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1. Introduction.

An analytic operator-valued function A is an analytic mapping
A : D! L�E;E�, where the domain D � D�A� of A is an open subset of the
complex plane C, and where E � E�A� is a complex Banach space. For such
a function A we denote by ��A� the singular set of A; that is, the set of
points z 2 D such that A�z� is not invertible. It is a relatively closed subset of
D.
A multiplicity theory m for analytic operator-valued functions assigns to

every analytic operator-valued function A and to every isolated compact
subset C of ��A� an element mC�A� of a ¢xed additive semi-group M such
that certain natural conditions (or axioms) are satis¢ed. We then refer to
mC�A� as the multiplicity of A at C.
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In a previous paper [3] such a multiplicity theory was constructed taking
its values in the semigroup of isomorphism classes of complex Banach
spaces. In this article we describe a new way to de¢ne multiplicity with va-
lues in the same semigroup. We believe that it recommends itself by its nat-
uralness. It turns out that this gives the same multiplicity as in [3], although
the approach is completely di¡erent. The proofs of the relevant properties
are independent of the previous paper.
In our exposition we shall initially take a point of view which di¡ers

slightly from that outlined above. Instead of an isolated compact subset C of
��A� we shall work with a bounded open subset 
 of C such that 
 � D and
@
 \��A� � ;. We then say that 
 is admissible for A and refer to �A; 
� as
an admissible pair. We shall write �
�A� � 
 \��A�. Then �
�A� is an
isolated compact subset of ��A� and every isolated compact subset of ��A�
arises in this way.
A multiplicity theory m with values in M now assigns to each admissible

pair �A; 
� an element m�A; 
� of M. The axioms which we consider it rea-
sonable to impose on m will be discussed in section 3.
We de¢ne our multiplicity theory in the following way. Let

A : D! L�E;E� be analytic and let 
 be admissible for A. Let h�
;E� de-
note the space of functions from 
 to E which are analytic in 
 and con-
tinuous on 
. Equipped with the supremum norm this becomes a Banach
space. Let Ah�
;E� denote the set of all elements of h�
;E� of the form
Af for some f 2h�
;E�. We define m�A; 
� to be the isomorphism class of
the Banach space h�
;E�=Ah�
;E�. That the quotient is a Banach space
will become clear in the next section. We shall often denote the quotient
space byhA�
;E�.
We shall prove that this is indeed a multiplicity theory. We shall also see

that ^ identifying the isomorphism class of a ¢nite-dimensional space with
its dimension ^ this gives the usual multiplicity for C-valued functions, that
is, the sum of the multiplicities of the zeros of A in 
. If A takes its values in
the set of Fredholm operators of index 0, then m�A; 
� is the sum of the
multiplicities of the singular points of A in 
. These multiplicities have been
de¢ned in various, equivalent, ways in the literature; see [4], [5], [6] ^ this is
just a sample ^ the concept seems to be considerably older.
We shall show that our present theory gives the same multiplicity as that

de¢ned in [3]. There the construction depended on the concept of suspension-
equivalence , or s-equivalence for short. This notion will be explained in due
course. It is an equivalence relation for admissible pairs. In [3] it was neces-
sary to know that any admissible pair �A; 
� could be reduced by s-equiva-
lence to an admissible pair �B; 
�, where B�z� � zIF ÿ T , F � E�B�, and
T 2 L�F ;F�. Such a reduction is called a linearization. We shall describe a

266 jön arason and robert magnus



{orders}ms/98711/arason.3d -17.11.00 - 13:43

linearization, which is strikingly natural and elegant, which we call the ca-
nonical linearization.
We shall show that m�A; 
� is not very large compared to E � E�A�; more

precisely it is the isomorphism class of a complemented subspace of a ¢nite
power of E.
In a succeeding paper we intend to study multiplicity theories with more

general semi-groups; and, among other things, we shall de¢ne a universal
multiplicity theory from which all others can be derived.
After this paper was written it was brought to our notice that the fact that

the canonical linearization is a linearization can be derived rather easily
from results of Kaashoek, van der Mee and Rodman [2]. While giving due
credit to those authors we feel it an advantage to present short and virtually
self-contained proofs of our results. Our concept of a multiplicity theory is
new and we consider that the algebraic approach introduces an interesting
and fruitful method into the study of analytic operator-valued functions.

2. Examination of the quotient.

In this section we work with a ¢xed admissible pair �A; 
�. We write
D � D�A� and E � E�A�.
In addition toh�
;E� there are several other spaces of analytic functions

associated with 
 which can be used to form a quotient. For any subset U of
C � C [ f1g let o�U ;E� denote the space of analytic mappings de¢ned on
an open neighbourhood of U with values in E. We identify two mappings
which agree on a neighbourhood of U . Thus o�U ;E� consists of germs lo-
calized at U . If U is open then o�U ;E� consists simply of all analytic E-va-
lued mappings with domain U .
We have the natural embeddings induced by restriction

o�
;E�ÿ!h�
;E�ÿ!o�
;E�
but these mappings are not vector-space isomorphisms. They map Ao�
;E�
to Ah�
;E�, and Ah�
;E� to Ao�
;E� respectively. Hence they induce
linear maps between the quotient spaces

o�
;E�
Ao�
;E�ÿ!

h�
;E�
Ah�
;E�ÿ!

o�
;E�
Ao�
;E�

It will transpire that these are vector-space isomorphisms. Since, as will be
shown, the second space carries a Banach-space structure, we may regard the
other quotients as Banach-spaces also.
For each z in D let Az be the unique analytic function which satis¢es
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A�w� � A�z� � �wÿ z�Az�w�
for all w 2 D. Then Az�w� � �A�w� ÿ A�z��=�wÿ z� if w 6� z. Clearly the
mapping �w; z� 7! Az�w� is analytic on D�D. Moreover by Cauchy's for-
mula we have

Az�w� � 1
2�i

Z
@
00

A���
��ÿ z���ÿ w� d�

where 
00 is here any Cauchy-domain within D which contains z and w.
Let f 2 o�
;E�. For each z 2 D we de¢ne g1�z� 2 E asfollows. Choose a

Cauchy-domain 
0 containing �
�A� but such that 
0 � 
. Then set

g1�z� � 1
2�i

Z
@
0

Az���A���ÿ1f ��� d��1�

It clear that g1 is an analytic function on D and that it does not depend on
the choice of 
0 subject to the stated conditions. That a Cauchy-domain can
be found to satisfy these conditions is quite well known. A proof can be
found in [7].
Let f 2 o�
;E�. For each z 2 
 we de¢ne g2�z� 2 E as follows. Choose a

Cauchy-domain 
0 containing �
�A� but such that 
0 � 
 and z 2 
0. Then
set

g2�z� � 1
2�i

Z
@
0

A���ÿ1f ���
� ÿ z

d��2�

It is clear that g2�z� does not depend on the choice of 
0 subject to the stated
conditions. It then follows that g2 is analytic on 
.
Let f 2 o�
;E�. For each z 2 C n�
�A� we de¢ne h�z� 2 E as follows.

Choose a Cauchy-domain 
0 containing �
�A� but such that 
0 � 
 and
z 62 
0. Then set

h�z� � 1
2�i

Z
@
0

A���ÿ1f ���
zÿ � d��3�

It is clear that h�z� is independent of the choice of 
0 subject to the stated
conditions. It then follows that h is analytic on �C n�
�A�� with h�1� � 0.
When we want to make the dependence of g1, g2 and h on f explicit, we

write g1 � G1f , g2 � G2f and h � Hf . Then G1 : o�
;E� ! o�D;E�,
G2 : o�
;E� ! o�
;E� and H : o�
;E� ! o�C n�
�A�;E� are linear
maps.

Lemma 1. (i) For each z 2 
 we have

f �z� � g1�z� � A�z�g2�z�
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(ii) For each z 2 
 n�
�A� we have
g1�z� � A�z�h�z�

Proof. Let z 2 D. Choose 
0 in the de¢nition of g1�z� such that z 62 @
0.
Then we have

g1�z� � 1
2�i

Z
@
0

A��� ÿ A�z�
� ÿ z

A���ÿ1f ��� d�

� 1
2�i

Z
@
0

f ���
� ÿ z

d� ÿ A�z� 1
2�i

Z
@
0

A���ÿ1f ���
� ÿ z

d�

Let z 2 
. Then we can choose 
0 so that z 2 
0. We conclude, by Cauchy's
formula, that g1�z� � f �z� ÿ A�z�g2�z�.
Next let z 62 �
�A�. Now we choose 
0 so that z 62 
0. This time Cauchy's

formula gives g1�z� � A�z�h�z�.
From lemma 1 (i) and the fact that A is invertible in a neighbourhood of

@
, we see that f 2h�
;E� implies g2 2h�
;E�, and f 2 o�
;E� implies
g2 2 o�
;E�. As g1 always lies in o�D;E�, we conclude that every element in
each of the quotient spaces o�
;E�=Ao�
;E�, h�
;E�=Ah�
;E� and
o�
;E�=Ao�
;E�, is represented by an element of o�D;E�. Hence the linear
maps

o�
;E�
Ao�
;E�ÿ!

h�
;E�
Ah�
;E�ÿ!

o�
;E�
Ao�
;E�

induced by restriction, are surjective. But using the fact that A is invertible in
a neighbourhood of @
 we see that these maps are also injective. The fol-
lowing is therefore proved.

Theorem 1. The induced mappings in the diagram

o�
;E�
Ao�
;E�ÿ!

h�
;E�
Ah�
;E�ÿ!

o�
;E�
Ao�
;E�

are vector-space isomorphisms.

For each f 2 o�
;E� we can de¢ne an element Sf of o�
;E� by restrict-
ing g1 to 
. This gives a linear map S : o�
;E� ! o�
;E�. In the same way
we get linear maps from h�
;E� to itself, and from o�
;E� to itself. We
shall denote all these maps by S, leaving the context to make clear which
spaces are involved.
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Lemma 2. Let X stand for any of the spaces o�
;E�,h�
;E� or o�
;E�.
The map S : X ! X is a projection and kerS � AX.

Proof. We ¢rst observe that if f 2 AX , then g1 � 0 by Cauchy's theorem.
Applying S to the identity f � g1 � Ag2 � Sf � Ag2 now gives Sf � S2f .
Hence S is a projection. Moreover Sf � 0 if and only if f � Ag2.

We recall thath�
;E� is a Banach space.

Lemma3. The projection S :h�
;E� !h�
;E� is continuous.
Proof In the formula (1) for g1 we ¢x the domain 
0 independently of

f 2h�
;E�. Then we get, since Az��� is bounded for �z; �� 2 
 � @
0,
jjg1�z�jj < C sup

�2@
0
jjf ���jj

for all z 2 
, where C is independent of f and z. In particular we deduce

jjSf jj < Cjjf jj
Hence S is continuous.

We conclude that the range of S :h�
;E� !h�
;E� is a closed sub-
space of h�
;E� and that the quotient h�
;E�= kerS �h�
;E�=
Ah�
;E� �hA�
;E� is a Banach space isomorphic to ranS. Hence the
other quotient spaces in theorem 1 can be viewed as Banach spaces also.
Next we set forth an interesting characterization of the range of S. To be

explicit, we will consider S : o�
;E� ! o�
;E�. The kernel of S can be
viewed as the set of all f 2 o�
;E� with the property that the mapping

 n�
�A� 3 z 7! A�z�ÿ1f �z� has an analytic extension to 
. There exists a
similar characterization of the range of S.

Theorem 2. The range of the projection S : o�
;E� ! o�
;E� consists of
all f 2 o�
;E� with the property that the mapping 
 n�
�A� 3 z 7!
A�z�ÿ1f �z� has an analytic extensionto C n�
�A� which vanishes at in¢nity.

Proof. Let f 2 o�
;E�. By lemma 1 (ii) we have Sf � g1 � Ah where h is
analytic on C n�
�A� and h�1� � 0.
Conversely suppose that f has the property in question. Let k be the ana-

lytic extension of the mapping 
 n�
�A� 3 z 7! A�z�ÿ1f �z� to C n�
�A�
such that k�1� � 0. Formula (2) (where z 2 
0) gives

g2�z� � 1
2�i

Z
@
0

A���ÿ1f ���
� ÿ z

d� � 1
2�i

Z
@
0

k���
� ÿ z

d�

Now we may replace the contour @
0 by a large circle whose radius tends to
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in¢nity. We conclude that g2�z� � 0 for each z 2 
. But then f is in the range
of S.

Theorem 3. m�A; 
� depends only on A and �
�A�.
Proof. It su¤ces to show that if 
1 and 
2 are both admissible for A,

and �
1�A� � �
2�A�, thenhA�
1;E� is isomorphic tohA�
2;E�.
Consider ¢rst the case when 
2 � 
1. Then just as in the proof of theorem

1 the restriction map h�
1;E� !h�
2;E� induces a vector-space iso-
morphism � :hA�
1;E� !hA�
2;E�. However the restriction map is also
continuous. Hence � is a Banach-space isomorphism.
For the general case we apply the result of the last paragraph to conclude

that hA�
1;E� and hA�
2;E� are both isomorphic as Banach spaces to
hA�
1 \
2;E�.
Consider the space o��
�A�;E�. Because 
 may have components con-

taining no singular points the restriction map from o�
;E� to o��
�A�;E�
need not be injective. However the following holds, and its proof is the same
as that of theorem 1.

Lemma 4. The map

o�
;E�
Ao�
;E�ÿ!

o��
�A�;E�
Ao��
�A�;E�

induced by restriction is an isomorphism of vector spaces.

Since 
 is irrelevant, perhaps the nicest way to think of the multiplicity is
as the quotient space o�C;E�=Ao�C;E� where C � �
�A�. However there is
a Banach-space structure which is not apparent in this formulation. This
structure can be realized by any one of a set of equivalent norms each de-
termined by choosing a set 
 which is admissible for A and satis¢es

 \��A� � C. For explicit calculations we can take the norm of the element
f � Ao�C;E� to be supz2
 jjg1�z�jj, where g1 is de¢ned by formula (1), taking

0 to lie within the domain of f .

3. Multiplicity axioms.

We propose the following as reasonable axioms for a multiplicity theory.
1. If T : E ! F is an isomorphism of Banach spaces then

m�TATÿ1; 
� � m�A; 
�
2. If �
�A� � ; then m�A; 
� � 0.
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3. If E�A� � E�B� and 
 is admissible for A and B then

m�AB; 
� � m�A; 
� �m�B; 
�
4. If 
 is admissible for A and B then

m�A� B; 
� � m�A; 
� �m�B; 
�
5. If 
1 and 
2 are admissible for A and 
1 \
2 � ; then

m�A; 
1 [
2� � m�A; 
1� �m�A; 
2�
6. m�A; 
� depends only on Aj
 and 
.
7. m�A; 
� depends only on A and �
�A�.
Axiom 3 is called the product theorem, while axiom 5 is called additivity

on sets.
Certain properties additional to those listed as axioms are often desirable.

Axiom 2 can be strengthened by requiring that m�A; 
� � 0 if and only if
�
�A� � ;. Another is homotopy invariance: if we deform A continuously in
such a way that 
 is always admissible, then m�A; 
� remains unchanged.
We shall establish these properties for our theory, but do not regard them as
axioms.
We begin by carrying out the easier veri¢cations.

Theorem 4. The multiplicity theory m satisfies axioms 1, 2, 4, 6 and 7.

Proof. Axiom 1: Let T : E ! F be an isomorphism. Then the map
h�
;E� 3 f 7! Tf is an isomorphism of h�
;E� onto h�
;F� which in-
duces an isomorphism ofhA ontohTATÿ1 .
Axiom 2: If �
�A� � ; then A is invertible on 
 and Ah�
;E� �

h�
;E�.
Axiom 6: Obvious from the de¢nition.
Axiom 7: Follows from theorem 3.
Axiom 4: Write E � E�A� and F � E�B�. Then E�A� B� � E � F . In

obvious ways we can assert that h�
;E � F� �h�
;E� �h�
;F� and
�A� B�h�
;E � F� � Ah�
;E� � Bh�
;F�. Hence hA�B�
;E � F� �
hA�
;E� �hB�
;F �.
In fact the theory m satis¢es axiom 2 in the strengthened form:

m�A; 
� � 0 if and only if �
�A� � ;. Although it is not hard to see this
directly, the neatest way is to use the canonical linearization which is dis-
cussed in a later section.

Theorem 5 (Additivity on sets). The multiplicity theory m satisfies axiom 5.

Proof. Let 
1 and 
2 be admissible for A and assume that 
1 \
2 � ;.

272 jön arason and robert magnus



{orders}ms/98711/arason.3d -17.11.00 - 13:46

Let 
 � 
1 [
2. We must show that m�A; 
� � m�A; 
1� �m�A; 
2�. We
know that m�A; 
� only depends on �
�A� and not on 
 as such. Therefore
we may shrink 
1 and 
2 and so, without loss of generality, we can assume
that 
1 \
2 � ;. Now we have a Banach-space isomorphism
h�
;E� !h�
1;E� �h�
2;E� given by f 7! �f j
1; f j
2�. This maps
Ah�
;E� to Ah�
1;E� � Ah�
2;E�, and hence induces a continuous
surjective map hA�
;E� !hA�
1;E� �hA�
2;E� which is plainly also
injective.

Finally we prove the product theoremöaxiom 3.
Let A : D! L�E;E� and B : D! L�E;E� be analytic with 
 admissible

for both A and B. Abbreviatingh�
;E� toh, we have the linear mappings

h ÿ!� h ÿ!� h
where � is multiplication by A and � is the identity. Note that � is injective,
since Af � 0 implies that f �z� � 0 in a neighbourhood of the boundary @
,
so that f � 0 throughout 
. The mappings � and � induce mappings

0 ÿ! h

Bh
ÿ!�� h

ABh
ÿ!�� h

Ah
ÿ! 0�4�

Clearly �� �� � 0, �� is surjective and �� is injective. Moreover the range of �� is
the kernel of �� . For if f � Ah � 0 then f � Ah for some h; then
f � ABh � Ah� ABh � ���h� Bh�. The sequence (4) is therefore exact.
We shall now show that �� has a continuous right-inverse. Let �A [resp. �AB]
denote the canonical mapping from h to h=Ah [resp. h=ABh]. As
shown in section 2, there is a linear map l, given by l�f � Ah� � Sf , such
that the diagram

h
Ah ÿ!l h

I &
??y�A
h
Ah

commutes, while the diagram

h ÿ!�AB h
ABh

�A

??y . �

h
Ah

plainly commutes. Combining the two we see that �ABl is a right-inverse to
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�� . The exact sequence (4) therefore splits and we deduce that h=ABh is
isomorphic to the direct sum of h=Ah and h=Bh. This is the product
theorem. We state this formally.

Theorem 6 (Product theorem). If 
 is admissible for both A and B then
m�AB; 
� � m�A; 
� �m�B; 
�.

4. Suspension equivalence.

In the paper [3] a central role was played by the concepts of equivalence and
suspension-equivalence (abbreviated to s-equivalence).
Let E and F be Banach spaces, A : D! L�E;E� an analytic mapping, and

T 2 L�F ;E� an isomorphism. By axiom 1 we have m�A; 
� � m�Tÿ1AT ; 
�.
Combining this with a special case of the product theorem we obtain the
following result.

Theorem 7. Let � : D! L�E;F� and  : D! L�E;F� be analytic map-
pings which take invertible values only. If B : D! L�F ;F� and
A : D! L�E;E� satisfy �A � B , and 
 is admissible for both A and B, then
m�A; 
� � m�B; 
�.
In fact the isomorphism from hA�
;E� to hB�
;F� is induced by the

linear map f 7! �f fromh�
;E� toh�
;F �.
Analytic operator-valued mappings A and B which satisfy the conditions

of theorem 7 are said to be equivalent. We see that invariance of multiplicity
under equivalence is a consequence of axiom 1 and the product theorem
(axiom 3).
Let X be a Banach space. The operator function A� IX is called the X -

suspension of A by analogy with its namesake in topology, (elsewhere in the
literature it is called the X -extension of A). If we do not wish to mention X
explicitly we refer simply to a suspension of A.
Suspension-equivalence combines the simpler concepts of suspension and

equivalence. Analytic operator functions A and B are s-equivalent if there
exist Banach spaces X and Y such that A� IX and B � IY are equivalent.
More explicitly, there should exist operator-valued analytic mappings
� : D! L�E � X ;F � Y� and  : D! L�E � X ;F � Y �, both of which take
invertible values only, such that

��A� IX � � �B � IY � 
It follows at once from the axioms and theorem 7 (itself a consequence of the
axioms), that m�A; 
� � m�B; 
� if A and B are s-equivalent, a result which
holds for all multiplicity theories. We proceed to generalize the conclusion of
the preceding paragraph for our theory m. Let A : D! L�E;E� and
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B : D! L�F ;F � be analytic mappings. Suppose that we have a commutative
diagram

0 ÿ! E ÿ!� F ÿ!� G?yA ?yB ?yIG
0 ÿ! E ÿ!� F ÿ!� G

with exact rows. Then we say that B is a weak suspension of A. In the dia-
gram, a morphism (arrow) means an analytic mapping from D to the space
of bounded linear mappings from the initial space to the ¢nal space. Exact-
ness of the rows means that for each z 2 D the sequence of linear maps

0 ÿ! E ÿ!��z� F ÿ!��z� G
is exact.
The concept of weak suspension, which was introduced in [3], with,

though, the additional requirement that ��z� was surjective, generalizes the
concept of suspension. We recall that B is a suspension of A if B � A� IG
for some G. This is a weak suspension where F � E � G, ��z� is the injection
E ! E � G mapping u to u� 0G, and ��z� is the surjection E � G! G
mapping u� v to v.

Theorem 8. Let B be a weak suspension of A and let 
 be admissible for A.
Then 
 is admissible for B and m�B; 
� � m�A; 
�.
Proof. First we show that 
 is admissible for B. Taking z 2 @
 we have

the commutative diagram of vector-spaces and linear mappings

0 ÿ! E ÿ!��z� F ÿ!��z� G?yA�z� ?yB�z� ?yIG
0 ÿ! E ÿ!��z� F ÿ!��z� G

where A�z� is invertible. From this it follows that B�z� is invertible.
Now we turn to the main part of the proof. We abbreviate h�
;E� to

h�E�, with corresponding abbreviations for the other spaces F and G. We
have an induced map �� fromh�E�=Ah�E� toh�F�=Bh�F � given by

���f � Ah�E�� � �f � Bh�F�
We shall show that �� is a Banach-space isomorphism. If h 2h�F � and
h�z� 2 ran��z� for each z 2 
, then there exists f 2h�E� such that �f � h.
This last claim seems quite transparent, yet it needs proof, since we are not
assuming that ran��z� is complemented in F . The proof is relegated to a
lemma following the rest of the proof of this theorem.
To show that �� is injective: Suppose that ���f � Ah�E�� � 0. Then
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�f � Bh for some h 2h�F �. Hence 0 � ��f � �Bh � �h so that
h�z� 2 ker��z� � ran��z� for each z 2 
. Hence, by the lemma, h � �g for
some g 2h�E� and we ¢nd that �f � Bh � B�g � �Ag; whence f � Ag;
that is f � Ah�E� � 0.
To show that �� is surjective: Let f 2h�F�. We have

f � Bh�F � � f ÿ Bf � Bh�F�. Now ��f ÿ Bf � � �f ÿ �f � 0. Hence, by
the lemma, f ÿ Bf � �g for some g 2h�E�. That is, f � Bh�F� �
���g� Ah�E��.
Lemma 5 (i) Let X be a topological space. Let E and F be Banach spaces,

� : X ! L�E;F � a continuous mapping such that ��z� is injective and has
closed range for each z 2 X. Let h : X ! F be continuous and suppose that
h�z� 2 ran��z� for each z 2 X. Then there exists a continuous mapping
f : X ! E such that h � �f .
(ii) If, in addition, X is an open subset of C, and � and h are analytic, then f

is analytic.

Proof. (i) Of course there exists a function f such that h � �f . The pro-
blem is to show that f is continuous. Note that we are not assuming that the
range of ��z� is complemented. For each z the linear map ��z� has a con-
tinuous linear inverse de¢ned on the closed, but variable, subspace ran��z�.
Let us denote this inverse by �z�.
Fix z0 2 X . There exists a neighbourhood N of z0 such that for all z 2 N

we have jj��z� ÿ ��z0�jj < 1
2 jj�z0�jjÿ1. Let u 2 E. For z 2 N we have

jj��z�ujj � jj��z0�ujj ÿ 1
2 jj�z0�jjÿ1jjujj � jj�z0�jjÿ1jjujj ÿ 1

2 jj�z0�jjÿ1jjujj �
1
2 jj�z0�jjÿ1jjujj. Hence jj�z�jj � 2jj�z0�jj for all z 2 N, whence jjjj is locally
bounded. We conclude that f is locally bounded.
Now we haveÿ

��z� ÿ ��z0�
�
f �z� � ��z0�

ÿ
f �z� ÿ f �z0�

� � h�z� ÿ h�z0�
Since h is continuous and f is locally bounded we ¢nd, letting z! z0, that
limz!z0 f �z� ÿ f �z0� � 0, that is, f is continuous.
(ii) We have

��z� ÿ ��z0�
zÿ z0

ÿ �0�z0�
� �

f �z� � ��z0� f �z� ÿ f �z0�
zÿ z0

� �0�z0�f �z�

� h�z� ÿ h�z0�
zÿ z0

whence, letting z! z0, and using the continuity of f , we obtain the di¡er-
entiability, and hence analyticity, of f .
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5. Some examples.

In this section we compute m�A; 
� in a number of special cases.

Theorem 9. Let A : D! C be analytic. Then m�A; 
� is the sum of the
usual multiplicities of the zeros of A in 
.

Proof. By axiom 5 we reduce this to the case when A has one zero z0 in

. Let A�z� � ��z��zÿ z0�r where ��z� 6� 0 for all z 2 
. By the product
theorem we have m�A; 
� � rm�B; 
� where B�z� � zÿ z0. A trivial calcula-
tion gives m�B; 
� � 1.

Let T 2 L�E;E�. The operator-function z 7! zIE ÿ T will be denoted by
LT . Now let �A; 
� be an admissible pair. Then there exists a Banach space
F and an operator T 2 L�F ;F� such that A is s-equivalent to LT on some
neighbourhood of 
. We say that LT is a linearization of A on 
. The GKL-
process described in [3] and based directly on [1] provides a linearization. In
a succeeding section we shall describe another linearization.
In [3] the multiplicity of an admissible pair was de¢ned by choosing a lin-

earization LT for A on 
 and then letting the multiplicity be the isomorph-
ism class of the range of the spectral projection associated with T and 
 by
means of the operational calculus. The next result therefore implies that
m�A; 
� coincides with the multiplicity de¢ned in [3].

Theorem 10. m�LT ; 
� is the isomorphism class of the range of the spectral
projection associated with T and 
.

Proof. Let A � LT , let E � E�A� and abbreviate h�
;E� to h. The re-
sults of section 2 indicate that the Banach space h=LTh is isomorphic to
the subspace ofh consisting of all functions of the form

g1�z� � 1
2�i

Z
@
0

Az���A���ÿ1f ��� d�

as f ranges over h, and that the mapping f 7! g1 thus de¢ned is a projec-
tion. Here we use the notation of section 2; in particular formula (1). Now
Az � IE and hence we have

g1�z� � 1
2�i

Z
@
0
��IE ÿ T�ÿ1f ��� d�

Thus the function g1 is a constant. But the result of projecting a constant u is
�1=2�i� R@
0 ��IE ÿ T�ÿ1u d� � Qu where Q is the spectral projection asso-
ciated with T and 
. Henceh=LTh is isomorphic to the range of Q.

It now follows that in the case where the values of A are all Fredholm
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operators of index zero, m�A; 
� is the sum of the multiplicities of the sin-
gular points of A in 
. For the proof of this we refer the reader to [3].

6. The canonical linearization.

Let �A; 
� be an admissible pair. Abbreviateh�
;E� toh andhA�
;E� to
hA. We let �A denote the canonical linear mapping from h to hA. On the
spacehA we de¢ne a linear mapping !A by letting !A�Af � �A!f , where ! is
the linear map h!h given by �!f ��w� � wf �w� for all w 2 
. The func-
tion z 7! zIhA ÿ !A will be called the canonical linearization of the admissible
pair �A; 
�.
There is a point here which may cause confusion. The canonical linear-

ization is associated with 
, but its domain is all of C. It will appear later
that the canonical linearization of �A; 
� is a linearization of A on a domain
larger than 
.

Lemma 6. Let A and B be s-equivalent and let 
 be admissible for both.
Then there exists an isomorphism  :hA�
;E�A�� !hB�
;E�B�� such that
!A � !B.
Proof. It su¤ces to consider two cases. In the ¢rst case B is a weak sus-

pension of A. In the second case B is equivalent to A.
Assume that B is a weak suspension of A. Using the notation of the proof

of theorem 8 we have an isomorphism � :hA�
;E�A�� !hB�
;E�B�� in-
duced by the linear maph�
;E�A�� !h�
;E�B�� given by f 7! �f . Since
this map commutes with ! it is immediate that �!A � !B�; so we can let
 � �.
Assume next that B is equivalent to A, say, �A � B , where � and  are

invertible. By the remark after theorem 7 there is an isomorphism from
hA�
;E�A�� to hB�
;E�B�� induced by the linear map h�
;E�A�� !
h�
;E�B�� given by f 7! �f . The proof is now completed as in the ¢rst
case.

Theorem 11. Let �A; 
� be an admissible pair. Then A is s-equivalent to the
canonical linearization of �A; 
� on some neighbourhood of 
.
Proof. Since A is known to possess a linearization on a neighbourhood of


 (e.g. that given by the GKL-process), it su¤ces to show that, if A is al-
ready linear, then it is s-equivalent to its canonical linearization. So let
A � LT with T 2 L�E;E�. By the results of the last section, �Af � �Au where
u is the constant function �1=2�i� R@
0 ��IE ÿ T�ÿ1f ��� d�, which, regarded as
a vector, belongs to the range of the spectral projection
Q � �1=2�i� R@
0 ��IE ÿ T�ÿ1d�. Hence

278 jön arason and robert magnus



{orders}ms/98711/arason.3d -17.11.00 - 13:50

!A�Af � !A�Au � �A!u � �A
� 1
2�i

Z
@
0
��IE ÿ T�ÿ1�u d�

�
� �ATu

Hence the operator !A onhA is similar to the operator T jranQ. By spectral
theory LT is equivalent to LT jranQ � LT j kerQ on all of C. But LT j kerQ is in-
vertible on 
. Hence LT is s-equivalent on a neighbourhood of 
 to LT jranQ,
and hence to L!A . This concludes the proof.

It is clear that zIE ÿ ! is invertible for all z 62 
. The same, therefore, ap-
plies to zIhA ÿ !A. It follows from theorem 11 that the spectrum of !A co-
incides with that part of the singular set of A which lies within 
, a result
which does not seem obvious. Another consequence of theorem 11 is that if
m�A; 
� � 0 then �
�A� � ;. For if m�A; 
� � 0 then the canonical linear-
ization is de¢ned on the trivial vector space f0g; hence the spectrum of !A,
which coincides with �
�A�, is empty.
The foregoing proof of theorem 11 is quite su¤cient for most purposes.

However we thought it of interest to give another proof, which is more
constructive in that it exhibits an explicit s-equivalence between A and its
canonical linearization. The intervening spaces are probably of minimal size
for a linearization. Compare this with the GKL-process (used in the proof of
the last theorem) where it is always necessary to introduce a large space. The
following result could therefore be useful if one was considering multiplicity
theory for a restricted category of Banach spaces.

Theorem 12. Let �A; 
� be an admissible pair and let E � E�A�. Then
A� IhA�
;E� and IE � L!A are equivalent on 
 (that is, on an open neighbour-
hood of 
).

The proof will occupy the rest of this section and will contain a number of
lemmas. First we introduce some notation and make preliminary remarks.
As usualh�
;E� will be abbreviated toh andhA�
;E� tohA. We choose
an admissible Cauchy-domain 
00 containing 
 and such that
�
00 �A� � �
�A�. We shall in fact prove that A� IhA�
;E� and IE � L!A are
equivalent on 
00. For each z 2 
00 we de¢ne B2�z� 2 L�E;E� by

B2�z� � 1
2�i

Z
@
00

A���ÿ1
� ÿ z

d�

Then B2 is an analytic L�E;E�-valued function on 
00.
For each z 2 
00 and u 2 E we de¢ne K�z� 2 L�E;h� by lettingÿ

K�z�u��w� � Az�w�u
for all w 2 
. Recall that Az�w� was de¢ned in section 2. Then K is an ana-
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lytic L�E;h�-valued function on 
00. In fact K is analytic on all of
D � D�A�. To prove this it is enough to check that the mapping z 7! K�z�u is
an analytic h-valued mapping for each u 2 E (see, for example, [8, page
206]). Fix u 2 E and let F�z;w� � ÿK�z�u��w� � Az�w�u. Then K�z�u is the
mapping 
 3 w 7! F�z;w�, and we must show that the di¡erence quotientÿ
F�z� h;w� ÿ F �z;w��=h attains its limit as h! 0 uniformly with respect to
w 2 
. We have that F is an analytic mapping from D�D to E. It follows
that D1F is uniformly continuous on 
00 �
. Hence the limit

lim
h!0

F�z� h;w� ÿ F�z;w�
h

� D1F�z;w�

is attained uniformly with respect to w 2 
. We conclude that the mapping
z 7! K�z�u is an analytich-valued mapping.
For each f 2h we de¢ne Uf 2 E as follows. Choose a Cauchy-domain 
0

containing �
�A� but such that 

0 � 
 and let

Uf � 1
2�i

Z
@
0

A���ÿ1f ��� d�

Clearly Uf does not depend on the choice of 
0 subject to the stated condi-
tions. Moreover U is a continuous linear map fromh to E.
If f 2 Ah then Uf � 0. Hence U induces a continuous linear map

UA :hA ! E.
We denote by J the embedding of E into h which maps u 2 E to the

constant function with value u.
We recall the linear map G2 de¢ned in section 2. Here, though, we replace


 by 
00, and then G2 : o�
00;E� ! o�
00;E� is given by

�G2f ��z� � 1
2�i

Z
@
0

A���ÿ1f ���
� ÿ z

d�

where 
0 is a Cauchy-domain such that 

0 � 
00, and 
0 contains �
�A� and

z. We recall the property of G2 that if f � Af1, with f1 2 o�
00;E�, then
G2f � f1.
For each z 2 
00 we de¢ne ��z� 2 L�E �h;E �h� by

��z� � I U
0 ÿI

� �
I 0

ÿK�z� I

� �
� I ÿUK�z� U

K�z� ÿI
� �

Clearly ��z� is invertible and

��z�ÿ1 � I 0
K�z� I

� �
I U
0 ÿI

� �
� I U

K�z� K�z�U ÿ I

� �
Then � is an analytic L�E �h;E �h�-valued function on 
00.
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Since U vanishes on Ah we see that ��z� and ��z�ÿ1 both map the sub-
space f0g � Ah to itself. It follows that ��z� induces an isomorphism
�A�z� : E �hA ! E �hA. Moreover �A is an analytic L�E �hA;

E �hA�-valued function on 
00.
For each z 2 
00 we de¢ne ��z� 2 L�E �h;E �h� by

��z� � B2�z� U
J !ÿ zI

� �
Then � is an analytic L�E �h;E �h�-valued function on 
00.
Since U vanishes on Ah we see that ��z� maps f0g � Ah to itself. We

conclude that ��z� induces a continuous linear map �A�z� : E �hA !
E �hA. Then �A is an analytic L�E �hA;E �hA�-valued function on 
00.
The proof of theorem 12 is completed in the following two steps:

Step 1. Proof that �A�z� is invertible for each z 2 
00.
Step 2. Proof that

�A�z� A�z� 0
0 I

� �
� I 0

0 zI ÿ !A
� �

�A�z�

for all z 2 
00. In short, �A�A� IhA� � �IE � L!A��A.
To carry out step 1 we use the following lemma.

Lemma 7. Let z 2 
00, u 2 E and f 2 o�
00;E�. Defineg 2 o�
00;E� by
g�w� � u� �wÿ z�f �w�

for all w 2 
00. Then
G2�g��z� � B2�z�u�Uf

Proof. Choose 
0 so that 

0 � 
00, z 2 
0 and �
�A� � 
0. Then

G2�g��z� � 1
2�i

Z
@
0

A���ÿ1
� ÿ z

ÿ
u� �� ÿ z�f ���� d� � B2�z�u�Uf

Proof that �A�z� is injective
Every element of E �hA is represented by a pair �u; f �, where u 2 E and

f 2 o�
00;E�. Let the class of such a pair lie in the kernel of �A�z�. Then
B2�z�u�Uf � 0, and there exists f1 2 o�
00;E� such that u� �wÿ z�f �w� �
A�w�f1�w� for all w 2 
00. Using lemma 7 on the second equation we get
f1�z� � B2�z�u�Uf ; and hence by the ¢rst equation f1�z� � 0. Hence there
exists f2 2 o�
00;E� such that f1�w� � �wÿ z�f2�w� for all w 2 
00. By the
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second equation we get u � 0 and f � Af2. Hence the class of �u; f � in
E �hA is trivial.

Proof that �A�z� is surjective
Represent an element of E �hA by a pair �v; g� where v 2 E and

g 2 o�
00;E�. Since we may replace g by gÿ AG2g� Av, and
G2�gÿ AG2g� Av� � v, we may, without loss of generality, assume that G2g
is the constant function v. We then let u � g�z� and let f 2 o�
00;E� be de-
termined by the equation g�w� � g�z� � �wÿ z�f �w�. By lemma 7 we then
have v � �G2g��z� � B2�z�u�Uf . But then ��z� maps �u; f � to �v; g�.
Finally we carry out step 2. We use the following lemma.
Lemma 8. For all z 2 
00

B2�z�A�z� �UK�z� � I

Proof. Let u 2 E. As we can consider K�z�u as lying in o�D;E�, we have

UK�z�u � 1
2�i

Z
@
00

A���ÿ1ÿK�z�u���� d�
� 1
2�i

Z
@
00

A���ÿ1Az���u d� � 1
2�i

Z
@
00

A���ÿ1A��� ÿ A�z�
� ÿ z

u d�

� uÿ 1
2�i

Z
@
00

A���ÿ1
� ÿ z

d�

 !
u � uÿ B2�z�A�z�

Now we complete step 2 by calculating

��z� A�z� 0
0 I

� �
u

f

� �
ÿ I 0

0 zI ÿ !
� �

��z� u

f

� �
� B2�z� U

J !ÿ zI

� �
A�z� 0
0 I

� �
u

f

� �
ÿ I 0

0 zI ÿ !
� �

I ÿUK�z� U

K�z� ÿI
� �

u

f

� �
� B2�z�A�z�u�UK�z�uÿ u

JA�z�uÿ �zI ÿ !�K�z�u
� �

� 0
Au

� �
2 f0g � Ah

where we have used lemma 8 at the very end, together with the formula
�JA�z��w� ÿ ÿ�zI ÿ !�K�z�u��w� � A�z�u� A�w�uÿ A�z�u � A�w�u. This
concludes the proof of theorem 12.
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7. Homotopy invariance.

In this section we shall apply the considerations of section 2, but allow A to
vary. Let M
 denote the space of all analytic mappings A : 
! L�E;E�, for
which A�z� is invertible for all z 2 @
. We consider M
 as a subset of the
Banach space h�
;L�E;E�� with the induced topology. Denote the projec-
tion S de¢ned by equation (1) by SA.

Lemma 9. SA depends continuously on A 2M
.

Proof. By the maximum principle jjf �z�jj attains its maximum on the
boundary @
 for each f 2h�
;E�. Fix the Cauchy-domain 
0 inside 
 in
such a way that jzÿ �j is uniformly bounded below by a positive constant for
all z 2 @
 and � 2 @
0. Consider now A and B in M
. For each f 2h�
;E�
there exists z 2 @
 such that

jjSAf ÿ SBf jj � 1
2�

Z
@
0

A��� ÿ A�z�
� ÿ z

A���ÿ1 ÿ B��� ÿ B�z�
� ÿ z

B���ÿ1
� �

f ��� d�
 

� 1
2�

Z
@
0
�� ÿ z�ÿ1ÿB�z�B���ÿ1 ÿ A�z�A���ÿ1�f ��� d� 

� 1
2�

Z
@
0
j� ÿ zjÿ1B�z�B���ÿ1 ÿ A�z�A���ÿ1 d� � jjf jj

whence we deduce

jjSA ÿ SBjj � C sup
�2@
0;z2@


B�z�B���ÿ1 ÿ A�z�A���ÿ1
where C is independent of A and B. It follows immediately that the mapping
A 7! SA is continuous on M
.
Fix an initial A. By standard facts about projections on Banach spaces (see

the lemma at the end of this section), there exists a neighbourhood U of A in
M
 such that, for all B 2 U , the restriction of SA to ranSB is an isomorph-
ism of the latter subspace onto ranSA. Hence the isomorphism class of
ranSA is a locally constant function on M
. Thus we obtain the homotopy
invariance of m�A; 
�.
In fact we can say more. Abbreviateh�
;E� toh. Let b
 denote the set

of all pairs �A; �� for A 2M
 and � 2h=Ah. Then the mapping �A; �� 7! A
de¢nes b
 as a vector-bundle over M
.
As it is di¤cult to give a precise reference for the required material on

projections, we include a proof here of somewhat more than is needed.

Lemma 10. Let X be a Banach space and P 2 L�X ;X� a continuous projec-
tion. Then there exists � > 0 such that, if Q 2 L�X ;X� is a projection and
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jjP ÿQjj < �, then the restriction of P to ranQ is an isomorphism of ranQ
onto ranP; and the restriction of Q to ranP is an isomorphism of ranP onto
ranQ.

Proof. Let Q be a projection and consider the operator T � PQ�
�I ÿ P��I ÿQ�. If Q � P then T � I . Moreover T ÿ I � 2PQÿ P ÿQ �
P�Qÿ P� � �P ÿQ�Q. Hence jjT ÿ I jj � jjP ÿQjj�jjPjj � jjQjj�. In the same
way letting T 0 � QP � �I ÿQ��I ÿ P� we have jjT 0 ÿ I jj � jjP ÿQjj
�jjPjj � jjQjj�. Recall that P is ¢xed. Since the expression jjP ÿQjj
�jjPjj � jjQjj� depends continuously on Q, there exists � > 0 such that
jjP ÿQjj�jjPjj � jjQjj� < 1 whenever Q is a projection which satis¢es
jjP ÿQjj < �. For all such projections Q the operators T and T 0 are both
invertible. Consider T . We have T jranQ � PjranQ and T j kerQ �
�I ÿ P�j kerQ. Hence P�ranQ� � �I ÿ P��kerQ� � T�ranQ��T�kerQ� �X .
However P�ranQ� � ranP, �I ÿ P��kerQ� � kerP, and ranP � kerP � X .
Hence the restriction of P to ranQ is an isomorphism, and P�ranQ� � ranP.
Applying a similar argument using T 0 we ¢nd that the restriction of Q to
ranP is an isomorphism of ranP onto ranQ.

A corollary of this is the familiar fact that, if Pt is a projection depending
continuously on a variable t, then the isomorphism class of the range of Pt is
independent of t.

8. Estimates of multiplicity.

We can use ideas related to the canonical linearization to get an estimate of
the size of the spacehA, and hence the multiplicity.

Theorem 13. Let A be a polynomial of degree n with coefficients in L�E;E�.
Let 
 be admissible for A. Then

hA �
Xnÿ1
k�0

!kA�A�E�

Note that we regard E as a subspace of h�
;E� by identifying vectors
with constant functions. The theorem generalizes the conclusion of section 6,
that in case A is of the ¢rst degree in z, the space hA may be computed by
projecting constant functions alone. In the present case, hA may be com-
puted by projecting polynomials of degree less than n. Let us denote the
space of all E-valued polynomials of degree less than or equal to n by pn�E�.
Clearly pn�E� is a Banach space isomorphic to En�1. It is also in a natural
way a subspace of h�
;E�. We shall as usual write E for p0�E�. The con-
clusion of theorem 13 can then be writtenhA � �A�pnÿ1�E��.
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Proof. By the results of section 2 it is enough to show that the function

g1�z� � 1
2�i

Z
@
0

Az���A���ÿ1f ��� d�

is a polynomial of degree less than n for every f 2h�
;E�. Recall that
Az��� � �A��� ÿ A�z��=�� ÿ z�. Hence, since A�z� is a polynomial of degree n,
the function Az��� is a polynomial in z of degree less than n. The same is
therefore true of g1�z�.
We now give an estimate of the size of m�A; 
� in the general case.

Theorem 14. Let A : D! L�E;E� be analytic and let 
 be admissible for
A. Then there exists N such that m�A; 
� is the isomorphism class of a com-
plemented subspace of EN. MoreoverhA � �A�pNÿ1�E�� �

PNÿ1
k�0 !

k
A�A�E�.

Proof. We ¢rst consider the case when A is a rational function with poles
outside 
. Write A�z� � p�z�ÿ1B�z� where B is an L�E;E�-valued poly-
nomial, and p is a C-valued polynomial with all its zeros outside 
. Since
p�z� 6� 0 for all z 2 
 and A � B pÿ1I , we have that Ah � Bh and so
�A � �B. Let N be the degree of B. We then have, using theorem 13:
hA � �A�h� � �B�h� � �B�pNÿ1�E�� � �A�pNÿ1�E��. This is the second
conclusion of the theorem. Moreover from hA � �B�h� we see that hA is
isomorphic to ranSB. But the latter is a subspace of pNÿ1�E� according to
the proof of theorem 13. Hence ranSB � SB�pNÿ1�E��. Since SB is a con-
tinuous projection we conclude that ranSB is a complemented subspace of
pNÿ1�E�. Since the latter is isomorphic to EN we deduce that m�A; 
� is the
isomorphism class of a complemented subspace of EN .
Now consider the case of analytic A. Without loss of generality we may

assume that 
 is a Cauchy-domain. As shown in section 7, SB depends con-
tinuously on B. Hence, by lemma 10, there exists � > 0 such that, if
jjA�z� ÿ B�z�jj < � for all z 2 
 then the restriction of SA to ranSB is an
isomorphism of the latter onto ranSA. By Runge's theorem we can ¢nd a
rational function B that satis¢es this condition. For such a B we have that
m�A; 
� is the isomorphism class of ranSB, and the latter is isomorphic to a
complemented subspace of EN , for some N. Moreover hA � �A�ranSB� �
�A�pNÿ1�E�� for some N. This concludes the proof.

Theorem 14 implies at a stroke a number of conclusions, some easily ob-
tainable by other means, others by no means obvious. For example: if E is
¢nite-dimensional, then so is m�A; 
�; if E is a Hilbert space, then m�A; 
� is
the class of some Hilbert space; if E is re£exive, then so is m�A; 
�.
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