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REMOVABLE SINGULARITIES ON RECTIFIABLE
CURVES FOR HARDY SPACES OF ANALYTIC

FUNCTIONS

ANDERS BJOë RN

Abstract.

In this paper we study sets on recti¢able curves removable for Hardy spaces of analytic func-
tions on general domains. With the methods used it seems natural to distinguish between three
di¡erent classes of recti¢able curves: chord-arc curves, curves of bounded rotation and curves
with Dini continuous tangents.
We give results both for sets on recti¢able Jordan curves and for sets on recti¢able curves

which intersect. Among the results we prove that if K is a set lying on a recti¢able chord-arc
curve, then there exists p <1 such that K is removable for Hp if and only if the generalized
length of K is 0. Furthermore, if the curve is also of bounded rotation, then p can be arbitrarily
chosen greater than 1.

1. Introduction and notation.

We let S � C [ f1g be the Riemann sphere, D � fz 2 C : jzj < 1g, T � @D
and A�
� � ff : f is analytic in 
g. We also let �d denote the d-dimensional
Hausdor¡ measure and dim denote the Hausdor¡ dimension. By a domain
we mean a non-empty open connected set.

Definition 1.1. For 0 < p <1 and a domain 
 � S (or 
 � Cn, n > 1)
let

Hp�
� � ff 2 A�
� : jf jp has a harmonic majorant in 
g;
H1�
� � ff 2 A�
� : supz2
 jf �z�j <1g:

In this paper we will use the following de¢nition of removability.

Definition 1.2. Let 
 � S be a domain and K � 
 be compact such that

nK is also a domain. Let 0 < p � 1. Then the set K is removable for
Hp�
nK� if Hp�
nK� � Hp�
� (as sets).
Hejhal [8], [9] showed that the de¢nition is independent of the domain 
,
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as long as K � 
, and therefore we will normally just say that K is re-
movable for Hp.
It is true that K is removable for Hp�
nK� if and only if

Hp�
nK� � A�
�, i.e. every f 2 Hp�
nK� can be extended analytically to
the whole of 
, see Corollary 4.6 in Bjoë rn [3].
The inclusion Hp�
� � Hq�
� if 0 < p < q � 1 has as a consequence that

if K is a set removable for Hp then K is also removable for Hq for all q > p.
It is true that a ¢nite union of disjoint compact sets removable for Hp is

removable for Hp. In the plane case removable sets are totally disconnected.
Together this implies that removability is a local property in the plane case.
For a more detailed discussion, including the non-compact case and the

higher dimensional case, we refer the reader to Bjoë rn [3], especially
Chapter 4.

In this paper we will be concerned with singularities that lie on recti¢able
curves.
The ¢rst result of this type was given by Yamashita [21] in 1969. He

proved that if ÿ is a Jordan curve with continuous tangent angles, K � ÿ is
compact with �1�K� � 0 and 
 � K is a domain, then K is removable for
Hp�
nK� for all p > 1. If ÿ is also analytic he proved that K is removable
for H1�
nK�.
At about the same time Heins [7], p. 50, proved that if K � R is compact

with �1�K� � 0 then K is removable for H1�SnK�.
At that time Hejhal had not yet proved that removability is independent

of the surrounding domain (
 above). Hejhal [8], [9] proved this result and
also proved that if ÿ is analytic then K is removable for H1, but he does not
seem to have been aware of Yamashita's paper.
In 1987 [15], Theorem 3.1, �ksendal stated the following result.

Theorem 1.3. Let E be a relatively closed subset of 
 � Cn. Assume that
E � @Q for a domain Q and that �2nÿ1�E� � 0.
(i) If Q is a c1�" domain for some " > 0 then H1�
nE� � A�
�.
(ii) If Q is a c1 domain then Hp�
nE� � A�
� for all p > 1.
(iii) If Q is a BMO1 domain then there exists p <1 with Hp�
nE� � A�
�.
Remark. A domain is a c1�" (BMO1) domain if the boundary locally can

be described as the graph of a function with gradient in the Hoë lder class c"

(BMO).

As was mentioned above the condition Hp�
nE� � A�
� is equivalent to
De¢nition 1.2 for compact E. For non-compact sets, in the plane case, ne-
cessary and su¤cient conditions for Hp�
nE� � A�
� can be obtained from
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the compact case of removability, in the sense of De¢nition 1.2, see
Theorem 4.10 in Bjoë rn [3].
In the higher dimensional case it is known that most sets are removable,

e.g. all compact subsets of a domain, see Section 3.3 in Bjoë rn [3]. Because of
this we will restrict our considerations to the compact case in the plane.
We will generalize �ksendal's theorem in several directions below. When

proving his result �ksendal used Brownian motion. We use non-probabilistic
methods instead.

We end this section with some remarks about boundary values of analytic
functions that will be needed later.
For f 2 A�D� we let f ��z� denote the non-tangential limit at z 2 T, if it

exists. In the case when f 2 Hp�D� well-known results concerning the con-
vergence of fr and f � can be found, e.g., in Rudin [17], Chapter 17. We will
need one result of this type which we state here for completeness.

Lemma 1.4. Let 1 � p � 1; 1=p� 1=p0 � 1; f 2 Hp�D�, g 2 Hp0 �D� and
h 2 c�fz 2 C : c � jzj � 1g�, for some c < 1. Then fg 2 H1�D�,

kfgkH1�D� � kf kHp�D�kgkHp0 �D�

and

lim
r!1ÿ

Z 2�

0
jf ��ei��g��ei��h�ei�� ÿ f �rei��g�rei��h�rei��j d� � 0:

2. The main lemma for Jordan curves.

Lemma 2.1. Let 1 � p <1 and 1=p� 1=p0 � 1. Let ÿ � C be a recti¢able
Jordan curve. Let 
 be the interior of ÿ and assume that 0 2 
. Let ' be a
conformal mapping from D to 
 and e' be a conformal mapping from D to
Sn
. Let ��z� � 1=z. Assume that '0 and �� � e'�0 both belong to Hp0 �D�. Let
K � ÿ be compact.
Then K is removable for Hp if and only if �1�K� � 0.

Remark. For any recti¢able Jordan curve ÿ , with interior 
, and a con-
formal mapping ' : D! 
 it is true that '0 2 H1�D�, see Koosis [13], p. 69.

Proof. It is a consequence of a theorem by Calderön that if �1�K� > 0,
then K is not removable for H1 and hence not for Hp, p <1, see e.g. Christ
[4], Theorem 8, p. 102, for a proof. Thus we can assume that �1�K� � 0.
By using the conformal invariance of functions in Hp0 �D� we can assume

that '�0� � 0 and e'�0� � 1. Since ÿ is a Jordan curve we can assume, by a
theorem of Carathe¨odory, see e.g. Rudin [17], Chapter 14.19^20, that ' and
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e' are defined on the whole of D. Moreover, ' maps D homeomorphically
onto
 and e' maps D homeomorphically onto Sn
.
Assume that f 2 Hp�SnK�. We have to prove that f can be continued,

analytically, to the whole of S. In fact, it is enough to prove that f can be
continuously continued to the whole of S, as this shows that f is bounded
and we know that K is removable for H1 (since all sets with �1� � � � 0 are
removable for H1), but we will prove that f can be analytically continued.
We assume that ÿ is positively oriented. Let ÿ r � f'�rei�� : 0 � � � 2�g

(positively oriented), 0 < r � 1, and 
r be the interior of ÿ r. Let also
~ÿ r � fe'�rei�� : 0 � � � 2�g (positively oriented).
Fix � 2 
1=4 and let 1

2 � r � 1 for the main part of the derivation below.
Substituting � � '�rei�� we obtainZ

ÿ r

f ���
2�i�� ÿ �� d� �

Z 2�

0

f � '�rei��
2�i�'�rei�� ÿ �� ire

i�'0�rei�� d�

�
Z 2�

0
g�rei���f � '��rei��'0�rei�� d�;

where g�z� � z=2��'�z� ÿ ��, which is a bounded and continuous function
for 1

2 � jzj � 1. As f 2 Hp�SnK�, conformal invariance shows that
f � ' 2 Hp�D�. Thus the conditions in Lemma 1.4 are ful¢lled and we get,
letting r! 1ÿ,Z

ÿ r

f ���
2�i�� ÿ �� d� !

Z 2�

0
g�ei���f � '��ei���'0���ei�� d� �

Z
ÿ

f ���
2�i�� ÿ �� d�:

The latter integral is well-de¢ned, as f is de¢ned a.e. on ÿ by the assumption
�1�K� � 0.
We now want to perform the same kind of calculation for the outer re-

gion. As 1 2 Sn
 we cannot hope for e'0 2 Hp0 �D�, but using the conformal
mapping � we can obtain the desired results. Letting � � e'�rei�� �
� � � � e'�rei�� we obtainZ

eÿ r

f ���
2�i�� ÿ �� d� �

Z 0

2�
ÿ f � e'�rei��
2�i�e'�rei�� ÿ �� irei�e'2�rei���� � e'�0�rei�� d�

�
Z 2�

0
~g�rei���f � e'��rei���� � e'�0�rei�� d�;

where ~g�z� � ze'2�z�=2��e'�z� ÿ �� is bounded and continuous for 1
2 � jzj � 1.

By conformal invariance f � e' 2 Hp�D�. Applying Lemma 1.4 we get, letting
r! 1ÿ,
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Z eÿ r

f ���
2�i�� ÿ �� d� !

Z 2�

0
~g�ei���f � e'��ei����� � e'�0���ei�� d� � Z

ÿ

f ���
2�i�� ÿ �� d�:

For 1
2 � r < 1 we get, using Cauchy's theorem,

f ��� �
Z
ÿ r

f ���
2�i�� ÿ �� d�

�
Z
ÿ r

f ���
2�i�� ÿ �� d� �

Z eÿ 1=2ÿeÿ r

f ���
2�i�� ÿ �� d�

�
Z eÿ 1=2

f ���
2�i�� ÿ �� d� �

Z
ÿ r

f ���
2�i�� ÿ �� d� ÿ

Zeÿ r

f ���
2�i�� ÿ �� d�

!
Z eÿ 1=2

f ���
2�i�� ÿ �� d� �

Z
ÿ

f ���
2�i�� ÿ �� d� ÿ

Z
ÿ

f ���
2�i�� ÿ �� d�

�
Z eÿ 1=2

f ���
2�i�� ÿ �� d�;

where the limit is taken as r! 1ÿ:
De¢ne

F ��� �
Z
eÿ 1=2

f ���
2�i�� ÿ �� d�;

an analytic function inside eÿ 1=2. We see that

F ��� � f ��� for all � 2 
1=4:

Hence f can be continued analytically across K and f 2 A�S� � Hp�S�.

3. Properties of di¡erent classes of curves.

In this section we introduce three classes of curves that are suitable when
applying Lemma 2.1.

3.1. Chord-arc curves.

Definition 3.1. A chord-arc curve (arc ) is a recti¢able Jordan curve (arc)
ÿ � C for which there exists a constant M, such that for any z1; z2 2 ÿ the
length of the shorter arc in ÿ between z1 and z2 is less than Mjz1 ÿ z2j.
A domain bounded by a chord-arc curve is called a chord-arc domain.

Remark. A BMO1 curve is always a chord-arc curve in the plane case.
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Theorem 3.2. Assume that 
 is a bounded chord-arc domain and that ' is a
conformal mapping from D onto 
. Then there exists p > 1, only dependent on
the chord-arc constant M of ÿ � @
, such that '0 2 Hp�D�.
Remark. This is not a new result, however as we have not found a re-

ference with a proof, we here give a proof for completeness.

Proof. Let ! denote the harmonic measure for 
 with respect to some
¢xed point z0 2 
, and let s denote the arc length on ÿ .
By a theorem due to Lavrent0ev, Theorem 7 in [14], d! belongs to the

Muckenhoupt class A1�ds�, and moreover, the A1 constants depend only on
the chord-arc constant of ÿ , see also Jerison and Kenig, Theorem 2.1 in [10]
and p. 222 in [11]. By Lemma 5 in Coifman and Fe¡erman [5] it follows that
ds 2 A1�d!�, and moreover,

ds
d!
2 Lp�d!�

for some p > 1. Thus

'0�ei�� � 1
iei�

d'�ei��
d�

2 Lp�T�:

By examining the proof it is easy to see that p is only dependent on the A1
constants and thus only on the chord-arc constant of ÿ .
As '0 2 H1�D�, see the remark following Lemma 2.1, we can conclude,

using a theorem by Smirnov, see e.g. Koosis [13], p. 102, that '0 2 Hp�D�.
We will be needing the following geometrical lemma.

Lemma 3.3. Let 
 � D be a domain with ÿ � @
 \D being a chord-arc
arc with endpoints on T and chord-arc constant M. Then 
 can be extended to
a chord-arc domain e
 with e
 \D � 
. Moreover, if " > 0 then e
 can be
chosen so that there is a point z0 2 e
, @ e
 � fz 2 C : �1ÿ "�r < jzÿ z0j < rg
for some r > 0, and the chord-arc constant eM of e
 only depends on M.

Sketch of proof. Draw straight radial rays out from the endpoints of ÿ ,
the length depending on M. Close the curve by drawing a circular arc with
centre z0, where jz0j is large enough, and such that the curve surrounds z0.
That this can be done with control over eM, so that eM only depends on M, is
elementary, we omit the proof of this fact here.

3.2. Curves of bounded rotation.

The following de¢nition was introduced by Radon [16] in 1919.

Definition 3.4. A recti¢able Jordan curve (arc) ÿ is of bounded rotation
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if the forward half-tangent exists at every point and the tangent angle ��s�,
which it makes with a ¢xed direction, can be de¢ned as a function of boun-
ded variation of the arc length s.

We assume that ��s� is so determined that its jumps do not, in modulus,
exceed �, and that the arc length parametrization corresponds to the positive
orientation of ÿ .
The following result is due to Warschawski and Schober, Theorem 2

in [20].

Theorem 3.5. Assume that ÿ is a chord-arc curve of bounded rotation with
interior 
. Let � be as above, v� be the positive variation of � and

a� � max
s
�v��s�� ÿ v��sÿ��:

Let ' map D conformally onto 
. Then '0 2 Hp�D� for 0 < p < �=a�.

3.3. Curves with Dini continuous tangents.

Definition 3.6. Let f 2 c�R� (or f 2 c�I� for some interval I � R) and
let

c�t� � cf �t� � sup
jxÿyj<t

jf �x� ÿ f �y�j

be the modulus of continuity. Then the function f is Dini continuous ifZ �

0

c�t�
t

dt <1;

for some � > 0.

Definition 3.7. Let ÿ be a recti¢able Jordan curve (arc) and assume that
the tangent function ��s� is a Dini continuous function with respect to the
arc length s. Then we say that ÿ is a curve (arc) with Dini continuous tan-
gents.

Theorem 3.8. Let 
 be a domain bounded by a closed curve ÿ � C with
Dini continuous tangents. Let ' be a conformal mapping from D onto 
.
Then '0 is non-zero and continuous on D.

This condition, and hence the conclusion, is true for ÿ in the Hoë lder class
c1�".
This result was proved by Warschawski in 1932, p. 443 in [18]. War-

schawski gave a simpler proof of this theorem in 1961 [19].
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4. Removability on Jordan curves.

As a corollary of Lemma 2.1 and Theorems 3.2, 3.5 and 3.8 we get the fol-
lowing result.

Theorem 4.1. Let ÿ � C be a chord-arc curve with chord-arc constant M.
Let K � ÿ be compact. Let � be the tangent angle of the forward half-tangent,
as in Theorem 3.5, whenever it exists. Let v� and vÿ be the positive and nega-
tive variation functions of � , resp., if they exist, and

a� � max
s

v��s�� ÿ v��sÿ�� �:

Then the following are true :
(a) there exists p <1, only dependent on M, such that K is removable for

Hp if and only if �1�K� � 0,
(b) if a� exist, p0 < min��=a�; �=aÿ� and 1=p� 1=p0 � 1, then K is re-
movable for Hp if and only if �1�K� � 0,
(c) if � is Dini continuous, then K is removable for H1 if and only if

�1�K� � 0.

Remarks. In Corollary 5.4 we improve upon the results in (b) and (c).
Kobayashi [12], Lemma 2, gave an example of a set K � R, or rather a

class of such sets, not removable for any p < 1. His example can be chosen
to have dimension zero. Thus even a lower dimensional Hausdor¡ condition
will not give removability for p < 1.

Proof. We can assume that 0 2 
. It follows directly from Theorems 3.2,
3.5 and 3.8 that the conditions on ' in Lemma 2.1, necessary for (a), (b) and
(c), are ful¢lled in the respective cases. We only need to show that
�� � e'�0 2 Hp0 �D� for appropriate p0, where � � e' is as in Lemma 2.1.
We consider ¢rst (b) and (c). Let bÿ � ��ÿ� and b
 � ��Sn
�. Let �̂ be the

tangent angle of the forward half-tangent along bÿ . Let v̂� and v̂ÿ be the po-
sitive and negative variation functions of �̂ , resp., and

â� � max
s

v̂��s�� ÿ v̂��sÿ��:�

Using the conformality of �, it is easy to see that in (c) �̂ is also Dini con-
tinuous and in (b) bÿ is also of bounded rotation with â� � a�. Using
Theorems 3.5 and 3.8 we see that the condition on �� � e'�0 is ful¢lled in (b)
and (c).
In (a) we can, since removability is a local property, assume that K � ÿ ,

where ÿ is an arc such that Lemma 3.3 can be applied. Let e
 be the domain
given by Lemma 3.3. By a translation of the coordinate system we can as-
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sume that ~ÿ � @ ~
 � fz 2 C : �1ÿ "�r < jzj < rg and 0 2 e
. Assume that
K � ~ÿ .
Let now ~ÿ � ��~ÿ� and let ŝ and ~s denote arc length on bÿ and ~ÿ , resp.

Then for z 2 ~ÿ we have rÿ2 < jdŝ���z��=d~s�z�j < ��1ÿ "�r�ÿ2. This shows
that bM � eM=�1ÿ "�2, where bM is the chord-arc constant of bÿ .
Let p be suitable for eM and bM in Theorem 3.2. Then Theorem 3.2 gives us

the condition necessary for applying Lemma 2.1, which shows that K is re-
movable for Hp.

5. Removability on intersecting curves.

5.1. Intersecting curves of bounded rotation.

Lemma 5.1. Let 1 � p <1 and 1=p� 1=p0 � 1. Let R � C be a domain
whose boundary is a Jordan curve containing 0. Let � > 0 (be an angle) and
��z� � z�=�. Assume that (a suitable branch of ) � is injective on R and let
Q � ��R�. Let ' : D! Q be a conformal mapping and assume that
'0 2 Hp0 �D�. Let f 2 Hp�R� \ A�Snf0g�. Let  � R be a recti¢able Jordan arc
with �1; �2 2 @R as endpoints. Then����Z



�kÿ1f ��� d�
����! 0; as �1; �2 ! 0;

whenever k � �=�. Moreover, if '0 is continuous and non-zero on D and

f ��� �
XN
k�0

ck�ÿk;

with N <1, then ck � 0 whenever k � �=p�.

Figure 1. The geometrical situation in Lemma 5.1.
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Proof. We start by proving the ¢rst conclusion. As '0 2 Hp0 �D�, ' must
be bounded and hence both Q and R must be bounded. As @Q is a Jordan
curve we can assume that ' is de¢ned on D and that '�1� � 0.
Let  � �ÿ1 � ' : D!R, a conformal mapping from D to R with

 �1� � 0. Then F � f �  2 Hp�D�, by conformal invariance. Let
wl �  ÿ1��l� � ei�l , l � 1; 2. Let ~ �  ÿ1�� which is a Jordan arc in D from
w1 to w2. Let k � �=�. Using the substitution � �  �z� � '�z��=� we getZ



�kÿ1f ��� d� �
Z

~

'�z���kÿ1�=� �
�
'�z��=�ÿ1'0�z�F �z� dz

�
Z

~

�

�
'�z��k=�ÿ1'0�z�F �z� dz:

The ¢rst factor is bounded and analytic, since k � �=�, the second is in
Hp0�D� and the third in Hp�D�. Thus, by Lemma 1.4, the integrand belongs
to H1�D�. Let

G�z� � �

�
'�z��k=�ÿ1'0�z�F�z�:

As the integral is independent of the path (in D) we have for r0 < 1,Z


�kÿ1f ��� d� �
Z

~

G�z� dz

�
Z r0

1
G�rei�1�ei�1 dr�

Z �2

�1

G�r0ei��ir0ei� d��
Z 1

r0
G�rei�2�ei�2 dr:

Letting r0 ! 1ÿ, the first and the last integral tend to zero by the Fejër^
Riesz inequality, see e.g. Duren [6], p. 46. Thus we see thatZ



�kÿ1f ��� d�
���� ���� � Z �2

�1

jG��ei��j d�;

which tends to zero as �1; �2 ! 0, i.e. as �1; �2 ! 0, since G 2 H1�D�. This
proves the ¢rst conclusion.
Assume now that '0 2 c�D� is non-zero. Then j'�ei��j � Aj�j for some

A > 0 and � near 0.
Assume also that f ��� �PN

k�0 ck�
ÿk. Without loss of generality we can

assume that cN � 1. Then for � near 0

jF�ei��j � jf � �ei���j � 1
2j'�ei��jÿ�N=� � 1

2A
ÿ�N=�j�jÿ�N=�:

But F 2 Hp�D� so for � small enough
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1 >

Z �

ÿ�
jF�ei��jp d� � Aÿ�Np=�

2p

Z �

ÿ�
j�jÿ�Np=� d�;

and thus �Np=� < 1, i.e. N < �=p�.

...

R1

R2

R3

Rm

R0

Γ1

Γm–1

Γ3

Γ2

Γm

Figure 2. The geometrical situation in Lemma 5.2.

Lemma 5.2. Let 1 � p <1 and 1=p� 1=p0 � 1. Let for 0 � j � m, Rj � C
be a domain whose boundary is a Jordan curve containing 0. Assume that
R0 � R1, D � Sm

j�1Rj;Rj \ T 6�1 if 1 � j � m and Rj \ Rk �1 if
1 � j < k � m. Let further for 0 � j � m, �j > 0, �j�z� � z�=�j , and assume
that (a suitable branch of ) �j is injective on Rj . Let 'j : D! �j�Rj�,
0 � j � m, be conformal with '0j 2 Hp0 �D�. Let f 2 A�Snf0g� \Tm

j�1H
p�Rj�

and write

f ��� �
X1
k�0

ck�ÿk:

Then ck � 0 if k � max1�j�m �=�j . If, moreover, '00 is continuous and non-zero
on D, then ck � 0 if k � �=p�0.
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Proof. Let 1 � j � m. We can assume that the domains R1; ::: ;Rm are
ordered so that ÿ j � �@Rj \ @Rj�1�nf0g 6�1 (letting Rm�1 � R1). Fix �j 2 ÿ j

and consider recti¢able Jordan arcs j � Rj with endpoints �jÿ1 and �j (let-
ting �0 � �m). Let  be the union of these arcs and their endpoints, a recti¢-
able Jordan curve around 0. Orient , and j, positively. Then

ck � 1
2�i

Z


�kÿ1f ��� d�:

Lemma 5.1 shows that if k � �=�j, then����Z
j

�kÿ1f ��� d�
����! 0; as �jÿ1; �j ! 0:

Hence ck � 0 if k � max1�j�m �=�j. The function f is thus a polynomial in
�ÿ1 and if '00 is continuous and non-zero on D, Lemma 5.1 also shows that
ck � 0 if k � �=p�0.
Theorem 5.3. Assume that we have a ¢nite number of compact chord-arc

arcs of bounded rotation and let ÿ � C be their union. Assume that they only
intersect at their endpoints. Let z1; ::: ; zm be the points of intersection. Let
mk � 2 be the number of arcs meeting at zk. Assume that no two arcs have the
same tangent at zk (in the direction towards zk ). Near zk, Snÿ splits into mk

regions Rk;1; ::: ;Rk;mk . Let �k;j , 1 � j � mk, be the angles at zk for these re-
gions. Let �k;j�z� � �zÿ zk��=�k;j , for some branch containing Rk;j near zk. As-
sume that K � ÿ is compact. Assume that
(a) p � 1, all arcs have Dini continuous tangents, @�k;j�Rk;j� have Dini con-

tinuous tangents near 0 for 1 � k � m, 1 � j � mk and

p � max
1�k�m

�

max
1�j�mk

�k;j
;

or
(b) p > 1 and for each k, 1 � k � m,
(i)

p >
�

max
1�j�mk

�k;j
;

or
(ii) there is a domain Rk;0 � Snÿ with angle �k;0 � max1�j�mk �k;j at

zk 2 @Rk;0 such that @�k;0�Rk;0� has Dini continuous tangents near 0, where
�k;0�z� � �zÿ zk��=�k;0 and p � �=�k;0.
Then K is removable for Hp if and only if �1�K� � 0.
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Proof. As in Lemma 2.1, the theorem of Calderoè n proves that if
�1�K� > 0 then K is not removable. Therefore we can assume that
�1�K� � 0.
We consider (a) ¢rst. Let f 2 Hp�SnK�. It follows from Theorem 4.1(a)

that f can have singularities only at the points of intersection. As remova-
bility is a local property it is enough to assume that the origin is the only
point of intersection.
By, if necessary, a scaling, we can assume that the situation near 0 is as in

Lemma 1. We only need to verify that the conditions on '0j are ful¢lled. The
domain Rk;j in the theorem corresponds to the domain Rj in the lemma.
It is easy to see that a Jordan arc with Dini continuous tangents can be

closed to a Jordan curve with Dini continuous tangents. It follows that we
can assume that @�j�Rj� have Dini continuous tangents. Using Theorem 3.8
we see that the conditions on '0j in Lemma 1 are ful¢lled.
In (b) let 1=p� 1=p0 � 1 and thus p0 <1. As the tangents are of bounded

variation, there can only be a ¢nite number of corners with (their larger)
angles � ��1� 1=p0�. We can split the arcs at these corners, adding only a
¢nite number of points of intersection, and can thus assume that all the in-
terior corners of the arcs have (their larger) angles less than ��1� 1=p0�.
Let f 2 Hp�SnK�. As in (a), by Theorem 4.1(b), the singularities can only

be at the points of intersection and we can assume that the origin is the only
point of intersection and that the situation near 0 is as in Lemma 1. We only
need to verify that the conditions on '0j are ful¢lled.
A Jordan arc of bounded rotation with all corners having angles less than

��1� 1=p0� can be closed to a Jordan curve of bounded rotation with all
corners having angles less than ��1� 1=p0�. It follows that we can assume,
using the conformality of �j, that @�j�Rj� are of bounded rotation with all
corners having (their larger) angles less than ��1� 1=p0�.
In (b) (i) we notice that we can ¢t a small sector with angle � at 0,

�=p < � < max1�j�m �j into the domain Rj with the largest angle at 0. In
(b)(ii) we can assume that @�0�R0� has Dini continuous tangents. Using
Theorem 3.5 we see that the conditions on '0j in Lemma 1 are ful¢lled.

Remarks. If @Rj near 0 consists of two straight rays for all j (with the
notation in the proof of (a) above), the p in the theorem is sharp. This was
shown in the proof of the main theorem in Kobayashi [12]. He proved
moreover that in this case there exists a zero-dimensional set K � ÿ not re-
movable for Hq for any q < p.
Whether the strict inequalities in the conditions on p really are necessary

in Theorem 5.3 (b) is not known.

Corollary 5.4. Assume that ÿ � C is a chord-arc curve of bounded rota-
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tion, that K � ÿ is compact and that p > 1. Then K is removable for Hp if and
only if �1�K� � 0.
If, moreover, ÿ consists of a ¢nite number of arcs with Dini continuous tan-

gents, and the situations at the endpoints of these arcs are as described in
Theorem 5.3 (a) with p � 1, then K is removable for H1 if and only if
�1�K� � 0.

Proof. We start with the ¢rst part. We can split ÿ at two arbitrary points
to obtain a situation as in Theorem 5.3 with k � m1 � m2 � 2. At both in-
tersection points the larger of the (two) angles is � �. Thus Theorem 5.3 (b)
(i) gives us the desired result.
For the second part we only need to notice that at every corner (endpoint)

always one of the (two) angles is larger than �, to obtain the result from
Theorem 5.3 (a).

5.2. Intersecting chord-arc curves.

Theorem 5.5. Assume that we have a ¢nite number of compact Jordan arcs
and denote their union by ÿ � C. Assume that there are only a ¢nite number of
points of intersection between the arcs. Each component of ÿ splits the com-
plex plane into a ¢nite number of domains. Assume that all these domains are
chord-arc domains with a common chord-arc constant M. Let K � ÿ be com-
pact. Then there exists p <1, only dependent on M, such that K is removable
for Hp if and only if �1�K� � 0.

Proof. The theorem of Calderoè n proves that if �1�K� > 0 then K is not
removable. As removability is a local property we can consider the compo-
nents of ÿ separately. Let us therefore assume that ÿ is connected and
�1�K� � 0.
Let f 2 Hp�SnK�. By Theorem 4.1, with p suitable, we see that f can only

have singularities at the points of intersection.
Let z0 be one of the points of intersection. As there are only ¢nitely many

points of intersection, we can ¢nd a small disc around z0 without any other
point of intersection. By an a¤ne change of coordinates we obtain a situa-
tion as described in Lemma 5.2.
Choose all �j � �, i.e. �j is the identity map. For those domains Rj which

are bounded Theorem 3.2 shows that '0j 2 Hp0 �D�. If Rj is unbounded apply
the ¢rst part of Lemma 3.3, with a small enough disc, to obtain a bounded
domain e
, denote it again by Rj. If we choose p0 suitable for eM, which still
makes it depend only on M, Theorem 3.2 shows that '0j 2 Hp0 �D�.
Thus it follows from Lemma 5.2 that K is removable for Hp.
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The results in this paper were part of the author's thesis [1], see also
Bjoë rn [2]. They were inspired by the works of Hejhal [8], [9] and �ksen-
dal [15].
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