2) Ifh is a subspace of the second kind, then the solutions of Problem 1 are

exhausted by the vector-functions �u!; 0�; where u! 2h0:

Proof For f � g � 0; F � 0 from (7.8) it follows that r! � u! � 0 and

�u!; v!� ÿ 1
2

Z



pr! � v! d! � 0 for all v 2h!
s

(see Remark 7.2). Consequently, �u!; u!� � 0: This implies �u!; v!� � 0 for all
v! 2h!

s and
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Z



pr! � v! d! � 0 for all v! 2h!
s :

Since h
�
1�
� �h!

s ; the last equality can be satis¢ed only for constant p: Now
the assertions of the lemma follow from De¢nition 7.1 and Lemma 7.2.

We consider the inhomogeneous Problem 1 now.

Lemma 7.4 Let f ; g 2 L2�
� and F 2 L2�
�2:
1) Ifh is a subspace of the ¢rst kind, then for the solvability of Problem 1 it

is necessary and su¤cient thatZ



g d! � 0 and
Z



F � v! d! � 0 for all v! 2h0:�7:16�

2) Ifh is a subspace of the second kind, then the conditionZ



F � v! d! � 0 for all v! 2h0:�7:17�

is necessary and su¤cient for the solvability of Problem 1.

Proof. The proof of the necessity of the conditions (7.16), (7.17) is ob-
vious. We prove the su¤ciency of these conditions.
Let at ¢rst h be a subspace of the ¢rst kind. As we have mentioned in

Remark 7.2, the solution �u!; p� of Problem 1 satis¢es the equation
r! � u! � g: Using the ¢rst condition in (7.16) and the ¢rst part of Lemma
7.1, we obtain the existence of a solution u�0�! of the equation r! � u! � g in
the space h!

s : We write the solution of Problem 1 in the form
u! � u�1�! � u�0�! : Then for the determination of u�1�! and p we have the equa-
tion

�u�1�! ; v!� ÿ 1
2

Z



pr! � v! d! � ÿ�u�0�! ; v!��7:18�

�
Z



�f r! � v! � F � v!� d! for all v! 2h!
s :

Furthermore, the equation r! � u�1�! � 0 must be satis¢ed in 
:
We introduce the space X � fu! 2h!

s : r! � u! � 0g: It is evident that
h0 � X : Let X0 be the direct complement of h0 in X : Then ��; �� is a scalar
product in X 0: We seek the element u�1�! in the space X 0: Inserting v! 2 X 0

into (7.18), we obtain
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�u�1�! ; v!� � ÿ�u�0�! ; v!� �
Z



F � v! d! for all v! 2 X 0:�7:19�

The right side of (7.19) is a bounded antilinear functional in X0: Hence the
Riesz theorem implies the existence of an element u�1�! 2 X 0 satisfying (7.19).
If v! 2h0; then (7.19) is satis¢ed by the second condition of (7.16). Con-

sequently, (7.19) is satis¢ed for all v! 2 X :
Let X 1 be the direct complement of the subspace X in h!

s and let
y � fg 2 L2�
� :

R

 g d! � 0g: By the ¢rst part of Lemma 7.1 the operator

u! ! r! � u! is an isomorphism from X1 onto y: We represent the element
v! 2h!

s as a sum v! � v�0�! � v�1�! ; where v�0�! 2 X ; v�1�! 2 X 1: Then the integral
identity (7.18) is satis¢ed, if

ÿ 1
2

Z



pr! � v�1�! d! � ÿ�u�0�! ; v�1�! � �
Z



F � v�1�! d!ÿ �u�1�! ; v�1�! ��7:20�

�
Z



f r! � v�1�! d!:

The right side of (7.20) is a functional on x1 and, consequently, also on y:
Therefore, there exists an element p 2 y satisfying (7.20) for all v�1�! 2 x1:

Thus, we have proved part 1) of the lemma.
The proof of the second part proceeds analogously.

Now we are able to give a description of the eigenfunctions and general-
ized eigenfunctions corresponding to the eigenvalue � � 1: We start with the
case whenh is a subspace of the ¢rst kind.

Theorem 7.1. Suppose that 
 6� S2 and h is a subspace of the ¢rst kind.
Then the number � � 1 is always an eigenvalue of the pencil A��� and the
vector-functions �0; u!; c�; where u! 2h0; c 2 C; are corresponding eigenvec-
tors. Moreover, the following assertions are true.
1) If the problemZ




ÿr!w � r!vÿ 6w v
�
d! � 0 for all v 2h!

s ;

Z



wd! � 0

8>>>>><>>>>>:
�7:21�

has only the trivial solution in the spacehs
r; then there are no other eigenvec-

tors. If the problem (7.21) has a nontrivial solution w 2hs
r; then there are the

additional eigenvectors �w; u!; p�; where �u!; p� is a solution of Problem 1 with
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f � ÿ 5
2w; g � ÿ3w; F � 0: Other eigenvectors to the eigenvalue � � 1 do not

occur.
2) For the existence of a generalized eigenvector to the eigenvector

�u�0�r ; u�0�! ; p�0�� it is necessary and su¤cient that u�0�r � 0; u�0�! � 0; p�0� � const;
and that the problemZ




ÿr!w � r!vÿ 6w v
�
d! � ÿ

Z



p�0� v d! for all v 2hs
r;

Z



wd! � 0

8>>>>><>>>>>:
�7:22�

has a solution w 2hs
r: In this case the corresponding generalized eigenvector

has the form �w; u!; p�; where �u!; p� is a solution of Problem 1 with f � ÿ 5
2w;

g � ÿ3w; F � 0: Other generalized eigenvectors do not occur.

Proof. Let �ur; u!; p� be an eigenvector to the eigenvalue � � 1: If ur � 0;
then by (7.5) we get r! � u! � 0 and from (7.7) it follows that

�u!; u!� ÿ 1
2

Z



pr! � v! d! � 0 for all v! 2hs
!:

Using the ¢rst part of Lemma 7.3, we conclude that u! 2h0 and p � const.
Let now ur be nonzero. Then by (7.5) and (7.6) the function ur is a solution

of the problem (7.21) and from (7.5), (7.7) it follows that the vector-function
�u!; p� is a solution of the problem

r! � u! � ÿ3ur;�7:23�

�u!; v!� ÿ 1
2

Z



pr! � v! d! � ÿ 5
2

Z



urr! � v! d! for all v! 2hs
!:

This proves the assertions on the eigenvectors.
We investigate now the existence of generalized eigenvectors. Let

�u�0�r ; u�0�! ; p�0�� be an eigenvector to the eigenvalue � � 1 and let
�u�1�r ; u�1�! ; p�1�� be a corresponding generalized eigenvector. Di¡erentiating
(3.12) with respect to �; we obtain

d
d�

a
�� u

p

�
;
� v
q

�
; �
����

��1
� 1

2

Z



�
ÿ 6 ur vr ÿ 3 u! � v! � urr! � v!

ÿ �r! � u!� vr � p vr ÿ ur q
�
d!:

Consequently, the generalized eigenfunction satis¢es the equation
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�u�1�! ; v!� � 1
2

Z



�
�r!u�1�r � � r! vr � 5 u�1�r r! � v!�7:24�

� 2 �r! � u�1�! � vr ÿ p�1� r! � v!
ÿ �3u�1�r �r! � u�1�! � q

�
d!

� 1
2

Z



�
ÿ 6 u�0�r vr ÿ 3 u�0�! � v! � u�0�r r! � v!

ÿ �r! � u�0�! � vr � p�0� vr ÿ u�0�r q
�
d! � 0

for all vr 2hs
r; v! 2hs

!; q 2 L2�
�: From this we get

3 u�1�r �r! � u�1�! � u�0�r � 0 in 
�7:25�
and Z




�
�r!u�1�r � � r!vr � 2 �r! � u�1�! � vr ÿ 6 u�0�r vr�7:26�

ÿ �r! � u�0�! � vr � p�0� vr
�
d! � 0

for all vr 2hs
r: Using the equalities r! � u�0�! � ÿ3u�0�r and

r! � u�1�! � ÿ3u�1�r ÿ u�0�r (see (7.5), (7.25)), we ¢nd that (7.26) is equivalent toZ



�
�r!u�1�r � � r!vr ÿ 6 u�1�r vr

�
d! �

Z



�
5 u�0�r vr ÿ p�0� vr

�
d!�7:27�

for vr 2hs
r: Substituting vr � u�0�r into (7.27) and using (7.6), we obtainZ




�
5 ju�0�r j2 ÿ p�0� u�0�r

�
d! � 0:�7:28�

Furthermore, by (7.7) we have

�u�0�! ; u�0�! � � 1
2

Z



�
5 u�0�r r! � u�0�! ÿ p�0� r! � u�0�!

�
d! � 0:

The last equality together with the equality r! �u�0�! �ÿ3u�0�r and (7.28) im-
plies �u�0�! ;u�0�! ��0: Therefore, u�0�! 2h0:Moreover, we get u�0�r �ÿ1

3r! �u�0�! �0
(see Remark 7.3). As it has been shown in the beginning of the proof, this
implies p�0� � const. Inserting vr�0; q�0 into (7.24), we ¢nd
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�u�1�! ; v!� � 1
2

Z



�
5 u�1�r r! � v! ÿ p�1� r! � v! ÿ 3 u�0�! � v!

�
d! � 0�7:29�

for all v! 2hs
!:

In particular, if v! 2h0; thenZ



u�0�! � v! d! � 0

and, therefore, u�0�! � 0: Thus, we have shown that only eigenvectors of the
form �0; 0; p�0�� may have generalized eigenvectors. In this case the following
relations for the generalized eigenvectors hold (see (7.25), (7.27), (7.29)):

3 u�1�r �r! � u�1�! � 0 in 
;�7:30� Z



�
�r!u�1�r � � r!vr ÿ 6 u�1�r vr � p�0� vr

�
d! � 0 for all vr 2hs

r;�7:31�

�u�1�! ; v!� � 1
2

Z



�
5 u�1�r r! � v! ÿ p�1� r! � v!

�
d! � 0 for all v! 2hs

!:�7:32�

From (7.30), (7.31) it follows that u�1�r is a solution of the problem (7.22),
while (7.32) is equivalent to Problem 1 for f � ÿ 5

2 u
�1�
r ; g � ÿ3u�1�r ; F � 0 due

to (7.30).
We will now show that there are no second generalized eigenvectors. Let

�u�1�r ; u�1�! ; p�1�� be a generalized eigenvector to the eigenvector �0; 0; p�0��;
p�0� � const: Suppose there exists a second generalized eigenvector
�u�2�r ; u�2�! ; p�2��: Since

d2

d�2
a
�� u

p

�
;
� v
q

�
; �
����

��1
�
Z



�
ÿ 2 ur vr ÿ u! � v!

�
d!;

it follows that

�u�2�! ; v!� � 1
2

Z



�
�r!u�2�r � � r!vr � 5 u�2�r r! � v! � 2 �r! � u�2�! � vr ÿ p�2� r! � v!

ÿ �3u�2�r �r! � u�2�! � qÿ 6 u�1�r vr ÿ 3 u�1�! � v! � u�1�r r! � v!
ÿ �r! � u�1�! � vr � p�1� vr ÿ u�1�r q

�
d! � 0

for all vr 2hs
r; v! 2hs

!; q 2 L2�
�: This implies

3 u�2�r �r! � u�2�! � u�1�r � 0 in 
�7:33�
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and Z



�
�r!u�2�r � � r!vr ÿ 6 u�2�r vr

�
d!�7:34�

�
Z



ÿ
5 u�1�r vr ÿ p�1� vr

�
d! for all vr 2hs

r:

From (7.25), (7.33) and from the properties of the space hs
! it follows thatR


 u
�2�
r d! � 0: Hence by (7.27) we haveZ




ÿr!u�2�r � r!u
�1�
r ÿ 6 u�2�r u�1�r

�
d! � ÿp�0�

Z



u�2�r d! � 0:

Inserting vr � u�1�r into (7.34), we, consequently, obtainZ



ÿ
5 ju�1�r j2 ÿ p�1� u�1�r

�
d! � 0:�7:35�

We now insert v! � u�1�! into (7.32). Then (7.30) yields

�u�1�! ; u�1�! � ÿ 3
2

Z



ÿ
5 ju�1�r j2 ÿ p�1� u�1�r

�
d! � 0:

From this and (7.35) we conclude that �u�1�! ; u�1�! � � 0; i.e., u�1�! 2h0: Accord-
ing to (7.30) and Remark 7.3 this implies u�1�r � 0: Thus, second generalized
eigenvectors do not exist. The proof is complete.

Theorem 7.2. Let 
 6� S2 and leth be a subspace of the second kind.
1) Ifh0 6� f0g; then the number � � 1 is always an eigenvalue of the pencil

A���: The vectors �0; u!; 0�; where u! 2h0; are eigenvectors to this eigenvalue.
If the problem Z




ÿr!w � r!vÿ 6w v
�
d! � 0 for all v 2hr

s�7:36�

has only the trivial solution w � 0 inhs
r; then there are no other eigenvectors.

If the problem (7.36) has a nontrivial solution w 2hs
r; then there is also the

eigenvector �w; u!; p�; where �u!; p� is a solution of Problem 1 with f � ÿ 5
2w;

g � ÿ3w; F � 0: Generalised eigenvectors do not occur.
2) Ifh0 � f0g; then � � 1 is an eigenvalue if and only if the problem (7.36)

has a nontrivial solution w 2hs
r: Then there is the eigenvector �w; u!; p�; where
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�u!; p� is a solution of Problem 1 with f � ÿ 5
2w; g � ÿ3w; F � 0: Generalised

eigenvectors do not occur.

Proof. First we investigate the existence and the form of the eigenvectors.
Let �ur; u!; p� be an eigenvector of the pencil A��� to the eigenvalue � � 1:
Then analogously to the proof of Theorem 7.1, the functions ur; u!; p satisfy
(7.23). If ur � 0; then by the second part of Lemma 7.3, we get u! 2h0 and
p � 0: Consequently, eigenvectors of the form �0; u!; p� exist if and only if
h0 6� f0g: Suppose that ur 6� 0: Then by (7.6) the function ur is a nontrivial
solution of the problem (7.36), while �u!; p� is a solution of the problem
(7.23). This proves the assertions of the theorem concerning the eigenvectors
to the eigenvalue � � 1:
Now we show that generalized eigenvectors do not exist. For this end, we

assume that �u�0�r ; u�0�! ; p�0�� is an eigenvector to the eigenvalue � � 1 and that
�u�1�r ; u�1�! ; p�1�� is a corresponding generalized eigenvector. Analogously to the
proof of Theorem 7.1 we ¢nd that u�0�! � 0 and, consequently, r! � u�0�! � 0:
Hence by (5.4) we have u�0�r � 0: As we have shown in the beginning of the
proof, this implies p�0� � 0: Furthermore, analogously to the proof of Theo-
rem 7.1 the equality (7.29) is satis¢ed. In particular, we haveZ




u�0�! � v! d! � 0 for all v! 2h0

and, therefore, u�0�! � 0: Thus, the vector �u�0�r ; u�0�! ; p�0�� is not an eigenvector.
This proves the theorem.

8. A variational principle for real eigenvalues.

In this section we get a variational principle for real eigenvalues of the op-
erator pencil A��� lying in the interval ÿ1=2 � � < 1: The derivation of this
variational principle is analogous to [11]. For this reason, we give the for-
mulation of the following lemmas and theorems without proof.
We introduce the space

hs
��� � fu 2hs : ��� 2� ur �r! � u! � 0g

for any ¢xed � 2 �ÿ1=2; 1�: For vector-functions u; v 2hs
��� the sesquilinear

form (4.1) is independent of p and q and takes the form
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t�u; v;�� :� �u!; v!� �
Z



�
c
2
�r!ur� � r!vr � ��� 2� �1ÿ c�� ur vr�8:1�

� 1
2 ��� 2��1ÿ �� u! � v!

�
��� 2

2
� 1
��

urr! � v! � �r! � u!� vr�
�
d!:

The form t��; �;�� induces a self-adjoint operator T� on hs
��� which is boun-

ded from below and has discrete spectrum. We denote by
m1��� � m2��� � � � � the eigenvalues of T� counted according to their multi-
plicities. These eigenvalue are given by the equality

mj��� � max
L

min
u2Lnf0g

t�u; u;��Z



juj2 d!
;�8:2�

where the maximum is taken over all subspaces L �hs
��� of codimension

� j ÿ 1:
Since the form t��; �;ÿ1=2� is positive, we have mj�ÿ1=2� > 0:
Let y be the space fu! 2hs

! : r! � u! 2hs
rg: Eliminating the function ur

in the quadratic form t�u; u;�� by the equation ��� 2� ur �r! � u! � 0; we
obtain the following form in the angular components u!:

h�u!; u!;�� � �u!; u!� �
Z



�
1

2�1ÿ ����� 2� jr!�r! � u!�j2

�
� 1ÿ c�
�� 2

� �� 4
�� 2

�
jr! � u!j2 � 1

2 ��� 2��1ÿ �� ju!j2
�
d!:

From (8.2) it follows that

mj��� � max
V

min
u!2Vnf0g

h�u!; u!;��Z



�ju!j2 � ��� 2�ÿ2jr! � u!j2� d!
;�8:3�

where the maximum is taken over all subspaces V � y of codimension
� j ÿ 1:

Lemma 8.1. The equation mj��� � 0 has not more than one zero in the in-
terval �ÿ1=2; 1� for every j � 1; 2; . . . : If mj��0� � 0 for �0 2 �ÿ1=2; 1�; then
mj��� > 0 for � 2 �ÿ1=2; �0� and mj��� < 0 for � 2 ��0; 1�:
Analogously to [11] we obtain the following methodology to ¢nd the ei-

genvalues of the pencil A��� located in the interval �ÿ1=2; 1�:
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Theorem 8.1. The number �0 2 �ÿ1=2; 1� is an eigenvalue of the pencil
A��� with multiplicity � if and only if there exists an integer k � 1 such that

mj��0� � 0 for j � k; k� 1; . . . ; k� � ÿ 1:�8:4�
Due to Lemma 8.1 and Theorem 4, the assertions on the eigenvalue � � 1

can be used to obtain informations on the eigenvalues in the interval
�ÿ1=2; 1�:
Consider ¢rst the case whenhs is a subspace of the ¢rst kind (i.e., I� � ;:)
Theorem 8.2. Let hs be a subspace of the ¢rst kind. If k is the maximal

dimension of subspaces x � fv 2hs
r :
R

 v d! � 0g for whichZ




ÿjr!vj2 ÿ 6 jvj2� d! < 0 for all v 2 xnf0g;

then the interval �ÿ1=2; 1� contains exactly k eigenvalues of A���:
Analogously the following assertion holds in the case when hs is a sub-

space of the second kind (i.e. I� 6� ;:�
Theorem 8.3. Leths be a subspace of the second kind. If k is the maximal

dimension of the subspace x �hs
r for whichZ




ÿjr!vj2 ÿ 6 jvj2� d! < 0 for all v 2 xnf0g;

then the interval �ÿ1=2; 1� contains exactly k eigenvalues of A���:
As a consequence of Theorem 8.3, the following assertion holds.

Corollary 8.1. In the case hs
r �H� 1�
� (this takes place, for example, if

only the boundary conditions (i), (iii) appear in the de¢nition of the spaceh�;
the number of the eigenvalues in �ÿ1=2; 1� monotonically depends on the do-
main 
 � S2:

9. Examples.

1. Let I� 6� ;; In � ;: Then hs
r �H� 1�
�; and hence hs is a subspace of the

second kind. Let also d� be a dihedral angle of aperture �:

Theorem 9.1. If k � d� with � � �=2; and d�nk 6� ;; then the strip
ÿ1=2 � Re� � 1 does not contain eigenvalues of the pencil A���:
Proof. Let 
� � d� \ S2 and let � be the Laplace-Beltrami operator on

S2: Then the smallest positive eigenvalue of the operator pencil
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ÿ� ÿ ���� 1� : H
�
1�
�� ! Hÿ1�
��

is �=� (see, e.g., [9]). HenceZ

�

jr!vj2 d! � 6
Z

�

jvj2 d!; v 2H� 1�
��;�9:1�

provided � � �=2: Since 
 � 
� and 
�n
 6� ;; it follows that the inequal-
ity (9.1) is valid for v 2 H� 1�
� and the equality in (9.1) may be valid only for
v � 0: Using Theorems 8.3 and 7.2, we obtain the assertion of the theorem.

2. We consider a convex polyhedral cone k whose boundary @knf0g
consists of a ¢nite number of £at open faces ÿ 1; . . . ; ÿN and rays. The con-
vexity ofk implies that the angles between two adjacent faces are less than
�: We suppose that the angles between ÿ 1 and adjoining faces are less than
�=2:
Furthermore, we assume that the boundary condition (ii) is prescribed on

ÿ 1; while the Dirichlet condition is given on the remaining faces.

Theorem 9.2. Under the above assumptions, the operator pencil A��� has
only one eigenvalue �1 � 1 in the strip ÿ1=2 � Re� � 1: This eigenvalue has
only the eigenvectors �0; 0; 0; c�; where c is a constant, and there are no gen-
eralized eigenvectors.

Proof. We can suppose that the face ÿ 1 is located in the plane x3 � 0 and
the cone k is placed in the half-space x3 < 0: Let k� and kex be the fol-
lowing cones:

k� � fx � �x1; x2; x3� : �x1; x2;ÿx3� 2kg; kex �k [k� [ ÿ 1 :

Clearly, the cone kex is also convex. By Aex��� we denote the operator
pencil associated with the Dirichlet problem for the operator in (0.1) kex.
We consider the auxiliary spectral problem generated by the ratio of

quadratic forms: Z



jr!vj2 d!Z



jvj2 d!
; v 2 xnf0g;�9:2�

where 
 �k \ S2 and

x �
n
w 2 H1�
� : w � 0 on 2 \ 3 \ � � � \ N and

Z



wd! � 0
o
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(here j � ÿ j \ S2�: Setting

v̂�!� � v�!�; if !3 < 0;
v�!1; !2;ÿ!3�; if !3 > 0;

�
�9:3�

we obtain an extension of v 2 x onto 
ex �kex \ S2: It is evident that

v̂ 2 fw 2H� 1�
ex� :

Z

ex

w d! � 0g:

Using this extension operator, one can show that the least eigenvalue of the
operator induced by (9.2) is not greater than the in¢mum of the functional
(9.2), where 
; v are replaced by 
ex; v̂; respectively, and v̂ is de¢ned by
(9.3).
Since 
ex is placed in a half-sphere, it follows from Proposition 5.1 [11]

that the ¢rst eigenvalue of the spectral problem in 
ex is greater than 6.
Hence the same is valid for the spectral problem in 
. Now the assertion of
the theorem follows from Theorems 8.2 and 7.1.
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