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ON THE SIMPLICITY OF SOME CUNTZ-PIMSNER
ALGEBRAS

PAUL S. MUHLY* and BARUCH SOLELy

Abstract.

Conditions are given on a C�-correspondence E over a C�-algebra that guarentee that the as-
sociated Cuntz-Pimsner algebra o�E� is simple. Our ¢ndings generalize earlier results of Cuntz
[5], Paschke [14], and Boyd, Keswani, and Raeburn [2].

1. Introduction.

Throughout this note, A will denote a ¢xed C�-algebra and E will denote a
C�-correspondence over A. This means, ¢rst of all, that E is a (right) Hilbert
module over A in the sense of Paschke [13] and Rie¡el [17]. We shall follow
the toolkit of Lance [10] for notation and terminology about Hilbert C�-
modules and we shall write the A-valued inner product on E as h�; �i: Also,
we shall write l�E� for the C�-algebra of bounded, linear, adjointable op-
erators on E and we shall view E as a left module over l�E�: To say that E
is a correspondence over A; or a correspondence from A to A; means that in
addition to E being a Hilbert C�-module over A, E is an essential left mod-
ule over A with the action given by elements froml�E�:We shall emphasize
this by saying that we are given a homomorphism ' : A 7!l�E� and make
' explicit in our formulas. In particular, we shall write '�a�� for what
otherwise would be written simply as a�:
Given a C�-correspondence E over A, one can build an analogue of Fock

space over E; f�E�: From this, one may build an analogue, t�E�; of the
Toeplitz algebra and take a quotient to obtain the Cuntz-Pimsner algebra
o�E�, which is a generalization of the well known Cuntz algebras on, n � 1:
The details are spelled out in [16] and in our paper [11]. However, we recall
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here the basics in order to establish notation and to expose results that we
shall need.
From E one can form the n-fold tensor product over A of E with itself,

obtaining, for each non-negative integer n; a new correspondence E
n: The
correspondence E
0 is just A with its usual right Hilbert A-module structure
and left action given by left multiplication. We write '0�a�b � ab: Of course
E
1 is just E, and '1 :� ': For E
2 the inner product is given by the formula

h�1 
 �2; �1 
 �2i � h�2; '�h�1; �1i��2i;
the right action is given by the obvious formula, as is the left action, but we
denote it by '2. Thus '2�a���1 
 �2� � �'�a��1� 
 �2: The correspondence
structure on E
n is de¢ned inductively and we write 'n for the left action of
A on E
n. The direct sum of the E
n; n � 0; 1; 2 . . . ; denoted f�E�; and en-
dowed with the direct sum structure of (right) Hilbert C�-modules, is a Hil-
bert C�-module, of course, and it is a correspondence over A determined by
the map '1 : A 7!l�f�E��; where '1�a� � diag�'0�a�; '1�a�; . . .�:
For � 2 E, we de¢ne the creation operator T

�
on f�E� by the formula

T
�
� � � 
 �;

� 2f�E�: It is not hard to see that T
�
2l�f�E�� with norm dominated by

the norm of � in E: We view T
�
matricially as

T
�
�

0 0 0 � � � � � � � � �
T �1�

�
0 0 0 . .

. � � �
0 T �2�

�
0 0 . .

. � � �
0 0 T �3�

�
0 . .

. � � �
..
.

0 0 T �4�
�

0 � � �
..
. ..

. ..
. ..

. . .
. . .

.

26666666666664

37777777777775
where T �n�

�
: E
n 7! E
�n�1� is de¢ned by the same formula as T

�
except that

� is constrained to lie in E
n: The adjoint of T
�
is given on vectors of the

form � 
 �; � 2 E; � 2f�E�; by the formula

T �
�
� 
 � � '1�h�; �i��;

with a matricial representation
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;

where again, the �T �n�
�
�� : E
�n�1� 7! E
n are given formally by the same rule

as T�
�
but with '1 replaced by 'n.

The C�-algebra generated by '1�A� and all the creation operators T
�
;

� 2 E; is called the Toeplitz algebra associated to E and is denoted by t�E�:
Our t�E� is what Pimsner would call ft�E�: Ours agrees with his when the
span of the inner products h�; �i; �; � 2 E; is dense in A. That is, when this
happens, then t�E� is the C�-algebra generated by all the T

�
: The termi-

nology comes from the fact that when E � A � C, with the evident struc-
tures, then t�E� is the C�-algebra generated by the unilateral shift, i.e., by
all the Toeplitz operators with continuous symbols.
The Cuntz-Pimsner algebra, o�E�; is de¢ned to be the image of t�E� in a

certain corona algebra. In the setting of this note, where we assume that as a
Hilbert C�ÿmodule over A, E is a direct summand of Cn�A�1; with n finite,
and where we assume that ' is injective, it turns out, thanks to Theorems
3.12 and 3.13 in [16], that t�E� contains the full algebra of all compact op-
erators on the Fock space, k�f�E��; as an ideal and the quotient of t�E�
by this ideal is o�E�: (Again, we note that what we are calling o�E�; Pimsner
would call eo�E�:) When A � C; and E � Cn, then o�E� is the Cuntz algebra
on: This explains notation and the terminology.
We write S

�
for the image of the generator T

�
in o�E� and we '1 for the

representation of A in t�E� or in o�E�: The ambiguity should not cause a
problem in context.
Our objective is to give conditions under which o�E� is simple. We present

two theorems giving this conclusion. They are variations of one another and
both generalize known theorems in the literature. They are based on the
following hypotheses that we will invoke at various stages.

(H1) We shall assume that A is unital and strongly amenable in the sense of
Johnson [8].
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1 Cn�A� is column n-space over A and is de¢ned to be the collection of all n-tuples,
� � ��1; �2; . . . ; �n�; with entries from A endowed with the A-vlaued inner product
h�; �i :�P ��i �i:
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This hypothesis is made to guarantee that A has a faithful tracial state [4,
Corollary 1] and for related purposes. We note also, for emphasis, that since
E is assumed to be an essential left module over A, we are in fact assuming
that ' is unital.

(H2) We shall assume that E is a summand of Cn�A� for some ¢nite n, and
we shall write the projection from Cn�A� to E by P.

(H3) We shall assume that the map ' : A 7!l�E� giving the left module
structure on E is isometric.

Of course, we have mentioned hypotheses (H2) and (H3) before. Hypoth-
esis (H3) is made, really, to ensure that the algebra o�E� is nonzero. Hy-
pothesis (H2) is made so that the next de¢nition makes sense and is applic-
able. First note that since E � PCn�A�; the algebra l�E� is PMn�A�P; and
so we may view ' as a homomorphism from A into Mn�A� such that
P'�a� � '�a�P � '�a� for all a 2 A: Let tr denote the formal trace on
Mn�A�; so that tr�aij� �

P
aii: Of course, unless A is abelian, tr is not really a

trace on Mn�A�: Nor for that matter is tr tracial; i.e., in general
tr�ab� 6� tr�ba�: However, the composition of tr with any trace on A is a
trace on Mn�A�: We form the map 
 on A via the formula:


�a� � tr�P'�a�P� � tr�'�a��;
a 2 A: Then 
 is the composition of completely positive maps and therefore
is completely positive. Note, however, that 
 is not contractive in general.
The next two hypotheses are concerned with the properties of 
.

(H4) We assume that in A there are no nontrivial 
-invariant ideals.

(H5) We assume that 
 is non-unital, i.e., we assume that 
�1A� 6� 1A:

Our ¢rst principal result in this note, then, is

Theorem 1. If the C�-algebra A and the correspondence E satisfy hy-
potheses (H1)^(H5), then o�E� is simple.
Observe that in the most ellementary, nontrivial case, when A � C and

E � Cn; with n � 2; it is easy to check that all the hypotheses are satis¢ed
and, indeed, we see that 
�1A� � n � 1A 6� 1A! Thus, we arrive at what ap-
pears to be a curious proof that on is simple when n � 2:
As a second example, we note that the main theorems of [14] and [2] are

easy corollaries of this theorem. (De¢nitions and details will given in the
third section.)

Corollary 2 [2, Corollary 2.6]. If A is a strongly amenable, unital C�-al-
gebra and if � is an endomorphism of A such that ��1A� 6� 1A and such that �
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leaves invariant no nontrivial ideals in A, then the Stacey crossed product of
order 1;

A><1
�N;

is simple.
For a third example, we show how certain correspondences arising in in-

dex theory give rise to simple C�-algebras of the kind we are considering.
Again, a fuller discussion and proofs will be given in the third section.

Corollary 3. Suppose A is a unital, strongly amenable C�-algebra con-
tained properly in a C�-algebra B, and suppose that A is the range of an index
finite conditional expectation � : B 7! A that preserves a faithful trace � , say,
on B; i.e., � � � � �2. If A is simple, and if B is viewed as a correspondence over
A; with the left action of A given by left multiplication and A-valued inner
product given by the formula hx; yi � ��x�y�; x; y 2 B, then o�B� is simple.
The proof of Theorem 1 follows an outline ¢rst suggested by Cuntz in [5],

and re¢ned by Paschke in [14] and Boyd, Keswani, and Raeburn in [2].
However, the details are not trivial and care must be taken. They will occupy
most of the next section.
As already indicated, the ¢fth hypothesis may seem a bit odd at ¢rst

glance. It is satis¢ed, however, in a number of interesting circumstances. A
replacement for it that proves to be very e¡ective in those cases when 
 is
unital is:

Condition F We say that a correspondence E satis¢es condition F in case
for each n � 1; the generalized commutator subspace Cn of E
n;

Cn :� spanf'n�a�� ÿ �aj � 2 E
n; a 2 Ag;
is all of E
n.

The reason for calling this Condition F is that it is a generalization of the
notion of free action in topological dynamics. Indeed, we have

Proposition 4. Suppose X is a compact space and that � is a home-
omorphism of X : Let A be C�X�, let E be C�X�; too, endowed with the usual
structure of a right Hilbert C�ÿmodule over A, and let the left action of A on E
be determined by � through the formula
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2 We do not know if this hypothesis is redundant. That is, if A is strongly amenable and
� : B 7! A is an index ¢nite conditional expectation, then quite possibly there may be a trace on
B of the desired kind. Quite possibly B is automatically strongly amenable, in which case, the
existance of � is not di¤cult to show. In any case, the hypothesis seems to be satis¢ed in nu-
merous interesting examples.
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'�f �g :� �f � ��g
f 2 A; g 2 E: Then the correspondence E satisfies condition F if and only if the
homeomorphism � determines a free action of the integers in the usual sense;
i.e., if and only if, � has no periodic points.

In fact, when the correspondence E is A; with the left action of A on A
given by an automorphism ', then Condition F is equivalent to Kallman's
notion of free action [9], considered in the second dual of A: We will prove
this in Theorem 34 in Section 3.
The second principal result of this note, then, is

Theorem 5. If the correspondence E satisfies the hypotheses (H1)^(H4),
but in place of (H5), it satisfies Condition F, then o�E� is simple.
Of course, appealing to Proposition 2 and the fact that when

A � E � C�X� and ' is given by � then o�E� is the transformation group
C�-algebra C��X ;Z� determined by � [16, Examples in Section 1], we re-ar-
rive at the well known fact that C��X ;Z� is simple if (and only if) the action
of Z on X is free and minimal.
Notice that in some sense, Condition F and hypothesis (H4) seem rather

far apart. In the case of the correspondence Cn from C to Mn�C�; where we
get on; the commutator subspaces all reduce to zero. Nevertheless, with a
very minor alteration, the proof that we o¡er for Theorem 1 serves as well
for Theorem 5.
We shall prove Theorems 1 and 5 in the next section. In Section 3, we

prove Corollaries 2 and 3, Proposition 4, and Theorem 15 relating Condition
F to Kallman's notion of free action. Additional results will be found there,
too.

2. Proofs of Theorems 1 and 5.

We break the proofs into a series of lemmas. We prove Theorem 1 ¢rst and
then show how to modify the lemmas leading to it in order to prove Theo-
rem 5. Actually, only one part of one lemma needs to be modi¢ed. Our cor-
respondence E and C�-algebra A will be ¢xed throughout the discussion. We
shall assume that hypotheses (H1)^(H4) are satis¢ed. Until the proof of
Theorem 1 is complete, we shall assume that hypothesis (H5) is satis¢ed.

Lemma 6. There is a faithful tracial state �0 on A such that

�0�a��0�
�1�� � �0�
�a������
for all a 2 A: In fact, any tracial state satisfying this equation is necessarily
faithful under our standing hypotheses.
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Proof. The hypothesis (H1) is that A is unital and strongly amenable.
Therefore A has a tracial state by [4]. For any such state � , the functional
� �
 is positive. Therefore, if � �
�1� � 0; then � �
 � 0: This implies that

 maps A into N� :� fa 2 Aj��a�a� � 0g - a two-sided closed ideal, since � is
a tracial state. In particular, N� is invariant under 
. Since 
�1� 2 N� , we
conclude from hypothesis (H4) that N� � A: However, since A is unital, we
conclude then that 1 � ��1� � 0; a contradiction. Thus, for every tracial state
�; ��
�1�� 6� 0: Given such a state, � , we de¢ne � 0 by the formula

� 0�a� � 1
��
�1�� ��
�a��;

a 2 A: Then � 0 is also a state. It is, in fact, tracial since � � tr is a tracial lin-
ear functional on Mn�A� and ' is a homomorphism. Since the map � 7! � 0 is
a¤ne and continuous in the weak-* topology on the state space of A, we
conclude from the Schauder ¢xed point theorem that there is a tracial state
�0 with �0 � � 00: Rewriting this equation yields equation (1). To show that
any such state �0 is necessarily faithful under our hypotheses, it su¤ces to
show that N�0 is 
ÿinvariant. But if a 2 N�0 ; so that �0�a�a� � 0; equation
(1) implies that �0�
�a�a�� � 0: Since, however, 
 is completely positive, the
Cauchy-Schwarz-Kadison inequality holds: 
�a��
�a� � k
�1�k
�a�a�:
Thus, �0�
�a��
�a�� � 0 and we conclude that 
�a� 2 N�0 :

To show o�E� is simple, it su¤ces to show that every representation of it
is faithful. For this, we ¢x a (unital) representation � of o�E� on a Hilbert
space H� and we let �V ; �� be the (necessarily unique) covariant representa-
tion of E on H� such that � � V � �: That is, � is a unital representation of
A on H� and V is a linear map from E to H� such that
1. V��a� � V�����a� and V�'�a��� � ��a�V���; a 2 A; � 2 E;

2. V����V��� � ��h�; �i�; �; � 2 E; and
3. ��a� � ��1� � '�a�; where ��1� : K�E� 7! B�H�� is de¢ned by the formula

��1��� 
 ��� � V���V����:
The relation between � and �V ; �� is: V��� � ��S

�
� and ��a� � ��'1�a��;

where, recall, S
�
is the image of T

�
in o�E�: We note that every representa-

tion of t�E� is determined by a covariant representation of E and that such
a representation passes to o�E� precisely when �V ; �� satis¢es condition (3).
(For these things see [16], in particular Theorem 3.12, and [11].)
We write � for the map on ��o�E�� de¢ned by the formula

��x� �
X
i

V�P"i��xV�P"i�;
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x 2 ��o�E��; where the "i denote the unit basis vectors in Cn�A�: Then
� �
 � � � � because

��
�a�� � ��tr�P'�a�P�� �
X
i

��hP"i; '�a�P"ii�

�
X
i

V�P"i��V�'�a�P"i� �
X
i

V�P"i����a�V�P"i�

� ����a��;
a 2 A.
Lemma 7. The representation � of A is injective.

Proof. For this, we need only show that the kernel of � is invariant under

. But if ��a� � 0; then ��
�a�� � ����a�� � 0:

Lemma 8. There is a state f0 on ��o�E�� such that
(a) The restriction of f0 to ��A� is faithful;
(b) f0���a�x� � f0�x��a��; for all a 2 A and x 2 ��o�E��;
(c) f0���x�� � �0�
�1��f0�x�; x 2 ��o�E��; and
(d) for �i; �i 2 E; a 2 A;

f0�V��1�V��2� . . .V��k���a�V��1��V��2�� . . .V��m��� � 0;

whenever m 6� k:

Proof. By Lemma 7, � is injective and so we may set �1 :� �0 � �ÿ1 on
��A�; obtaining a faithful tracial state on ��A� satisfying the equation
�1���a���1���
�1��� � �1���
�a���: Observe that we may also write ��
�a��
as ��tr�P'�a�P� � tr��n�P'�a�P�� where �n is the map on Mn�A� to
Mn�B�H�� obtained by applying � to the entries of the elements in Mn�A�
and where the second use of tr, on Mn�B�H�� refers to the process of adding
up the diagonal terms of matrices in Mn�B�H��:
Pick a state g on ��o�E�� that extends �1 from ��A� and note that for ev-

ery unitary u in ��A� the state u � g � u� on ��o�E��; de¢ned by the formula
u � g � u��x� � g�u�xu� also extends �1: Since A is strongly amenable, so is
��A�; and there is a state f in the weak-* closed convex hull of
fu � g � u�ju 2 u���A��g which centralizes ��A�; i.e., which satis¢es the equa-
tion f ���a�x� � f �x��a��; x 2 ��o�E��; a 2 A: Write K for the (necessarily
weak-* compact) set of all such states on ��o�E��: For f 2 K; de¢ne f 0 by the
formula
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f 0�x� � �0�
�1��ÿ1f ���x��;
x 2 ��o�E��: We show that f 0 is also in K :
First of all, f 0 is clearly a positive functional since � is completely positive.

Furthermore, f 0�1� � �0�
�1��ÿ1f ���1�� � �0�
�1��ÿ1f ���
�1��� � 1; so f 0 is
a state. So to show that f 0 is in K ; we need only show that f � � centralizes
��A�: Now for a 2 A and x 2 ��o�E��; we have

f � ����a�x� � f �����a�x�� �
X
i

f �V�P"i����a�xV�P"i��

�
X
i

f �V�'�a��P"i��xV�P"i��:

However, '�a��P"i �
P
"jh"j ; '�a��P"ii �

P
P"jh"j ; '�a��P"ii; and so

V�'�a��P"i�� �
X
j

��h'�a��P"i;P"ji�V�P"j��:

Inserting this into the last sum for f � ����a�x�, we conclude that
f � ����a�x� �

X
i;j

f ���h'�a��P"i;P"ji�V�P"j��xV�P"i��:

Since f centralizes ��A�; we may write

f � ����a�x� �
X
i;j

f �V�P"j��xV�P"i���h'�a��P"i;P"ji��

�
X
i;j

f �V�P"j��xV�P"i���hP"i; '�a�P"ji��

�
X
j

f �V�P"j��xV�
X
i

P"i��hP"i; '�a�P"ji��

�
X
j

f �V�P"j��xV�'�a�P"j��

�
X
j

f �V�P"j��x��a�V�P"j�� � f � ��x��a��;

showing that f � � centralizes ��A�:
Since the map f 7! f 0 is continuous and a¤ne on the weak-* compact,

convex set K , we may apply Schauder's ¢xed point theorem again to con-
clude that there is a state f0 2 K such that f0 � f 00; i.e., such that
f0�x��0�
�1�� � f0���x��: Thus f0 satis¢es (b) and (c) in the statement of the
lemma. It also satis¢es (a), since f0 extends �1: Thus it remains to prove (d).
For this, ¢rst calculate �m to get
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�m�x� �
X

1�i1;...;im�n
V�P"i1�� . . .V�P"im��xV�P"im� . . .V�P"i1�;

x 2 ��o�E��: We will show next that for y 2 ��o�E��; and �1; . . . ; �m 2 E;
f0��m�yV��1�� � � �V��m���� � f0�V��1�� � � �V��m��y�:�1�

Write x � yV��1�� � � �V��m�� and note that

V��1�� � � �V��m��V�P"im� . . .V�P"i1�
lies in ��A�: Then, since f0 centralizes ��A�; we may write

f0�V�P"i1�� . . .V�P"im��xV�P"im� . . .V�P"i1��
� f0�V��1�� � � �V��m��V�P"im� . . .V�P"i1�V�P"i1�� . . .V�P"im��y�:

Now note that our hypotheses on E imply thatl�E� �k�E�: Recall also
from [16, Lemma 3.2] that k�E� is embedded in o�E� as the span of the
elements S

�
S�
�
; �; � 2 E and these are mapped by � to V���V����; this is the

map that Pimsner denotes by ��1�: Since � is a representation of o�E�; and
'�A� �k�E�; we have � � ��1� � '; as we noted above. Finally, sinceP

i P"i
�P"i�� is the identity operator on E; we deduce thatP
i V�P"i�V�P"i�� � ��1��

P
i P"i
�P"i��� � ��1� � '�1A� � ��1A� � IH�

: Thus
we have

f0��m�x�� �
X

1�i1;...;im�n
f0�V�P"i1�� . . .V�P"im��xV�P"im� . . .V�P"i1��

�
X

1�i1;...;im�n
f0�V��1�� � � �V��m���

V�P"im� . . .V�P"i1�V�P"i1�� . . .V�P"im��y�
� f0�V��1�� � � �V��m��y�;

proving equation (1).
Also, since f0 is self-adjoint (f0�x�� � f0�x��; we ¢nd that for vectors

�1; . . . ; �k 2 E; and z 2 ��o�E��; we have
f0��k�V��1� � � �V��k�z�� � f0�zV��1� � � �V��k��:

Since �0 is faithful, so �0�
�1�� 6� 0; we conclude, that whenever
�i; �i 2 E; a 2 A; and m 6� k; then,
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f0�V��1�V��2� . . .V��k���a�V��1��V��2�� . . .V��m���
� �0�
�1��ÿmf0��m�V��1�V��2� . . .V��k���a�V��1��V��2�� . . .V��m����
� �0�
�1��ÿmf0�V��1��V��2�� . . .V��m��V��1�V��2� . . .V��ka��
� �0�
�1��ÿmf0��k�V��1�V��2� . . .V��k���a�V��1��V��2�� . . .V��m����
� �0�
�1��kÿmf0�V��1�V��2� . . .V��k���a�V��1��V��2�� . . .V��m���:

Since �0�
�1�� 6� 1; either, we see that all the terms in this equation must be
zero; i.e., we have proved (d).

Our next goal is to show that a state f0 on ��o�E�� satisfying the conclu-
sions of Lemma 8 is faithful on all of ��o�E��: This is accomplished in steps.

Lemma 9. A state f0 on ��o�E�� satisfying the conclusions of Lemma 8 is
faithful 3 on the subalgebra D consisting of all sums of the form

V��1�V��2� � � �V��k���a�V��1��V��2�� � � �V��k��;
where k � 0; a 2 A; and the �i and �i run over E:
Proof. First note that for every element x 2 D; there is a k; depending on

x, such that �k�x� lies in ��A�: Indeed, it su¤ces to assume that x has the
form x � V��1�V��2� � � �V��k���a�V��1��V��2�� � � �V��k��: Then V�P"i1�� . . .

V�P"ik��xV�P"ik� . . .V�P"i1� lies in ��A� for all choices of i1; . . . ; ik: Since
�k�x� is the sum of all such expressions, we conclude that �k�x� lies in ��A�:
Suppose b 2 D satis¢es the equation f0�b�b� � 0 and choose k so that
�k�b�b� 2 ��A�: Then, from Lemma 8 we see that f0��k�b�b�� �
�0�
�1��kf0�b�b� � 0: Since f0j��A� is faithful, again by Lemma 8, we con-
clude that �k�b�b� � 0: But �k�b�b� �X

1�i1;...;ik�n
V�P"i1�� . . .V�P"ik��b�bV�P"ik� . . .V�P"i1�;

so this gives bV�P"ik� . . .V�P"i1� � 0; for all choices of i1; . . . ; ik: On the
other hand, as we have seen in the proof of Lemma 8,X

1�i1;...;ik�n
V�P"ik� . . .V�P"i1�V�P"i1�� . . .V�P"ik�� � IH�

:

Hence we conclude that

b �
X

1�i1;...;ik�n
bV�P"ik� . . .V�P"i1�V�P"i1�� . . .V�P"ik�� � 0:
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We call the degree of an expression of the form

V��1�V��2� � � �V��m���a�V��1��V��2�� � � �V��n��
the integer mÿ n: We extend this to linear combinations of such elements in
the obvious way. When this is done, then, D is precisely the collection of
degree zero elements in the *-algebra generated by ��A� and the V���; � 2 E:
We write Dk for the linear span of the set of all monomials of the form

V��1�V��2� � � �V��m���a�V��1��V��2�� � � �V��m��

with m � k; where the �i and �i range over E, and a 2 A:
Lemma 10. The space Dk is a C�-subalgebra of D:

Proof. The only issue is whether Dk is closed. However, as Pimsner notes
in the discussion following De¢nition 3.8 in [16], Dk is the image under ��k�

of the *-subalgebra generated by all the � 
 ��; where � and � range
over E
k: (Recall that ��k����1 
 . . .
 �k� 
 ��1 
 . . . �k��� � V��1� � � �
V��k�V��1�� � � �V��k��; by de¢nition.) Since E is a summand of Cn�A�; and
so ¢nitely generated, the *-subalgebra coincides with all of K�E
k�: Thus
Dk � ��k��K�E
k�� - a C�-algebra.
Of course D is the algebraic inductive limit of the Dk:

Following Pimsner, we write � for the one parameter group of auto-
morphisms of o�E� de¢ned by the formulae: �t�'1�a�� � '1�a�, for all
a 2 A; and �t�S�

� � tS
�
; for all � 2 E; t 2 T: We also write � for the condi-

tional expectation
R
T �t dt: Its range is the ¢xed point algebra of o�E�; de-

noted o�E��:
Lemma 11. The representation � is faithful on o�E��:
Proof. Write Ck for the *-algebra in o�E� generated by the elements of

the form

S�1 � � �S�m'1�a�S��1 � � �S��m
with m � k: As we noted in the proof of Lemma 10, Ck is a C�-subalgebra of
o�E�� (with ��Ck� � Dk; of course.) Pimsner proves in the paragraph pre-
ceding Lemma 3.2 of [16] that, in fact o�E�� is the closure of [Ck: (Thus D is
dense in ��o�E���:� Also, we de¢ne on o�E� the map ~� by the formula

~��x� �
X
i

S�P"i xSP"i ;

x 2 o�E�: Of course � � � � � � ~�: The argument in Lemma 4 shows that
~�k�Ck� � '1�A� and so if x is a non-negative element in Ck with ��x� � 0;
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then ��~�k�x�� � ��~�k�x�� � �k���x�� � 0: Since � is faithful, ~�k�x� � 0: The
argument used in Lemma 24, then, shows that x � 0: Thus � is faithful on
Ck: Since o�E�� is the closure of [Ck; we see that if J � ker �jo�E��; then
J � [k�J \ Ck� � 0 by [1, Lemma 1.3].

Completion of the Proof of Theorem 1.
With a state f0 on ��o�E�� of the form guaranteed by Lemma 8 ¢xed, let

��;H; �� be the usual GNS data associated with f0 and ��o�E��: Fix k � 0
and let F be the projection of H onto ��Dk��. Then for x 2 ��o�E��, we have

kF��x�Fk � supfjh��x�h; ki j khk � kkk � 1; h; k 2 FHg
� supfjf0�b�2xb1�j bi 2 Dk; f0�b�i bi� � 1; i � 1; 2g:

Consider, now, an x � V��1�V��2� � � �V��m���a�V��1��V��2�� � � �V��l�� in
��o�E�� with m 6� l: Then for elements bi 2 Dk; i � 1; 2; b�2xb1 is a ¢nite sum
of elements of this form with m 6� l: Hence, by Lemma 8, f0�b�2xb1� � 0; and
we see that F��x�F � 0: It follows that if we next let x range over the *-al-
gebra b generated by ��A� and fV���j � 2 Eg and if we let x0 denote its
component in D;i.e., if x0 is the sum of elements with zero degree, then

kF��x�Fk � kF��x0�Fk:
If, however, x0 lies in Dk then F��x0�F is the restriction of ��x0� to the range
of F : Since this space contains � and since the state it determines on ��Dk� is
f0 restricted to Dk, which is faithful there by Lemma 24, we conclude that the
GNS representation of Dk associated to f0jDk is the restriction of �; re-
stricted to Dk; acting on FH; and that it is faithful. Thus we conclude that
kx0k � k��x0�jFHk � kF��x�Fk � kxk: Since k � 0 was chosen arbitrarily,
we conclude that the inequality kx0k � kxk holds for all x in b.
This, in turn, shows that for z in the dense *-subalgebra of o�E� generated

by '1�A� and fS�
j � 2 Eg; we have the inequality

k����z��k � k��z�k:
This inequality, together with the fact that � is faithful on o�E��; by Lemma
3, allows us to invoke Lemma 2.2 of [2] to conclude that � is faithful on all of
o�E�:
Proof of Theorem 5.
We want to replace Hypothesis (H5) by Condition F. The only place Hy-

pothesis (H5) is used in our proof of Theorem 1 is to establish part (d) in
Lemma 4. We shall show how Condition F also yields part (d). Thus, we
want to show f0�V��1�V��2� . . .V��k���a�V��1��V��2�� . . .V��m��� � 0;
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�i; �i 2 E; a 2 A; whenever m 6� k: For this we simplify notation and write
���1 
 �2 
 . . .
 �n� for V��1�V��2� . . .V��n� and extend by linearity. We
then have ��'n�b��c� � ��b�������c�; for all b; c 2 A and � 2 E
n: Part (d) of
Lemma 4, then, amounts to the assertion that

f0����������� � 0

whenever � 2 E
k and � 2 E
m; with k 6� m:We shall assume that k > m; the
alternative follows from this case by taking adjoints. The proof of part (d)
shows that

f0����������� � �0�
�1��ÿmf0��m������������
� �0�
�1��ÿmf0�����������;

for all � 2 E
m and all � 2 E
k: (This uses only the fact that �0�
�1�� 6� 0;
which in turn uses only (H4), as we saw in the proof of Lemma 2.) Since
���1�����2� � V��1��V��2� � ��h�1; �2i� for all �1; �2 2 E; and since k > m;
��������� is of the form ���� for a � 2 E
�kÿm�: So we need to show that
f0������ � 0 for all � 2 E
n; for every n > 0: Fix such an n and � 2 E
n: By
Condition F, we may assume that � � 'n�a�� ÿ �a for some � 2 E
n and
a 2 A: Then

f0������ � f0���'n�a�� ÿ �a��
� f0���a����� ÿ ������a��
� 0;

by part (b) of Lemma 8.

3. Applications.

We attend ¢rst to Corollary 1. Suppose � is an endomorphism of a unital
C�-algebra A: A covariant representation of �A; �� of multiplicity n is de¢ned
to be a pair ��;S�; where � : A 7! B�H�� is a unital representation of A and
where S � fSig is a set of n isometries on H� with orthogonal ranges such
that

����a�� �
Xn
i�1

Si��a�S�i ;

for all a 2 A: In general, there need be no such representations. However, if
� is injective, there are. (In fact they exist under weaker hypotheses that we
do not need here.) In [18], Stacey proves that given �A; ��; with � injective,
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there is a triple �B; iA; t� consisting of a unital C�-algebra B, a unital homo-
morphism iA : A 7! B; and a family t � ftig of n isometries in B such that

iA���a�� �
Xn
i�1

tiiA�a�t�i ;

for all a 2 A; and such the following two conditions are satis¢ed:
1. B is generated by iA�A� and the ti; i � 1; 2; . . . ; n; and
2. for every covariant representation ��;S� of �A; ��; there is a unital re-

presentation, denoted �� S; of B such that (�� S� � iA � � and such that
(�� S��ti� � Si; i � 1; 2; . . . ; n:

Furthermore, �B; iA; t� is uniquely determined up to isomorphism, in an
obvious sense, by these properties. We therefore write A><n

�N for B and
call A><n

�N, or the triple �A><n
�N; iA; t�; the Stacey crossed product of order

n determined by �A; ��: In essentially the same sense, the algebras o�E� are
universal objects associated to covariant representations �V ; �� of E: So, we
are led to seek a realization of A><n

�N as an o�E�: We are able to do this
only when n � 1: For n > 1; the relation between A><n

�N and any o�E�
seems somewhat tenuous, as we shall indicate shortly.
When n � 1; we take E � pA; with p � ��1�: We let A act on the right by

multiplication and we give E the A-valued inner product that it inherits from
A: The left action ', is given by the formula '�a�� � ��a��: Then E certainly
is a correspondence of the type we have been discussing. We de¢ne a covar-
iant representation �V ; �� of E into A><1

�N by setting � � iA and de¢ning
V��� � t�iA���: Then, it is routine to check the de¢ning properties of a cov-
ariant representation which comes from a representation of o�E�; i.e., which
satis¢es the equation ��1� � ' � �: We conclude, then, that V � � is a C�-re-
presentation of o�E� in A><1

�N: On the other hand, if we de¢ne � to be '1
and set S � S�p ; we obtain a covariant representation of �A; �� of multiplicity
one. Moreover, it is immediate that ��� S� � �V � �� � �o�E�; while the
composition in the other order yields the identity on A><1

�N. We thus have
proved the following lemma, which we record for reference.

Lemma 12. If � is an endomorphism of a unital C�-algebra A, then the
Stacey crossed product of order 1; A><1

�N is isomorphic to o�E�; where E is
the correspondence pA just defined.

Proof of Corollary 2. Simply note that in the case when E comes from A
and � in this way, then l�E� � pEp and the map 
 is simply �: Thus the
hypotheses of the Corollary are (H4) and (H5) in this case. Since the other
hypotheses, (H1)^(H3), are also satis¢ed, we conclude from Theorem 1 and
Lemma 12 that A><1

�N is simple.
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To see what the problem seems to be when n > 1; consider a Stacey cros-
sed product, �A><n

�N , iA; t�; and suppose we knew that the projections
pi :� tit�i lay in A. (Of course there is no reason a priori for this to happen.)
Then we would let E � f� � ��1; . . . ; �n�t 2 Cn�A�j �i � pi�i; i � 1; . . . ; ng - a
summand of Cn�A�; and we would give E the structure of a correspondence
simply by de¢ning '�a���1; . . . ; �n�t � ���a��1; . . . ; ��a��n�t: (Note that the
projections pi all commute with ��A�:� If we then map iA�a� to '1�a�; a 2 A;
and tk to V�pk"k��; where "k is the unit basis vector in Cn�A� whose only
nonzero entry occurs in the kth slot, where it is 1; we obtain an isomorphism
between A><n

�N and o�E� as we did in Lemma 2. If we think of A><n
�N

and o�E� as universal objects, given by generators and relations, then for
this E, at any rate, there appear to be a few more relations in o�E� than in
A><n

�N.. Whether another choice of E can be made so that o�E� is iso-
morphic to A><n

�N, we do not know. We do, however, have the following
proposition and corollary that seem to be worth recording.

Proposition 13. Suppose � is an automorphism of the unital C�-algebra A:
Then for each n; the Stacey crossed product A><n

�N is isomorphic to o�E�
where E is the correspondence Cn�A� with ' given by the formula
'�a� � �ÿ1�a� 
 In:

Proof. The proof is the obvious one. Simply form the covariant re-
presentation �V ; �� where � � iA and V sends the coordinate basis vectors to
the corresponding ti's. A moment's re£ection reveals that it implements an
isomorphism between o�E� and A><n

�N.

As Stacey notes in developing Proposition 3.4 of [18], the algebra
A><n

�N, when � is an automorphism was considered by Cuntz in [6] and
called there a twisted tensor product.

Corollary 14. Suppose � is an automorphism of the unital, amenable, C�-
algebra A and suppose that A has no �-invariant ideals. Then, for each n > 1;
the Stacey crossed product A><n

�N is simple.

Proof. Use the preceding proposition to identify A><n
�N with o�E�;

where E � Cn�A�; and ' is given by �ÿ1: Then the hypotheses guarentee that
E and A satisfy hypotheses (H1)^(H4). As for hypothesis (H5), simply note
that the map 
 is n � �ÿ1: Consequently, 
�1� � n1: So, if n > 1; as we are
assuming, hypothesis (H5) is satis¢ed, too. Thus, the result is an immediate
consequence of Theorem 1.

Turning to Corollary 1, suppose that B is a C�-algebra containing A and
that A is the image of B under a conditional expectation �. Recall that this
means that � is a (completely) positive, contractive projection of B onto A
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such that ��a1ba2� � a1��b�a2; ai 2 A; b 2 B: Suppose, too, that � is index
¢nite in the sense of [19]. This means that there is a ¢nite set of elements
fuigni�1 in B (called a quasi-basis), such that for all x 2 B;

x �
X

ui��u�i x� �
X

��xui�u�i
(see [19, Lemma 2.1.6]). With respect to the inner product

hx; yi � ��x�y�
x; y 2 B; B becomes a Hilbert C�-module over A which is isomorphic to a
summand of Cn�A�; where n is the number of elements in a quasi-basis
fuigni�1. (Note, n is not uniquely determined, but that does not matter.) The
isomorphism sends x 2 B to ���u�1x�; ��u�2x�; . . . ; ��u�nx��t: Of course left
multiplication converts B into a correspondence over A of the kind we have
been discussing, i.e., '�a�x � ax; a 2 A; x 2 B:
Proof of Corollary 3. We need to verify hypotheses (H1)^(H5) and apply

Theorem 1. Hypothesis (H1) is explicit in the hypotheses of the corollary.
We already have remarked that (H2) is a consequence of the assumption
that � is index ¢nite. Further, since ' is given by left multiplication, which
certainly is faithful, (H3) is satis¢ed. Hypothesis (H4) is automatically sa-
tis¢ed, since A is assumed to be simple. To verify hypothesis (H5), we need
to identify 
: If W is the isomorphism from B to PCn�A� just described,
then Wui � P"i: This gives, for a 2 A; 
�a� �PhP"i;W'�a�Wÿ1P"ii �Phui; auii �P��u�i aui�: Consequently, 
�1A� �

P
��u�i ui�: Recall that the

index of �; ind���; is de¢ned to be
P

uiu�i ; an element of the center of B. In
fact, ind��� � 1B; with equality holding only when A � B (See Propositions
1.2.8, 2.3.1, and 2.3.7 of [19].) Since we are assuming A is proper,
ind���1B � 1A: Since � is a faithful trace on B preserving �; we ¢nd that

��
�1A�� �
X

����u�i ui�� �
X

��u�i ui�
�
X

��uiu�i � � ��ind����
� ��1B� � ��1A�:

This shows that 
�1A� 6� 1A; verifying hypothesis (H5).

Proof of Proposition 4. With the notation of the proposition, observe that
if a point x0 in X is ¢xed by a power of �; �n; then the point mass at x0 is a
measure that annihilates Cn but doesn't annihilate E
n � C�X�: Thus if
Condition F is satis¢ed, then the Z-action determined by � is free. For the
other direction, we can replace � with �n; if necessary, and worry only about
the case when n � 1: Suppose, then, that � has no ¢xed points, but that C1 is
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smaller than E � C�X�; and let � be a measure on X that annihilates C1:

Since � has no ¢xed points and X is assumed to be compact, there is a ¢nite
cover fUig of X such that �ÿ1�Ui� \Ui � ;, for all i. The condition that �
annihilates C1 means that

R
' � � � �d� � R ' � �d� for all � 2 C�X�: Choos-

ing a sequence of functions in C�X� converging to the characteristic function
of Ui; we see that

R
�ÿ1�Ui� �d� �

R
Ui
�d� for all �: Since �ÿ1�Ui� \Ui � ;; this,

in turn, implies that � annihilates every bounded Borel function that is sup-
ported on Ui: Since i is arbitrary and their number is ¢nite, we conclude that
� is the zero measure.

The proof of Proposition 4 suggests that when studying Condition F, one
should look at the Banach space dual of E; Ey; and, in fact, one should think
also about the Banach space double dual, Eyy: Perhaps the easiest and best
way to do this, is ¢rst to imbed E into its linking algebral: This algebra is a
C�-algebra, expressed as an algebra of 2� 2 matrices with entries coming
from A; E; E�; andk�E�, by the formula

l � A E�

E k�E�
� �

(see [3]). If p denotes the projection 1A 0
0 0

� �
in the multiplier algebra ofl;

M�l�; and if q denotes its complement, then E may be identi¢ed with qlp
and Eyy may be identi¢ed with qlyyp; isometrically and homeomorphically
with respect to the weak-* topologies (see [7, Proposition 2.1]). Of course,
lyy is a von Neumann algebra containing p and q; and it contains the dou-
ble dual of A; Ayy; as plyyp: Furthermore, from this perspective, it is not
hard to conclude Paschke's observation [13, Corollary 4.3] that Eyy is what
he called a self-dual Hilbert C�-module over Ayy: To keep the notation from
becoming ponderous, we shall use h�; �i to denote the Ayy-valued inner pro-
duct on Eyy as well as the A-valued inner product on E. Of course, looking in
l or in lyy; the inner products are given by products via the formula:
h�; �i � ���: If, as we are assuming, E is a correspondence over A, via a
homomorphism ' : A 7!l�E�; then the double transpose of ' turns Eyy into
a ``self-dual correspondence'' over Ayy: Functionals f 2 Ey may be viewed as
functionals inly that satisfy the equation f � pfq; where, in general, for any
algebra a and any functional � on any a-bimodule x; we write
a�b�x� � ��bxa�; x 2 x, a; b 2 x. When this is done, we conclude that given
f 2 Ey; we may form its polar decomposition jf j � v as an element of ly;
where jf j 2ly is a positive linear functional and v is a partial isometry in
lyy: The functional jf j is uniquely determined by f and v is uniquely de-
termined by the condition that its ¢nal projection is dominated by the sup-
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port projection of jf j: The condition that pfq � f and the uniqueness of the
polar decomposition imply that pjf jp � jf j and that v � pvq: This means that
v 2 �E��yy � plyyq; so that v� lies in Eyy and we may write f ��� � jf j�hv�; �i�;
� 2 E: All these statements are fairly easy to verify directly. Alternatively,
one can appeal to the full treatment found in [7, Theorem 1].
The (double dual) fixed point subspace Fn of E
nyy is de¢ned to be the

collection of all � 2 E
nyy such that 'yyn �a�� � �a for all a 2 Ayy:
Theorem 15. If f is functional in �E
n�y that annihilates Cn and if jf j � v

denotes its polar decomposition, then jf j is a (positive) tracial functional on A
and v� lies in Fn: Conversely, if f � jf j � v is a functional inly such that jf j is a
trace on A � plp and v is a partial isometry with v� 2 Fn; then f annihilates
Cn: Thus, Condition F is equivalent to the assertion that all the spaces Fn van-
ish.

Proof. Since the analysis we wish to make works the same in all corre-
spondences, we assume without loss of generality that n � 1: Suppose, then,
that f 2 Ey annihilates C1: This is the same as saying that f ��a� � f �'�a���
for all � 2 E and a 2 A; or, equivalently, that f �'�u��u�� � f ���, � 2 E; and u
in the unitary group of A: Furthermore, this equation persists when E is re-
placed by Eyy and A by Ayy: Now in the proof of the polar decomposition of
f � jf j � v found in [7], which is a modi¢cation of a (the?) standard proof in
von Neumann algebras [15, Proposition 3.6.7] (which applies here, too), v� is
taken to be any extreme point in the weak-* compact, convex set
K :� f� 2 Eyyj f ��� � 1 � k�kg: Since f �'�u��u�� � f ��� for all unitaries
u 2 Ayy and all � 2 Eyy; K is preserved under the maps � 7! '�u��u�; u unitary
in Ayy: Further, these maps clearly carry extreme points of K to extreme
points of K . Thus '�u�v�u� is an extreme point of K for every unitary in Ayy:
But then, the uniqueness part of the polar decomposition implies that there
is only one extreme point in K. Whence, '�u�v�u� � v� for all unitaries
u 2 Ayy; and so v� 2 F1: This, in turn, implies that for all a 2 Ayy and all
unitaries u 2 Ayy; we have jf j�au� � f �v�au� � f �'�u�v�a� � f �v�ua� �
jf j�ua�; which means that jf j is tracial. For the converse, simply note that if
jf j is tracial on Ayy while v� 2 F1; then for all � 2 Eyy and all unitaries
u 2 Ayy; f �'�u��u�� � jf j�v'�u��u�� � jf j�u�v'�u��� � jf j�v�� � f ���:
Suppose M is a von Neumann algebra and that � is an automorphism of

M: In [9], Kallman termed � to be free, or freely acting, in case the only so-
lution b to the equation ��a�b � ba, for all a 2M; is b � 0: If one views M
as a correspondence E over itself, with ' � �, then � is free precisely when
F1 vanishes. (We don't make any distinction, at this point, between analysis
in E and analysis in Eyy:� Thus, Theorem 15 says that our Condition F is a
correspondence-theoretic way of saying that all the powers of an auto-
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morphism are freely acting. In this case, one sometimes says that the group
generated by �; f�ngn2Z; is properly outer. We could adopt this terminology
for correspondences here, too, saying that E is properly outer in case all the
spaces Fn vanish. Then our Theorem 2 would become: If E is a properly out
C� -correspondence over a C�-algebra A and if hypotheses (H1)^(H4) are sa-
tisfied, then the C� -algebra o�E� is simple. Of course what we would really
like is a notion of Connes spectrum for a correspondence and a concomitant
necessary and su¤cient condition for the simplicity of o�E� that parallels the
theorem of Olesen and Pedersen [12] (see also [15, Theorem 8.11.12]). The
extreme di¡erence that seems to exist between the simplest examples, on and
transformation group C�-algebras, makes the existence of such a notion ^
one yielding such a simplicity result ^ seem rather unlikely.

Added In Proof. After this paper was submitted, we received the pre-
print, Ideal structure and simplicity of the C�-algebras generated by Hilbert
bimodules, by T. Kajiwara, C. Pinzari, and Y. Watatani. These authors also
obtain conditions for o�E� to be simple. They avoid our assumption that A
is strongly amenable. However, they assume a condition they call (I)-free,
which seems to be in the spirit of our Condition F, but the precise relation
remains to be determined. They also assume a condition they call X -simple
(or E-simple, with our notation) that is essentially our hypothesis (H4). Their
proofs are rather di¡erent from ours. Nevertheless, in their Theorem 14, the
authors are able to prove our Corollary 3 without the hypotheses that A is
strongly amenable and the conditional expectation � preserves a faithful
trace. Their analysis also identi¢es the ideals in o�E� under suitable hy-
potheses on E, when o�E� is not simple.
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