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K-THEORY FOR C*-ALGEBRAS ASSOCIATED WITH
SUBSHIFTS

KENGO MATSUMOTO

Abstract.

We present K-theory formula for C*-algebras associated with subshifts. The formula is a gen-
eralization of K-theory formula for Cuntz-Krieger algebras, which are associated with topolo-
gical Markov shifts. The dimension group for a general subshift is introduced to be the dimen-
sion group for the associated AF-algebra.

1. Introduction.

In [Ma], the author has introduced and studied a class of C*-algebras asso-
ciated with subshifts in the theory of symbolic dynamics. The class of C*-
algebras is a generalized one of the Cuntz-Krieger algebras which are asso-
ciated with topological Markov shifts. Each of the C*-algebras associated
with subshifts has generators of partial isometries with mutually orthogonal
ranges. It also has universal properties subject to some operator relations
([Ma; Theorem 4.9 and 5.2]) so that it becomes purely infinite and simple in
many cases including Cuntz-Krieger algebras. It is an analogy to the Cuntz-
Krieger algebras that AF-subalgebras are appeared inside of the C*-algebras
as the algebras of all fixed points of certain one-parameter group actions,
called gauge actions. However, these AF-subalgebras have more compli-
cated structure than the AF-subalgebras appeared inside of the Cuntz-Krie-
ger algebras.

For a subshift (4, ), we denote by ¢4 and # ¢ the C*-algebra associated
with the subshift (A4,0) and the corresponding AF-subalgebra inside of it
respectively. If a subshift is a topological Markov shift, then the Ky-group of
the AF-subalgebra, as an ordered group, becomes the dimension group for
the topological Markov shift considered in [Krl] and [Kr2]. Hence for a
general subshift, it seems to be natural to define ““‘the dimension group” for a

Received Janury 8, 1996.



238 KENGO MATSUMOTO

subshift (4, o) as the Ky-group Ko(F %) of the AF-algebra # ¢ as an ordered
group.

In this paper, we present K-theory formula of these C*-algebras ¢, and
F T (Theorem 3.11 and Theorem 4.9). We first compute the Kj-group
Ko(F) of the AF-algebra % inside of it and show that the Kj-group is
realized as an inductive limit of a sequence of the Ky-groups of the finite di-
mensional and commutative C*-algebras generated by support projections of
canonical generators of partial isometries (Theorem 3.11). We will next show
that the AF-algebra # ¢ is stably isomorphic to the crossed product of the
C*-algebra 04 by the gauge action. Hence, (4 is stably isomorphic to the
crossed product of the tensor product C*-algebra of 7 and the C*-algebra
of all compact operators on a Hilbert space by an action of Z. Thus it be-
comes to be possible to compute K-groups for the C*-algebra @, by using
the Pimsner-Voiculescu six-term exact sequence for K-theory. The resulting
K-group formula (Theorem 4.9) includes the K-group formula of the Cuntz-
Krieger algebras ([C2]).

We will finally compute the K-group for the C*-algebra associated with a
certain sofic subshift but not conjugate to a topological Markov shift.
Computation of K-groups for C*-algebras associated with other concrete
subshifts will appear in some papers (cf. [KMW]).

We remark that the C*-algebras associated with subshifts are nuclear
purely infinite simple and satisfy the Universal Coefficient Theorem in many
cases. Hence, by recent results of Kirchberg and Phillips in [Ki] and [Ph],
they can be completely classified by their own K-theory (Corollary 4.11).

The author would like to thank the referee for some suggestions.

After submitting the first draft of this paper, the author was informed of
preprints [KPRR] and [PR] by Kumjian-Pask-Raeburn-Renault and Pask-
Raeburn. They study generalization of Cuntz-Krieger algebras from graph
theoretic view point, but our generalization of Cuntz-Krieger algebras are
different from theirs.

2. Review of the C*-algebras associated with subshifts.

We will review the construction of the C*-algebras associated with subshifts
along [Ma].

In the throughout this paper, a finite set ¥ = {1,2,...,n} is fixed.

Let 324, ©N be the infinite product spaces 7> %, [, 5; where 3; = %,
endowed with the product topology respectively. The transformation ¢ on
2, 5N given by (o(x)), = xi+1,i € Z,N is called the (full) shift. Let A be a
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shift invariant closed subset of ¥¢ i.e. o(A) = A. The topological dynamical

system (A,0],) is called a subshift. We denote o], by o for simplicity. This
class of the subshifts includes the class of the topological Markov shifts (cf.
[DGS)).

A finite sequence p = (1, ..., k) of elements y; € X is called a block or a
word. We denote by |u| the length & of u. A block p = (ui, ..., pk) is said to
occur in x = (x;) € L% if X, = pt1, o, Xiik_1 = it for some m € Z.

For a subshift (A, o), set for k € N

A% = {1 : a block with length k in % occurring in some x € A}

and A; = Uf(zo/lk S A= U,C;C:OA" where A° denotes the empty word 0.

Let {ey,..., e, } be an orthonormal basis of n-dimensional Hilbert space C".
We put

FY=Cey (e: vacuum vector)

FX = the Hilbert space spanned by the vectors e, =e¢,, @ @ ey, =
(1, ) € A,

Fr= &2, Fk  (Hilbert space direct sum)

We denote by T, (v € A") the creation operator on Fy of e,,v € A" (v # 0)
defined by

*
Tl/e() =&y and Tyeu = {(e)ll ® e.u” (VIILGA )
€1Se

which is a partial isometry. We put 7, = 1 for v = (). We denote by Py the
rank one projection onto the vacuum vector ¢p. It immediately follows that
S T;T; + Py=1. We then easily see that for u,v € A", the operator
T,PoT; is the rank one partial isometry from the vector e, to e,. Hence, the
C*-algebra generated by elements of the form 7,PyT;, v € A" is nothing
but the C*-algebra #'(F,) of all compact operators on F,. Let 7, be the C*-
algebra on F, generated by the elements 7,,v € A",

DEerFINITION ([Ma]). The C*-algebra @, associated with subshift (A, o) is
defined as the quotient C*-algebra /7 (F,) of T4 by A (Fy).

We denote by S;,S, the quotient image of the operator T;,ic X,
T,,pn € A*. Hence (04 is generated by n partial isometries Si, ..., S, with re-
lation >°7 | S;S; = 1.

If (A, 0) is a topological Markov shift, the C*-algebra @, is nothing but
the Cuntz-Krieger algebra associated with the topological Markov shift (cf.
[CK][EFW],[EV]).
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We henceforth fix an arbitrary subshift (A, 0) in ©%. We denote by (X, o)
the associated right one-sided subshift for (A4, ).

We will present notation and basic facts for studying the C*-algebra (7 .

Put a, = S;S,,pu € A*. Since T,T; commutes with T:Tu,p,v € A*, the
following identities hold

(%) a,S, = Sy, p,v € A",
We notice that for u,v € A* with |u| = |v|,
S8, #0 if and only if = v.
We will use the following notation. Let k,/ be natural numbers with k < /.

A; = The C*-subalgebra of (0, generated by a,,pn € A;.

A = The C*-subalgebra of ¢/, generated by a,, u € A"

j”']i = The C*-subalgebra of ¢, generated by S,aS}, pu, v € A ae 4.

F > =The C*-subalgebra of @, generated by S,aS},u,v € A ae dy.

F % = The C*-subalgebra of (0, generated by S,aS}, u,v € A, |u| = |v|,a € Ax.

The projections {7},7),; u € A"} are mutually commutative so that the C*-

algebras A4;,/ € N are commutative. Thus we easily see the following lemma
(cf. [Ma; Section 3]).

Lemma 2.1.

(1) A, is finite dimensional and commutative.

(i) A; is naturally embedded into A;y so that Ay = lim A; is a commutative
AF-algebra.

(i) Each element of 9‘72 is a finite linear combination of elements of the
Sform S,aS;, v € A¥ a € A, Hence 3‘2 is finite dimensional.

(iv) There are two embeddings in {F |}, :

(iv-a) ¢ : fi C 5”?1 through the embedding A; C A;yy and

(iv-b) m : Fj C F through the identity

n
SuaS; = 8,;S;aS;Sy,  pveAiaca,.
j=1

(v) Both 72 = lim;_,« 9”2 and F5 = limy_... F;° are AF-algebras.

In the preceding Hilbert space F,, the transformation e, — z"eu,
pe A zeT={zeC;|z| =1} on each base e, yields a unitary representa-
tion which leaves J (F,) invariant. Thus it gives rise to an action a of T on
the C*-algebra (@,. It is called the gauge action and satisfies
OZZ(SZ‘) = ZS,', = 1, 2, ,n.
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Each element X of the x-subalgebra of ¢/, algebraically generated by
S,, € A" is written as a finite sum

X = Z XS+ Xo+ Z S, X, for some X_,,Xo,X,€FY

[—v[>1 [pl>1

because of the relation (*). The map E(X) = [ a:(X)dz, X € 04 defines a
projection of norm one onto the fixed point algebra ¢§ under o. We then
have (cf. [Ma; Proposition 3.11])

LEmMMA 2.2. FF = 09.

We will next describe structure theorems for the C*-algebra (0, proved in
[Ma].

THEOREM A ([Ma; Theorem 4.9 and 5.2]). Let .o/ be a unital C*-algebra.
Suppose that there is a unital *-homomorphism 7 from A, to <o/ and there are n
partial isometries sy, . ..,s, € of satisfying the following relations

n

* * * *

(a) E 587 = 1, Sy SuSu = SuS), S, v e A
Jj=1

(b) 85 = (S, Su), pwe A

where S, =Su, -+ S, b= (p1,..., k). Then there exists a unital *-homo-
morphism 7 from Oy to of such that #(S;) = s;,i = 1,...,n and its restriction
to Ay coincides with . In addition, if O, satisfy the condition (14) below, this
extended *-homomorphism T becomes injective whenever w is injective.

Let D, be the C*-algebra generated by S,S), u € A* which is isomorphic

to the C*-algebra C(X,) of all continuous functions on the space of the one-
sided subshift X, for A. Put

$a(X) =D _SXS;, X eDy
=

which corresponds to the shift o on the one-sided space X, of A.

Consider the following condition called (7,) in [Mal.

(I4) : For any /,k € N with [ > k, there exists a projection qfc in D, such
that

(i) gha # 0 for any nonzero a € 4,

(i) ¢4 (qr) =0, 1<m<k.

Put
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M(X) =) S/XS;, X €Ay
=1

We call A4 the adjancy operator on A4 . It is said to be irreducible if there is
no A\j-invariant ideal in 4,. In addition, it is said to be aperiodic, if for any
I € N, there exists N € N such that \Y(p) > 1 for any minimal projection p
in 4;. We thus have

THEOREM B ([Ma; Theorem 6.3 and Corollary 7.4]). If the C*-algebra 0,
satisfy the condition (14) and Ay is irreducible, then O 4 is simple. In addition, if
A4 is aperiodic ( or if % is simple), O, is purely infinite.

We notice the following proposition.

ProrosiTioN C ([Ma; Proposition 5.8], cf. [CK; 2.17 Proposition]). Let
(A1,0) and (Ay,0) be subshifts such that both the associated C*-algebras 04,
and 0 5, satisfy the condition (14). If the associated one-sided subshifts (Xy,, o)
and (Xga,,0) are topologically conjugate, then there exists an isomorphism
from Oy, onto Oy, such that ® o a! = a? o @,z € T where o' is the gauge action
on 0,,,i=1,2 respectively.

3. Ko(Z7).

In this section, we will compute Kyp-group for the AF-algebra .

Let m(/) be the dimension of the commutative finite dimensional C*-alge-
bra A4;,/ € N. Take a unique basis {E},..., Elm(l)} of A, as vector space con-
sisting of minimal projections in A; with orthogonal ranges so that

21:(11) Elh =L

We fix k <[ for a while.

Lemma 3.1 30w S5S, > 1

PrOOF. For any v € A, there is a block p € A* such that uv € A* and
hence T);T,e, = e,. Thus one has }_ _ 7,7, > 1 on the Hilbert space Fj.

Hence we have
LemmA 3.2. Fori=1,2,...,m(l), there exists p € A¥ such that S#E;S; = 0.

Let 97,1(’ be the C*-subalgebra of 975( generated by elements S,E!S;,
W,V e A*. Since 9711;" is isomorphic to a full matrix algebra M, ;;(C), one
has
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F i 2 Myse11)(C) ® -+ © Mygesmn) (C).
Put
AP ={p e AME < S1S,}.

Lemma 3.2 implies Af" # 0,i =1,2,...,m(l) and n(k,/,i) = |A| the cardi-
nal number of Ak’

COROLLARY 3.3. Ko(714) = Ko(4;) = 2",
The above isomorphism between Ko(7 %) and Ky(4,) is given by the map

o, 1 [S,E|S] € Ko(7}) — [E]| € Ko(A)),  i=1.2,...,m(), peA}

We next study Ko(Z 7). We denote by ¢; the inclusion from A4, into A;4. It
yields the inclusion from % 1nt0 F fjl which is also denoted by ¢;. One write
E, as

m(l+1)

Ej =Y uli,hE},,

h=1
for some {0, 1}-valued map ¢;(i,h),i=1,2,....m(l), h=1,2,... m(l+1).
LEMMA 3.4. The diagram

Ko(7p) - Ko7
o | | &
o Ko (A1+l)

is commutative.

PROOF If S,E[S;#0 and y(i,h) #0, then S, E§+1S* #0. Namely
/1]” C /11+1 if L[( ,]) ;é 0. Hence the commutativity of the above diagram is

clear.

Thus one obtains an  isomorphism & = lim & from
lim Ko(Z4) = Ko(F3°) onto lim Ko(A4;) = Ko(A,). Namely, one has

PROPOSITION 3.5. Ko(Z ) = Ko(A,) = 1im (2", 1)) where the inclusion
u of ") into Z"U*1) is given by
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m(l+1)

E)= Y ul.hE,],  i=12,...m()

h=1

and
"0 —z[E & - & Z[E™").
We denote by Z, the above abelian group lzrl (Z’”(l), /) and so that
Zy 2 Ko(F7°) =2 Ko(Aa), ke N.

We next study Ko(Z ) as the inductive limit lim Ko(F7°).

The embedding 7 of 77 into 7, is given, through the embedding of
7 into 7,1, by the identity

n
S.E[S; = S,;SE[S;S;;, pre A i=1,2,... m()
so that the induced homomorphism 7, from Ko(#;°) to Ko(F5,) is given
by
nk*[SuEllS;] Z[S/US*E]S S* ] K e Aiﬂ,l, i=12,....m(l).
j=1

As the projection Sj‘E}S_i belongs to Ay, 1, it can be written as

' m(l+1)
STES; = > A, WE,
h=1
for some {0,1}-valued map A(i,j,h), i=1,2,....m(l),j=1,2,...,n,
h=1,2,...,m(l+1). Hence one has

n m(l+1)
S.E[S], ZZA, (s W) SE! Sy, peA, i=12... m().

LEMMA 3.6. I]‘S#E;S* # 0, one has S, E,”HS* # 0 for A(i,j, h) # 0.

1

ProorF. Since A/(’,], h) # 0, one has SYE[S; > E}, . We also have S7a,S; >

S;E}S; because S,E;S) # 0. Hence we obtain S;a,S; > EJ., which 1mpl1es
SyE}S;; # 0.

I+1
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LEMMA 3.7. If A(i,ji,h) # 0 and A(i,j2,h) # 0, one has for p € A*

* * . I+1
[S/ljl El+1 S;l/ ] [S/1]2E1+l Sp_jz] n KO (’gjkil )

Put
=Y A h) €2y, i=12...m(l), h=12... ml+]1).

We then define a homomorphism ); from Ky(4;) to Ko(A4;41) by

m(l41)

Z A/ /+1

where

m(l) m(l+1)
Ko(4) =) ®ZIE]], Ko(Ap) = Z @ Z[Ef,).
i

we indeed have
Lemma 3.8. N([P]) = 77 [S; PS)] for a projection P in A.
Hence one has

LEMMA 3.9. The diagram

L

Ko(4))  — Ko(Ai1)

N l l At

Ko(Are1) 7 Ko(4i2)

is commutative.

Since Ky(A4) = liin(Ko(A;), L), one can define a homomorphism Ay = )
on Ky(A,) induced by the sequence of homomorphisms X : Ko(A4;) —
Ky(A;+1),! € N. Namely, we obtain a homomorphism A4y on Z,(= Ko(A4,) =
Ko(F7°)). We remark that it is exactly regarded as the induced homo-
morphism on Ky(A4,) from the adjancy operator )\, defined in the previous
section. Hence we use the same notation A, without confusion.
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LeEMMA 3.10. The diagram
Ko(F7) =5 Ko(F7)
Dy J' l Py

Ko(A4y) 50 Ko(A44)

is commutative.

ProOOF. By Lemma 3.7, it follows that

n m(l+1)
@k-‘rl o nk*([SuEllS;]) = Q)k.i,-] (Z [S1U< Z Al(i7j7 h)E[hJA) S;«]‘| >
h=1

=
m(l+1)
= Z Drt1 (Z/l/ ij,h)[SyE}\ 1Sy ])
m(l+1)

Z Ay(i h)| E/+1 ME]] = Ay o §i([S, E/S*])

Therefore we conclude
THEOREM 3.11. Ko(FF) = lim (Za, A4).
COROLLARY 3.12. If A is a sofic subshift, Ko(F %) = li_n>1 ("D x).

PROOF. Let j; be the canonical inclusion of Z"")(=Ky(4,)) into
Z4(= Ko(A4)), which is induced by the natural inclusion of A4; into 4. Since
the following diagram

Z, — Z,

jo ij
Zm(l) . Zm(l+l)
Al
is commutative, there is a homomorphism 7 from lim ("D N to
hm (Za,20). Tt is easy to see that it is indeed a surjective isomorphism be-
cause Z, =2"" for some large enough / by [Ma; Proposition 8.2]

Before ending this section, we define the dimension group DG(A) for a
general subshift (A,0) as the dimension group for the AF-algebra F Y,
namely,
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G(A) =Ko(FT): asan ordered group.

The notion of the dimension group for a topological Markov shift (A4, o)
determined by a matrix 4 with entries in {0, 1} has been introduced by W.
Krieger in [Krl] and [Kr2]. It is realized as the dimension group for the ca-
nonical AF-algebra &% 4 appeared inside of the Cuntz-Krieger algebra (4
associated with the topological Markov shift (A4, o). If we restrict our con-
struction of C*-algebras ¢4 and # to a topological Markov shift (A4,0),
they coincide with the Cuntz-Krieger algebra (4 and the canonical AF-al-
gebra Z 4 respectively. Hence our above definition of the dimension group
for general subshifts is a generalization of the case of topological Markov
shifts. By Proposition C, we see

PROPOSITION 3.13. The dimension group DG(A) for subshift (A, o) is an in-
variant under topological conjugacy for the associated one-sided subshift
(Xa,0) among the class of all subshifts such that the associated C*-algebra O 4
satisfies the condition (I1,).

4. K.(0y).

We will, in this section, present K-theory formula for the C*-algebra ¢,. We
denote by 2 the C*-algebra of all compact operators on a separable infinite
dimensional Hilbert space. We will notice that the crossed product Oy x, T
of 0, by the gauge action « of T is stably isomorphic to the associated AF-
algebra 7. Since (4 is stably isomorphic to the crossed product
(04 xo T) x4 Zof Oy x, T by the dual action &, it will be possible to present
K-theory formula for the C*-algebra (@, by using the previous K-theory
formula for the AF-algebra # % and by applying the Pimsner-Voiculescu’s
six-term exact sequence of the K-theory for the crossed products by Z ([PV]).

We will first see that the crossed product O, x, T is stably isomorphic to
the AF-algebra 7.

Let po: T — 0, be the constant function whose value everywhere is the
unit 1 of ¢,. Hence py belongs to the algebra L'(T,¢,) and hence to the
crossed product 04 x, T. By [Ro], the fixed point algebra ¢, is canonically
isomorphic to the algebra po(@, %, T)po. The isomorphism between them is
given by the correspondence : x € 04* — x € L'(T,0,) C 04 x, T where the
function X is defined by x(¢) = x, 1 € T.

LEMMA 4.1. The projection py is full in O x, T.
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ProoOF. Suppose that there exists a nondegenerate representation 7« of
0 X4 T such that 7(pg) = 0. For any element S in ¢, put 3(2) =8,zeT,
which belongs to L'(T, ). We denote by  the a-twisted convolution pro-
duct in L(T, ) (the usual product as elements of ¢/, x,, T). It then follows
that Spy=S. Hence S belongs to the ideal ker(m) in Oy x, T. For
S, T €0y, one has (§ * f"*)(z) = Sa.(T*) by wusing the identity
(T")(z) = a.(T*). For any X € 0, and p € A*, we have

(XS, %8, )(z) = 2 XSS!

and hence

ZYS\#*SZ* (z) = z7*x, ke N.
|pl=k

We denote by Bj the commutative C*-algebra generated by a,, 1 € AF Let
Fl,i=1,2,...,n(k) be the set of all minimal projections in By. Since one sees
for p e A*,
(XFiS; S )(z) = #XF,
one has
nk)
(ZXF,QS; xS )(z) =X, keN.
i=1
Hence any @ 4-valued function of the form
zeT X ey, kez, Xe0,

is contained in the ideal ker(w). Thus we conclude 7 =0 on €4 x, T. This
implies that pg is a full projection in Oy %, T.

Since the AF-algebra &% is realized as the fixed point algebra ¢,*, one
sees, by [Bro;Corollary 2.6]

COROLLARY 4.2. Oy x,, T is stably isomorphic to F .

The Pimsner-Voiculescu’s six term exact sequence of the K-theory for the
crossed product (04 x, T) x4 Z says that the following sequence becomes
exact:
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id—a, Ly
K()(G‘A XaT) — KO((/A XaT) E— KO(@A XaT) X4 Z)

I I

Ki(OxxaT) xaZ) —— Ki(OaxaT) =  K(Oax,T).
Since the double crossed product (€4 %, T) x4 Z is stably isomorphic to
04, one has

LeEmMA 4.3.
() Ko(O4) = Ko(Oy xo T)/(id — 6, Ko(Og x4 T)
(i) K1(04) = Ker(id — &, ') on Ko(Oy x4 T).

We will next study the group Ky(0, %, T) and the action &, on it. The
next lemma follows from Lemma 4.1 and [Ri; Proposition 2.4].

LEMMA 4.4. The inclusion v:po(Og X, T)pg — Oy X T induces an iso-
morphism v, : Ko(po(O4 X4 T)po) — Ko(Op X T) on K-theory.

Under the identification, #§ = 04 = po(O4 x4 T)po, we define an iso-
morphism 3 on Ko(# %) as 8= 1.~ ! 0 &, ot.. Namely the diagram

Ko(Og xaT) 25 Ko(O) x40 T)

u ] | =

Ko(F%) —  Ko(FY)

is commutative.
The following lemma is a key.

LemMmA 4.5. For a projection P in % and a partial isometry S in O, with
a.(S) =zS,z€ Tand P < S*S, we have B[P] = [SPS*] in Ko(F ).

PrROOF. Let j: % — po(U4 xo T)po be the canonical isomorphism and
t:po(Oy X4 T)po — (9/1 Xo T the inclusion. For P e #F, we denote by
P=10j(P) e LY(T,0,) C Oy xq4 T the constant P-valued function:
P(z)=P,zeT. As SPS*e , we similarly denote by SPS*=
Lo j(SPS”) € LY(T,0,) the constant SPS*-valued function. It suffices to
show [SPS*] = G [P} in Ko(O4 xoT). Let S € L'(T,0,) be the constant S-
valued function : S( ) =S8,z € T. We denote by * the twisted convolution
product (usual product) in O, x,T. It then follows that
(S+P)(z) =SP,zeT and (S«P+S)(z) =z"'SPS*,z€T. Thus we have

a(SxPxS)=SPS*. As (S %S)(z) = S*S € Z and hence S 85 = 5°5.
Since the inclusion =0/ : F¢ = 0, — 0y x, T is a homomorphism, one
has P < §*S because P < S*S. Thus one sees
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[S«PxS)=[P] in Ko(OsxaT)
so that we conclude
6.[P] = [SPS*] in Ko(Oy x,T) and B[P] = [SPS*] in Ko(FY).

LEMMA 4.6. For a nonzero projection SuE/iSZ in 7, with p=jve A¥ one
has B7'[S,E}S;] = [S,E}S;] in Ko(F)_,).

PrROOF. Since S,E}S"; # 0, we see that S,E}S; < S'S; because of the iden-
tity S;‘S]-SDE,"S; = S,a,E|S; = S,E|S;. Hence we have the conclusion by the
previous lemma.

COROLLARY 4.7. The homomorphism B7': Ko(ZF) — Ko(FY) corre-
sponds to the shift o in liLn Ko(7F) = li_r>nZA. Namely, if x = (x1,x2,...) is a
sequence representing an element of lil)n Ko(F5°), then B7'x is represented by
o(x) = (x2,x3,...).

Since the diagram

id—g7!

K(7T) T K(F)
@l l @
lim ZA - lim ZA

— id—o —

is commutative, one has

COROLLARY 4.8.
(1) KO(@A) = hi)nZA/(id — U) lii)nz/l
(i) K1(0y) =2 Ker(id—o0) on 113)12/1.

Let j be the homomorphism from Ky(#°) = Z4 to Ko(FT) = lil)n Z, in-
duced by the inclusion : F#{° — F .

As in the proof of [C2; 3.1 Proposition], we see that every element in
1i_)m Z, is equivalent modulo (id — o) liLnZA to an element in Z,. Since the
diagram

id—Ay
Z/l — Z/l

i| |/

limZA —-— limZA
N id—o N

is commutative and j(x) € (id — o) limZy,x € Zy implies x € (id — A\y)Z4, we
then have
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Ky(0y) =j(Zy)/(id — o) h_II)lZA =2Z,/(1d — Xy)Z,.

Similarly as in the same argument in [C2; 3.1.Proposition], we have
K (0,) = Ker (id — A\y) on Z,.
Thus we present the K-theory formula for the C*-algebra (¢,

THEOREM 4.9.

() Ko(0a) = Z4/(id = Aa)Zy = 1im(@2" D/ (4, = 2)Z"")

(i) Ki(04) = Ker(id = \g) in Z, = lim (Ker (. — X)) in 2"")
where

Zy= IE)H (Zm<l)7 Ll*)ﬂ m(l) = dim A
and
Aa=limk, A 7" = Ko(A4)) — 2" = Ko(Ap.)

is defined by
n
XN([P]) = Z[SJ*PS/} for a projection P in A;.
=

More precisely, for the minimal projections E}, .. .,Elm(l) of A; with
S El =1 and the canonical basis é!,....¢'"" of 2"V, the map [E] — ¢
extends to an isomorphism of Ky(0,) onto liiI}(Z’”(l“)/(L/ —\)Z"0).

Before ending this section, we note the following lemma.

LemMmaA 4.10. The C*-algebra O, is nuclear and satisfies the Universal
Coefficient Theorem in the sense of Rosenberg and Schocet.

ProoF. Since the double crossed product (04 x, T) x4 Z is stably iso-
morphic to @, the assertion is immediate from Corollary 4.2 (cf. [RS], [BI;
p. 287]).

Hence, as in Theorem B, one sees by [Ki] and [Ph]

COROLLARY 4.11. If the C*-algebra O, satisfies the condition (I,) and the
adjancy operator Ay is aperiodic, then O, is a separable nuclear purely infinite
simple C*-algebra satisfying the Universal Coefficient Theorem. Thus, these
C*-algebras are completely classified by their own K-theory up to isomorphism.
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5. Sofic subshifts and examples.

There is a class of subshifts called sofic subshifts. It is truly wider, up to
conjugate, than the class of subshifts of finite type and hence that of topo-
logical Markov shifts. Hence the C*-algebras associated with sofic subshifts
which are not conjugate to topological Markov shifts can not be dealt with
within the Cuntz-Krieger’s approach. For a subshift (A4,0) and words
u,v € A", we write p ~ v if

{ved lpyedt={yed |vye A}

If the cardinality of the equivalence classes A"/ ~ is finite, the subshift (A, o)
is said to be sofic (cf. [DGS], [W]). Hence a subshift (4, o) is sofic if and only
if the commutative C*-subalgebra 4, of @, is finite dimensional (cf. [Ma;
Proposition 8.2]).

Suppose that a subshift (A, o) is sofic. Put N = dim 4,4 < co. Hence the
adjancy operator Ay on A, is realized as an N x N matrix with entries in
non-negative integers. We then notice that A\, is irreducible (resp. aperiodic)
in the sense of Section 2 if and only if it is irreducible (resp. aperiodic) in the
sense of non-negative matrix.

It is well-known that if A\, is aperiodic, the AF-algebra & ¢ is simple and
has a unique tracial state 74 (cf. [Bra], [Ef], [Ev2]). Thus we can summarize
the previous discussions on K-theory for the C*-algebras ¢4 and # ¢ as in
the following way.

PROPOSITION 5.1. Suppose that a subshift (A, o) is sofic. If the C*-algebra
04 satisfies the condition (1) and the adjancy operator )y is aperiodic, then we
have

(1) O, is simple and purely infinite.

(i) Ko(04) =2Z¥/(1 —=2)ZY and K(04) 2Ker(1—X,) inZV.

(i) DG(A) = Um(ZY, \y) = 74(F5) inR.

o0

where T, is a unique tracial state on F %

Thus by Corollary 4.11 we see that if a subshift (A, o) is sofic, the C*-al-
gebra (, is stably isomorphic to some Cuntz-Krieger algebra ()5, associated
with a matrix A\, with entries in non-negative integers.

We present examples of the C*-algebras associated with sofic subshifts.

ExamPLE 1 (Cuntz algebras 0, [C], [C2], [C3]).

Let (A4,,0) be the full shift over ¥ = {1,2,...,n}. The C*-algebra O, as-
sociated with it is the Cuntz algebra @, of order n. Then the commutative
C*-algebras A, are reduced to the scalar C so that m(/) = 1,/ € N. It is easy
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to see that the adjancy operator M, is the n-multiplication on
Z = Ky(A4;) = Ky(C). Hence we see

Ko(73) =20, Ko(G)=Z/(1=mZ,  K(C)=0.

ExaMPLE 2 (Cuntz-Krieger algebras ¢4, [CK], [C2], [C3]).

Let (A4, 0) be the topological Markov shift determined by an n x n-matrix
A with {0, 1}-entries. The C*-algebra @, associated with it is the Cuntz-
Krieger algebra (4. Suppose that 4 is an irreducible but not permutation
matrix with rank #. Hence one sees that 4; = CS;S] @ --- & CS, S,/ € N so
that m(/) =n,/ € N. It is easy to see that the adjancy operator A\ (= X;) is
given by operating the transpose of the matrix 4 from Z" = Ky(4;) to
Z" = Ky(A;41). Hence we see

Ko(f?ﬁl) = 1i_rI)1(Zn,At), Ko(04) =2Z"/(1 - At)znv

Ki(04) =Ker(1 — A4") in Z".

EXAMPLE 3.

Suppose ¥ = {1,2}. Let ¥ be the subshift in ¥ defined by the condition
that all blocks of 2's which have maximal length have even length, which is
called the even shift (cf. [DGS; p. 251]). It is a sofic subshift but not con-
jugate to a topological Markov shift. One easily sees for

:U‘:(:ula"'a:uk)e Y

| it p=(2,...,2),
S1Si if p=0x...,x,1)orp=_x....,%1,2 ...,2)
* N——
S#S/L: even
S;SiS1Sy i p= (%6 1,2,...,2).
———

Put
Py =SS — P, P, =8781- 5581818, and  P3;=S8,5515— P,
so that one has P; + P, + P; = 1. Hence one sees
A=Ay =CP,$CP,®CP;, [>2
and hence m(/) = 3,/ > 2. This means that

Zy = Ko(Ay) = Z|Py| ® Z|P,]) @ Z[P3] = Z°.
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It is easy to see that the adjancy operator A4 (= ;) is the homomorphism on

1 0 1
z given by the matrix |1 1 0. Thus we have
1 00
1 0 1
1+V5_ .
Ko(75)=1im|2Z% |1 1 0 gzeaz++sz in R®R,
1 00
1 0 1
Ko(Oy) =2 1- (11 0| |2~z
1 00
1 0 1
Ki(Oy)~ Ker [1—-[1 1 0| ]|inZ’x~z
1 00

Other concrete examples which are not sofic subshifts will be dealt with in
some papers (cf. [KMW]).
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