K-THEORY FOR C^{*}-ALGEBRAS ASSOCIATED WITH SUBSHIFTS

KENGO MATSUMOTO

Abstract

. We present K-theory formula for C^{*}-algebras associated with subshifts. The formula is a generalization of K-theory formula for Cuntz-Krieger algebras, which are associated with topological Markov shifts. The dimension group for a general subshift is introduced to be the dimension group for the associated AF-algebra.

1. Introduction.

In [Ma], the author has introduced and studied a class of C^{*}-algebras associated with subshifts in the theory of symbolic dynamics. The class of $C^{*}-$ algebras is a generalized one of the Cuntz-Krieger algebras which are associated with topological Markov shifts. Each of the C^{*}-algebras associated with subshifts has generators of partial isometries with mutually orthogonal ranges. It also has universal properties subject to some operator relations ([Ma; Theorem 4.9 and 5.2]) so that it becomes purely infinite and simple in many cases including Cuntz-Krieger algebras. It is an analogy to the CuntzKrieger algebras that AF-subalgebras are appeared inside of the C^{*}-algebras as the algebras of all fixed points of certain one-parameter group actions, called gauge actions. However, these AF-subalgebras have more complicated structure than the AF-subalgebras appeared inside of the Cuntz-Krieger algebras.

For a subshift (Λ, σ), we denote by \mathcal{O}_{Λ} and $\mathscr{F}_{\Lambda}^{\infty}$ the C^{*}-algebra associated with the subshift (Λ, σ) and the corresponding AF-subalgebra inside of it respectively. If a subshift is a topological Markov shift, then the K_{0}-group of the AF-subalgebra, as an ordered group, becomes the dimension group for the topological Markov shift considered in [Kr1] and $[\mathrm{Kr} 2]$. Hence for a general subshift, it seems to be natural to define "the dimension group" for a
subshift (Λ, σ) as the K_{0}-group $K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right)$ of the AF-algebra $\mathscr{F}_{\Lambda}^{\infty}$ as an ordered group.

In this paper, we present K -theory formula of these C^{*}-algebras \mathcal{O}_{Λ} and \mathscr{F}_{A}^{∞} (Theorem 3.11 and Theorem 4.9). We first compute the K_{0}-group $K_{0}\left(\mathscr{F}_{1}^{\infty}\right)$ of the AF-algebra \mathscr{F}_{A}^{∞} inside of it and show that the K_{0}-group is realized as an inductive limit of a sequence of the K_{0}-groups of the finite dimensional and commutative C^{*}-algebras generated by support projections of canonical generators of partial isometries (Theorem 3.11). We will next show that the AF-algebra \mathscr{F}_{1}^{∞} is stably isomorphic to the crossed product of the C^{*}-algebra \mathcal{O}_{A} by the gauge action. Hence, \mathcal{O}_{Λ} is stably isomorphic to the crossed product of the tensor product C^{*}-algebra of $\mathscr{F}_{\Lambda}^{\infty}$ and the C^{*}-algebra of all compact operators on a Hilbert space by an action of Z. Thus it becomes to be possible to compute K -groups for the C^{*}-algebra \mathcal{O}_{A} by using the Pimsner-Voiculescu six-term exact sequence for K-theory. The resulting K-group formula (Theorem 4.9) includes the K-group formula of the CuntzKrieger algebras ([C2]).

We will finally compute the K -group for the C^{*}-algebra associated with a certain sofic subshift but not conjugate to a topological Markov shift. Computation of K -groups for C^{*}-algebras associated with other concrete subshifts will appear in some papers (cf. [KMW]).

We remark that the C^{*}-algebras associated with subshifts are nuclear purely infinite simple and satisfy the Universal Coefficient Theorem in many cases. Hence, by recent results of Kirchberg and Phillips in [Ki] and [Ph], they can be completely classified by their own K-theory (Corollary 4.11).

The author would like to thank the referee for some suggestions.
After submitting the first draft of this paper, the author was informed of preprints [KPRR] and [PR] by Kumjian-Pask-Raeburn-Renault and PaskRaeburn. They study generalization of Cuntz-Krieger algebras from graph theoretic view point, but our generalization of Cuntz-Krieger algebras are different from theirs.

2. Review of the C^{*}-algebras associated with subshifts.

We will review the construction of the C^{*}-algebras associated with subshifts along [Ma].

In the throughout this paper, a finite set $\Sigma=\{1,2, \ldots, n\}$ is fixed.
Let $\Sigma^{\mathrm{Z}}, \Sigma^{\mathrm{N}}$ be the infinite product spaces $\prod_{i=-\infty}^{\infty} \Sigma_{i}, \prod_{i=1}^{\infty} \Sigma_{i}$ where $\Sigma_{i}=\Sigma$, endowed with the product topology respectively. The transformation σ on $\Sigma^{\mathrm{Z}}, \Sigma^{\mathrm{N}}$ given by $(\sigma(x))_{i}=x_{i+1}, i \in \mathrm{Z}, \mathrm{N}$ is called the (full) shift. Let Λ be a
shift invariant closed subset of Σ^{Z} i.e. $\sigma(\Lambda)=\Lambda$. The topological dynamical system $\left(\Lambda,\left.\sigma\right|_{\Lambda}\right)$ is called a subshift. We denote $\left.\sigma\right|_{\Lambda}$ by σ for simplicity. This class of the subshifts includes the class of the topological Markov shifts (cf. [DGS]).

A finite sequence $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ of elements $\mu_{j} \in \Sigma$ is called a block or a word. We denote by $|\mu|$ the length k of μ. A block $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ is said to occur in $x=\left(x_{i}\right) \in \Sigma^{\mathbf{Z}}$ if $x_{m}=\mu_{1}, \ldots, x_{m+k-1}=\mu_{k}$ for some $m \in \mathbf{Z}$.

For a subshift (Λ, σ), set for $k \in \mathrm{~N}$

$$
\Lambda^{k}=\left\{\mu: \text { a block with length } k \text { in } \Sigma^{\mathrm{Z}} \text { occurring in some } x \in \Lambda\right\}
$$

and $\Lambda_{l}=\cup_{k=0}^{l} \Lambda^{k}, \Lambda^{*}=\cup_{k=0}^{\infty} \Lambda^{k}$ where Λ^{0} denotes the empty word \emptyset.
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of n-dimensional Hilbert space C^{n}. We put
$F_{A}^{0}=\mathrm{C} e_{0} \quad\left(e_{0}\right.$: vacuum vector)
$F_{\Lambda}^{k}=$ the Hilbert space spanned by the vectors $e_{\mu}=e_{\mu_{1}} \otimes \cdots \otimes e_{\mu_{k}}, \mu=$ $\left(\mu_{1}, \ldots, \mu_{k}\right) \in \Lambda^{k}$,
$F_{\Lambda}=\oplus_{k=0}^{\infty} F_{\Lambda}^{k} \quad$ (Hilbert space direct sum)
We denote by $T_{\nu},\left(\nu \in \Lambda^{*}\right)$ the creation operator on F_{Λ} of $e_{\nu}, \nu \in \Lambda^{*}(\nu \neq \emptyset)$ defined by

$$
T_{\nu} e_{0}=e_{\nu} \quad \text { and } \quad T_{\nu} e_{\mu}= \begin{cases}e_{\nu} \otimes e_{\mu}, & \left(\nu \mu \in \Lambda^{*}\right) \\ 0 & \text { else }\end{cases}
$$

which is a partial isometry. We put $T_{\nu}=1$ for $\nu=\emptyset$. We denote by P_{0} the rank one projection onto the vacuum vector e_{0}. It immediately follows that $\sum_{i=1}^{n} T_{i} T_{i}^{*}+\mathrm{P}_{0}=1$. We then easily see that for $\mu, \nu \in \Lambda^{*}$, the operator $T_{\mu} \mathrm{P}_{0} T_{\nu}^{*}$ is the rank one partial isometry from the vector e_{ν} to e_{μ}. Hence, the C^{*}-algebra generated by elements of the form $T_{\mu} \mathrm{P}_{0} T_{\nu}^{*}, \mu, \nu \in \Lambda^{*}$ is nothing but the C^{*}-algebra $\mathscr{K}\left(F_{\Lambda}\right)$ of all compact operators on F_{Λ}. Let \mathscr{T}_{Λ} be the C^{*} algebra on F_{Λ} generated by the elements $T_{\nu}, \nu \in \Lambda^{*}$.

Definition ([Ma]). The C^{*}-algebra \mathcal{O}_{Λ} associated with subshift (Λ, σ) is defined as the quotient C^{*}-algebra $\mathscr{T}_{\Lambda} / \mathscr{K}\left(F_{\Lambda}\right)$ of \mathscr{T}_{Λ} by $\mathscr{K}\left(F_{\Lambda}\right)$.

We denote by S_{i}, S_{μ} the quotient image of the operator $T_{i}, i \in \Sigma$, $T_{\mu}, \mu \in \Lambda^{*}$. Hence \mathcal{O}_{Λ} is generated by n partial isometries S_{1}, \ldots, S_{n} with relation $\sum_{i=1}^{n} S_{i} S_{i}^{*}=1$.

If (Λ, σ) is a topological Markov shift, the C^{*}-algebra \mathcal{O}_{Λ} is nothing but the Cuntz-Krieger algebra associated with the topological Markov shift (cf. [CK],[EFW],[Ev]).

We henceforth fix an arbitrary subshift (Λ, σ) in Σ^{Z}. We denote by $\left(X_{\Lambda}, \sigma\right)$ the associated right one-sided subshift for (Λ, σ).

We will present notation and basic facts for studying the C^{*}-algebra \mathcal{O}_{Λ}.
Put $a_{\mu}=S_{\mu}^{*} S_{\mu}, \mu \in \Lambda^{*}$. Since $T_{\nu} T_{\nu}^{*}$ commutes with $T_{\mu}^{*} T_{\mu}, \mu, \nu \in \Lambda^{*}$, the following identities hold

$$
\begin{equation*}
a_{\mu} S_{\nu}=S_{\nu} a_{\mu \nu}, \quad \mu, \nu \in \Lambda^{*} \tag{*}
\end{equation*}
$$

We notice that for $\mu, \nu \in \Lambda^{*}$ with $|\mu|=|\nu|$,

$$
S_{\mu}^{*} S_{\nu} \neq 0 \quad \text { if and only if } \quad \mu=\nu
$$

We will use the following notation. Let k, l be natural numbers with $k \leq l$.
$A_{l}=$ The C^{*}-subalgebra of \mathcal{O}_{Λ} generated by $a_{\mu}, \mu \in \Lambda_{l}$.
$A_{\Lambda}=$ The C^{*}-subalgebra of \mathcal{O}_{Λ} generated by $a_{\mu}, \mu \in \Lambda^{*}$.
$\mathscr{F}_{k}^{l}=$ The C^{*}-subalgebra of \mathcal{O}_{Λ} generated by $S_{\mu} a S_{\nu}^{*}, \mu, \nu \in \Lambda^{k}, a \in A_{l}$.
$\mathscr{F}_{k}^{\infty}=$ The C^{*}-subalgebra of \mathcal{O}_{Λ} generated by $S_{\mu} a S_{\nu}^{*}, \mu, \nu \in \Lambda^{k}, a \in A_{\Lambda}$.
$\mathscr{F}_{\Lambda}^{\infty}=$ The C^{*}-subalgebra of \mathcal{O}_{Λ} generated by $S_{\mu} a S_{\nu}^{*}, \mu, \nu \in \Lambda^{*},|\mu|=|\nu|, a \in A_{\Lambda}$.
The projections $\left\{T_{\mu}^{*} T_{\mu} ; \mu \in \Lambda^{*}\right\}$ are mutually commutative so that the C^{*} algebras $A_{l}, l \in \mathrm{~N}$ are commutative. Thus we easily see the following lemma (cf. [Ma; Section 3]).

Lemma 2.1.
(i) A_{l} is finite dimensional and commutative.
(ii) A_{l} is naturally embedded into A_{l+1} so that $A_{\Lambda}=\lim _{\rightarrow} A_{l}$ is a commutative AF-algebra.
(iii) Each element of \mathscr{F}_{k}^{l} is a finite linear combination of elements of the form $S_{\mu} a S_{\nu}^{*}, \mu, \nu \in \Lambda^{k}, a \in A_{l}$. Hence \mathscr{F}_{k}^{l} is finite dimensional.
(iv) There are two embeddings in $\left\{\mathscr{F}_{k}^{l}\right\}_{k \leq l}$:
(iv-a) $\iota_{l}: \mathscr{F}_{k}^{l} \subset \mathscr{F}_{k}^{l+1}$ through the embedding $A_{l} \subset A_{l+1}$ and
(iv-b) $\eta_{k}: \mathscr{F}_{k}^{l} \subset \mathscr{F}_{k+1}^{l+1}$ through the identity

$$
S_{\mu} a S_{\nu}^{*}=\sum_{j=1}^{n} S_{\mu j} S_{j}^{*} a S_{j} S_{\nu j}^{*}, \quad \mu, \nu \in \Lambda^{k}, a \in A_{l}
$$

(v) Both $\mathscr{F}_{k}^{\infty}=\lim _{l \rightarrow \infty} \mathscr{F}_{k}^{l}$ and $\mathscr{F}_{A}^{\infty}=\lim _{k \rightarrow \infty} \mathscr{F}_{k}^{\infty}$ are AF-algebras.

In the preceding Hilbert space F_{Λ}, the transformation $e_{\mu} \rightarrow z^{k} e_{\mu}$, $\mu \in \Lambda^{k}, z \in \mathrm{~T}=\{z \in \mathrm{C} ;|z|=1\}$ on each base e_{μ} yields a unitary representation which leaves $\mathscr{K}\left(F_{\Lambda}\right)$ invariant. Thus it gives rise to an action α of T on the C^{*}-algebra \mathcal{O}_{Λ}. It is called the gauge action and satisfies $\alpha_{z}\left(S_{i}\right)=z S_{i}, i=1,2,, n$.

Each element X of the $*$-subalgebra of \mathcal{O}_{Λ} algebraically generated by $S_{\mu}, \mu \in \Lambda^{*}$ is written as a finite sum

$$
X=\sum_{|-\nu| \geq 1} X_{-\nu} S_{\nu}^{*}+X_{0}+\sum_{|\mu| \geq 1} S_{\mu} X_{\mu} \quad \text { for some } \quad X_{-\nu}, X_{0}, X_{\mu} \in \mathscr{F}_{A}^{\infty}
$$

because of the relation (*). The map $E(X)=\int_{z \in \mathrm{~T}} \alpha_{z}(X) d z, X \in \mathcal{O}_{\Lambda}$ defines a projection of norm one onto the fixed point algebra \mathcal{O}_{A}^{α} under α. We then have (cf. [Ma; Proposition 3.11])

Lemma 2.2. $\mathscr{F}_{A}^{\infty}=\mathcal{O}_{A}^{\alpha}$.
We will next describe structure theorems for the C^{*}-algebra \mathcal{O}_{Λ} proved in [Ma].

Theorem A ([Ma; Theorem 4.9 and 5.2]). Let \mathscr{A} be a unital C^{*}-algebra. Suppose that there is a unital *-homomorphism π from A_{Λ} to \mathscr{A} and there are n partial isometries $s_{1}, \ldots, s_{n} \in \mathscr{A}$ satisfying the following relations

$$
\begin{equation*}
\sum_{j=1}^{n} s_{j} s_{j}^{*}=1, \quad s_{\mu}^{*} s_{\mu} s_{\nu}=s_{\nu} s_{\mu \nu}^{*} s_{\mu \nu}, \quad \mu, \nu \in \Lambda^{*} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
s_{\mu}^{*} s_{\mu}=\pi\left(S_{\mu}^{*} S_{\mu}\right), \quad \mu \in \Lambda^{*} \tag{b}
\end{equation*}
$$

where $s_{\mu}=s_{\mu_{1}} \cdots s_{\mu_{k}}, \mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$. Then there exists a unital *-homomorphism $\tilde{\pi}$ from \mathcal{O}_{A} to \mathscr{A} such that $\tilde{\pi}\left(S_{i}\right)=s_{i}, i=1, \ldots, n$ and its restriction to A_{Λ} coincides with π. In addition, if \mathcal{O}_{Λ} satisfy the condition $\left(I_{\Lambda}\right)$ below, this extended *-homomorphism $\tilde{\pi}$ becomes injective whenever π is injective.

Let \mathfrak{D}_{Λ} be the C^{*}-algebra generated by $S_{\mu} S_{\mu}^{*}, \mu \in \Lambda^{*}$ which is isomorphic to the C^{*}-algebra $C\left(X_{\Lambda}\right)$ of all continuous functions on the space of the onesided subshift X_{Λ} for Λ. Put

$$
\phi_{\Lambda}(X)=\sum_{j=1}^{n} S_{j} X S_{j}^{*}, \quad X \in \mathfrak{D}_{\Lambda}
$$

which corresponds to the shift σ on the one-sided space X_{Λ} of Λ.
Consider the following condition called $\left(I_{\Lambda}\right)$ in [Ma].
$\left(I_{\Lambda}\right):$ For any $l, k \in \mathrm{~N}$ with $l \geq k$, there exists a projection q_{k}^{l} in \mathfrak{D}_{Λ} such that
(i) $q_{k}^{l} a \neq 0$ for any nonzero $a \in A_{l}$,
(ii) $q_{k}^{l} \phi_{\Lambda}^{m}\left(q_{k}^{l}\right)=0, \quad 1 \leq m \leq k$.

Put

$$
\lambda_{\Lambda}(X)=\sum_{j=1}^{n} S_{j}^{*} X S_{j}, \quad X \in A_{\Lambda} .
$$

We call λ_{Λ} the adjancy operator on A_{Λ}. It is said to be irreducible if there is no λ_{Λ}-invariant ideal in A_{Λ}. In addition, it is said to be aperiodic, if for any $l \in \mathrm{~N}$, there exists $N \in \mathrm{~N}$ such that $\lambda_{\Lambda}^{N}(p) \geq 1$ for any minimal projection p in A_{l}. We thus have

Theorem B ([Ma; Theorem 6.3 and Corollary 7.4]). If the C^{*}-algebra \mathcal{O}_{Λ} satisfy the condition $\left(I_{\Lambda}\right)$ and λ_{A} is irreducible, then \mathcal{O}_{Λ} is simple. In addition, if λ_{Λ} is aperiodic (or if $\mathscr{F}_{\Lambda}^{\infty}$ is simple), \mathcal{O}_{Λ} is purely infinite.

We notice the following proposition.
Proposition C ([Ma; Proposition 5.8], cf. [CK; 2.17 Proposition]). Let $\left(\Lambda_{1}, \sigma\right)$ and $\left(\Lambda_{2}, \sigma\right)$ be subshifts such that both the associated C^{*}-algebras $\mathcal{O}_{\Lambda_{1}}$ and $\mathcal{O}_{\Lambda_{2}}$ satisfy the condition $\left(I_{\Lambda}\right)$. If the associated one-sided subshifts $\left(X_{\Lambda_{1}}, \sigma\right)$ and $\left(X_{\Lambda_{2}}, \sigma\right)$ are topologically conjugate, then there exists an isomorphism from $\mathcal{O}_{\Lambda_{1}}$ onto $\mathcal{O}_{\Lambda_{2}}$ such that $\Phi \circ \alpha_{z}^{1}=\alpha_{z}^{2} \circ \Phi, z \in \mathrm{~T}$ where α^{i} is the gauge action on $\mathcal{O}_{\Lambda_{i}}, i=1,2$ respectively.
3. $K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right)$.

In this section, we will compute K_{0}-group for the AF-algebra $\mathscr{F}_{\Lambda}^{\infty}$.
Let $m(l)$ be the dimension of the commutative finite dimensional C^{*}-algebra $A_{l}, l \in \mathrm{~N}$. Take a unique basis $\left\{E_{l}^{1}, \ldots, E_{l}^{m(l)}\right\}$ of A_{l} as vector space consisting of minimal projections in A_{l} with orthogonal ranges so that $\sum_{h=1}^{m(l)} E_{l}^{h}=1$.

We fix $k \leq l$ for a while.
Lemma 3.1. $\sum_{\mu \in \Lambda^{k}} S_{\mu}^{*} S_{\mu} \geq 1$
Proof. For any $\nu \in \Lambda^{*}$, there is a block $\mu \in \Lambda^{k}$ such that $\mu \nu \in \Lambda^{*}$ and hence $T_{\mu}^{*} T_{\mu} e_{\nu}=e_{\nu}$. Thus one has $\sum_{\mu \in \Lambda^{k}} T_{\mu}^{*} T_{\mu} \geq 1$ on the Hilbert space F_{Λ}.

Hence we have
Lemma 3.2. For $i=1,2, \ldots, m(l)$, there exists $\mu \in \Lambda^{k}$ such that $S_{\mu} E_{l}^{i} S_{\mu}^{*} \neq 0$.
Let $\mathscr{F}_{k}^{l, i}$ be the C^{*}-subalgebra of \mathscr{F}_{k}^{l} generated by elements $S_{\mu} E_{l}^{i} S_{\nu}^{*}$, $\mu, \nu \in \Lambda^{k}$. Since $\mathscr{F}_{k}^{l, i}$ is isomorphic to a full matrix algebra $M_{n(k, l, i)}(\mathrm{C})$, one has

$$
\mathscr{F}_{k}^{l} \cong M_{n(k, l, 1)}(\mathrm{C}) \oplus \cdots \oplus M_{n(k, l, m(l))}(\mathrm{C}) .
$$

Put

$$
\Lambda_{l}^{k, i}=\left\{\mu \in \Lambda^{k} \mid E_{l}^{i} \leq S_{\mu}^{*} S_{\mu}\right\}
$$

Lemma 3.2 implies $\Lambda_{l}^{k, i} \neq \emptyset, i=1,2, \ldots, m(l)$ and $n(k, l, i)=\left|\Lambda_{l}^{k, i}\right|$ the cardinal number of $\Lambda_{l}^{k, i}$.

Corollary 3.3. $K_{0}\left(\mathscr{F}_{k}^{l}\right) \cong K_{0}\left(A_{l}\right) \cong \mathrm{Z}^{m(l)}$.
The above isomorphism between $K_{0}\left(\mathscr{F}_{k}^{l}\right)$ and $K_{0}\left(A_{l}\right)$ is given by the map

$$
\Phi_{k}^{l}:\left[S_{\mu} E_{l}^{i} S_{\mu}^{*}\right] \in K_{0}\left(\mathscr{F}_{k}^{l}\right) \rightarrow\left[E_{l}^{i}\right] \in K_{0}\left(A_{l}\right), \quad i=1,2, \ldots, m(l), \quad \mu \in \Lambda_{l}^{k, i}
$$

We next study $K_{0}\left(\mathscr{F}_{k}^{\infty}\right)$. We denote by ι_{l} the inclusion from A_{l} into A_{l+1}. It yields the inclusion from \mathscr{F}_{k}^{l} into \mathscr{F}_{k}^{l+1} which is also denoted by ι_{l}. One write E_{l}^{i} as

$$
E_{l}^{i}=\sum_{h=1}^{m(l+1)} \iota_{l}(i, h) E_{l+1}^{h}
$$

for some $\{0,1\}$-valued map $\iota_{l}(i, h), i=1,2, \ldots, m(l), h=1,2, \ldots, m(l+1)$.
Lemma 3.4. The diagram

is commutative.
Proof. If $S_{\mu} E_{l}^{i} S_{\mu}^{*} \neq 0$ and $\iota_{l}(i, h) \neq 0$, then $S_{\mu} E_{l+1}^{j} S_{\mu}^{*} \neq 0$. Namely $\Lambda_{l}^{k, i} \subset \Lambda_{l+1}^{k, j}$ if $\iota_{l}(i, j) \neq 0$. Hence the commutativity of the above diagram is clear.

Thus one obtains an isomorphism $\Phi_{k}=\lim \Phi_{k}^{l} \quad$ from $\lim _{\rightarrow} K_{0}\left(\mathscr{F}_{k}^{l}\right)=K_{0}\left(\mathscr{F}_{k}^{\infty}\right)$ onto $\lim _{\rightarrow} K_{0}\left(A_{l}\right)=K_{0}\left(A_{\Lambda}\right)$. Namely, one has

PROPOSITION 3.5. $K_{0}\left(\mathscr{F}_{k}^{\infty}\right) \cong K_{0}\left(A_{\Lambda}\right) \cong \lim _{\rightarrow}\left(Z^{m(l)}, \iota_{l}\right)$ where the inclusion ι_{l} of $\mathbf{Z}^{m(l)}$ into $\mathbf{Z}^{m(l+1)}$ is given by

$$
\left[E_{l}^{i}\right]=\sum_{h=1}^{m(l+1)} \iota_{l}(i, h)\left[E_{l+1}^{h}\right], \quad i=1,2, \ldots, m(l)
$$

and

$$
\mathbf{Z}^{m(l)}=\mathbf{Z}\left[E_{l}^{1}\right] \oplus \cdots \oplus \mathbf{Z}\left[E_{l}^{(m(l)}\right] .
$$

We denote by \mathbf{Z}_{Λ} the above abelian group $\lim _{\rightarrow}\left(\mathbf{Z}^{m(l)}, \iota_{l}\right)$ and so that

$$
\mathrm{Z}_{\Lambda} \cong K_{0}\left(\mathscr{F}_{k}^{\infty}\right) \cong K_{0}\left(A_{\Lambda}\right), \quad k \in \mathrm{~N} .
$$

We next study $K_{0}\left(\mathscr{F}_{1}^{\infty}\right)$ as the inductive limit $\lim K_{0}\left(\mathscr{F}_{k}^{\infty}\right)$.
The embedding η_{k} of \mathscr{F}_{k}^{∞} into $\mathscr{F}_{k+1}^{\infty}$ is given, $\overrightarrow{\text { through }}$ the embedding of \mathscr{F}_{k}^{l} into \mathscr{F}_{k+1}^{l+1}, by the identity

$$
S_{\mu} E_{l}^{i} S_{\nu}^{*}=\sum_{j=1}^{n} S_{\mu j} S_{j}^{*} E_{l}^{i} S_{j} S_{\nu j}^{*}, \quad \mu, \nu \in \Lambda^{k}, \quad i=1,2, \ldots, m(l)
$$

so that the induced homomorphism $\eta_{k_{*}}$ from $K_{0}\left(\mathscr{F}_{k}^{\infty}\right)$ to $K_{0}\left(\mathscr{F}_{k+1}^{\infty}\right)$ is given by

$$
\eta_{k *}\left[S_{\mu} E_{l}^{i} S_{\mu}^{*}\right]=\sum_{j=1}^{n}\left[S_{\mu j} S_{j}^{*} E_{l}^{i} S_{j} S_{\mu j}^{*}\right], \quad \mu \in \Lambda_{l}^{k, i}, \quad i=1,2, \ldots, m(l) .
$$

As the projection $S_{j}^{*} E_{l}^{i} S_{j}$ belongs to A_{l+1}, it can be written as

$$
S_{j}^{*} E_{l}^{i} S_{j}=\sum_{h=1}^{m(l+1)} \Lambda_{l}(i, j, h) E_{l+1}^{h}
$$

for some $\{0,1\}$-valued $\operatorname{map} \Lambda_{l}(i, j, h), i=1,2, \ldots, m(l), j=1,2, \ldots, n$, $h=1,2, \ldots, m(l+1)$. Hence one has

$$
S_{\mu} E_{l}^{i} S_{\mu}^{*}=\sum_{j=1}^{n} \sum_{h=1}^{m(l+1)} \Lambda_{l}(i, j, h) S_{\mu j} E_{l+1}^{h} S_{\mu j}^{*}, \quad \mu \in \Lambda^{k}, \quad i=1,2, \ldots, m(l)
$$

Lemma 3.6. If $S_{\mu} E_{l}^{i} S_{\mu}^{*} \neq 0$, one has $S_{\mu j} E_{l+1}^{h} S_{\mu j}^{*} \neq 0$ for $\Lambda_{l}(i, j, h) \neq 0$.
Proof. Since $\Lambda_{l}(i, j, h) \neq 0$, one has $S_{j}^{*} E_{l}^{i} S_{j} \geq E_{l+1}^{h}$. We also have $S_{j}^{*} a_{\mu} S_{j} \geq$ $S_{j}^{*} E_{l}^{i} S_{j}$ because $S_{\mu} E_{l}^{i} S_{\mu}^{*} \neq 0$. Hence we obtain $S_{j}^{*} a_{\mu} S_{j} \geq E_{l+1}^{h}$ which implies $S_{\mu j} E_{l+1}^{h} S_{\mu j}^{*} \neq 0$.

Lemma 3.7. If $\Lambda_{l}\left(i, j_{1}, h\right) \neq 0$ and $\Lambda_{l}\left(i, j_{2}, h\right) \neq 0$, one has for $\mu \in \Lambda^{k}$

$$
\left[S_{\mu j_{1}} E_{l+1}^{h} S_{\mu j_{1}}^{*}\right]=\left[S_{\mu j_{2}} E_{l+1}^{h} S_{\mu j_{2}}^{*}\right] \quad \text { in } K_{0}\left(\mathscr{F}_{k+1}^{l+1}\right)
$$

Put

$$
\Lambda_{l}(i, h)=\sum_{j=1}^{n} \Lambda_{l}(i, j, h) \in \mathbf{Z}_{+}, \quad i=1,2, \ldots, m(l), \quad h=1,2, \ldots, m(l+1)
$$

We then define a homomorphism λ_{l} from $K_{0}\left(A_{l}\right)$ to $K_{0}\left(A_{l+1}\right)$ by

$$
\lambda_{l}\left(\left[E_{l}^{i}\right]\right)=\sum_{h=1}^{m(l+1)} \Lambda_{l}(i, h)\left[E_{l+1}^{h}\right]
$$

where

$$
K_{0}\left(A_{l}\right)=\sum_{i=1}^{m(l)} \oplus \mathbf{Z}\left[E_{l}^{i}\right], \quad K_{0}\left(A_{l+1}\right)=\sum_{h=1}^{m(l+1)} \oplus \mathbf{Z}\left[E_{l+1}^{h}\right] .
$$

we indeed have
Lemma 3.8. $\lambda_{l}([P])=\sum_{j=1}^{n}\left[S_{j}^{*} P S_{j}\right]$ for a projection P in A_{l}.
Hence one has
Lemma 3.9. The diagram

is commutative.
Since $K_{0}\left(A_{\Lambda}\right)=\lim \left(K_{0}\left(A_{l}\right), \iota_{l *}\right)$, one can define a homomorphism $\lambda_{\Lambda}=\lambda_{l}$ on $K_{0}\left(A_{\Lambda}\right)$ induced by the sequence of homomorphisms $\lambda_{l}: K_{0}\left(A_{l}\right) \rightarrow$ $K_{0}\left(A_{l+1}\right), l \in \mathrm{~N}$. Namely, we obtain a homomorphism λ_{Λ} on $\mathrm{Z}_{\Lambda}\left(\cong K_{0}\left(A_{\Lambda}\right) \cong\right.$ $\left.K_{0}\left(\mathscr{F}_{k}^{\infty}\right)\right)$. We remark that it is exactly regarded as the induced homomorphism on $K_{0}\left(A_{\Lambda}\right)$ from the adjancy operator λ_{Λ} defined in the previous section. Hence we use the same notation λ_{Λ} without confusion.

Lemma 3.10. The diagram

is commutative.
Proof. By Lemma 3.7, it follows that

$$
\begin{aligned}
\Phi_{k+1} \circ \eta_{k *}\left(\left[S_{\mu} E_{l}^{i} S_{\mu}^{*}\right]\right) & =\Phi_{k+1}\left(\sum_{j=1}^{n}\left[S_{\mu j}\left(\sum_{h=1}^{m(l+1)} \Lambda_{l}(i, j, h) E_{l+1}^{h}\right) S_{\mu j}^{*}\right]\right) \\
& =\sum_{h=1}^{m(l+1)} \Phi_{k+1}\left(\sum_{j=1}^{n} \Lambda_{l}(i, j, h)\left[S_{\mu j} E_{l+1}^{h} S_{\mu j}^{*}\right]\right) \\
& =\sum_{h=1}^{m(l+1)} \Lambda_{l}(i, h)\left[E_{l+1}^{h}\right]=\lambda_{l}\left[E_{l}^{i}\right]=\lambda_{\Lambda} \circ \Phi_{k}\left(\left[S_{\mu} E_{l}^{i} S_{\mu}^{*}\right]\right)
\end{aligned}
$$

Therefore we conclude
Theorem 3.11. $K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right)=\underset{\rightarrow}{\lim }\left(\mathbf{Z}_{\Lambda}, \lambda_{\Lambda}\right)$.
Corollary 3.12. If Λ is a sofic subshift, $K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right)=\lim _{\rightarrow}\left(\mathbb{Z}^{m(l)}, \lambda_{l}\right)$.
Proof. Let j_{l} be the canonical inclusion of $\mathbf{Z}^{m(l)}\left(=K_{0}\left(A_{l}\right)\right)$ into $\mathrm{Z}_{\Lambda}\left(=K_{0}\left(A_{\Lambda}\right)\right)$, which is induced by the natural inclusion of A_{l} into A_{Λ}. Since the following diagram

is commutative, there is a homomorphism π from $\underset{\rightarrow}{\lim }\left(Z^{m(l)}, \lambda_{l}\right)$ to $\lim _{\longrightarrow}\left(\mathbf{Z}_{\Lambda}, \lambda_{\Lambda}\right)$. It is easy to see that it is indeed a surjective isomorphism be$\overrightarrow{\text { cause }} Z_{A}=Z^{m(l)}$ for some large enough l by [Ma; Proposition 8.2]

Before ending this section, we define the dimension group $D G(\Lambda)$ for a general subshift (Λ, σ) as the dimension group for the AF-algebra $\mathscr{F}_{\Lambda}^{\infty}$, namely,

$$
G(\Lambda)=K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right): \quad \text { as an ordered group. }
$$

The notion of the dimension group for a topological Markov shift $\left(\Lambda_{A}, \sigma\right)$ determined by a matrix A with entries in $\{0,1\}$ has been introduced by W. Krieger in [Kr 1$]$ and [Kr 2$]$. It is realized as the dimension group for the canonical AF-algebra \mathscr{F}_{A} appeared inside of the Cuntz-Krieger algebra \mathcal{O}_{A} associated with the topological Markov shift $\left(\Lambda_{A}, \sigma\right)$. If we restrict our construction of C^{*}-algebras \mathcal{O}_{A} and \mathscr{F}_{A}^{∞} to a topological Markov shift $\left(\Lambda_{A}, \sigma\right)$, they coincide with the Cuntz-Krieger algebra \mathcal{O}_{A} and the canonical AF-algebra \mathscr{F}_{A} respectively. Hence our above definition of the dimension group for general subshifts is a generalization of the case of topological Markov shifts. By Proposition C, we see

Proposition 3.13. The dimension group $D G(\Lambda)$ for subshift (Λ, σ) is an invariant under topological conjugacy for the associated one-sided subshift $\left(X_{\Lambda}, \sigma\right)$ among the class of all subshifts such that the associated C^{*}-algebra \mathcal{O}_{Λ} satisfies the condition $\left(I_{\Lambda}\right)$.
4. $K_{*}\left(\mathcal{O}_{\Lambda}\right)$.

We will, in this section, present K-theory formula for the C^{*}-algebra \mathcal{O}_{Λ}. We denote by \mathscr{K} the C^{*}-algebra of all compact operators on a separable infinite dimensional Hilbert space. We will notice that the crossed product $\mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathrm{T}$ of \mathcal{O}_{Λ} by the gauge action α of T is stably isomorphic to the associated AFalgebra $\mathscr{F}_{\Lambda}^{\infty}$. Since \mathcal{O}_{Λ} is stably isomorphic to the crossed product $\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathbf{T}\right) \times_{\hat{\alpha}} \mathbf{Z}$ of $\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$ by the dual action $\hat{\alpha}$, it will be possible to present K-theory formula for the C^{*}-algebra \mathcal{O}_{Λ} by using the previous K-theory formula for the AF-algebra $\mathscr{F}_{\Lambda}^{\infty}$ and by applying the Pimsner-Voiculescu's six-term exact sequence of the K-theory for the crossed products by Z ([PV]).

We will first see that the crossed product $\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$ is stably isomorphic to the AF-algebra \mathscr{F}_{1}^{∞}.

Let $p_{0}: \mathrm{T} \rightarrow \mathcal{O}_{\Lambda}$ be the constant function whose value everywhere is the unit 1 of \mathcal{O}_{Λ}. Hence p_{0} belongs to the algebra $L^{1}\left(\mathrm{~T}, \mathcal{O}_{\Lambda}\right)$ and hence to the crossed product $\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$. By [Ro], the fixed point algebra $\mathcal{O}_{\Lambda}{ }^{\alpha}$ is canonically isomorphic to the algebra $p_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right) p_{0}$. The isomorphism between them is given by the correspondence : $x \in \mathcal{O}_{\Lambda}{ }^{\alpha} \rightarrow \hat{x} \in L^{1}\left(\mathrm{~T}, \mathcal{O}_{\Lambda}\right) \subset \mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$ where the function \hat{x} is defined by $\hat{x}(t)=x, t \in \mathrm{~T}$.

Lemma 4.1. The projection p_{0} is full in $\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$.

Proof. Suppose that there exists a nondegenerate representation π of $\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$ such that $\pi\left(p_{0}\right)=0$. For any element S in \mathcal{O}_{Λ}, put $\widehat{S}(z)=S, z \in \mathrm{~T}$, which belongs to $L^{1}\left(\mathrm{~T}, \mathcal{O}_{\Lambda}\right)$. We denote by $*$ the α-twisted convolution product in $L^{1}\left(\mathrm{~T}, \mathcal{O}_{\Lambda}\right)$ (the usual product as elements of $\left.\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right)$. It then follows that $\widehat{S} * p_{0}=\widehat{S}$. Hence \widehat{S} belongs to the ideal $\operatorname{ker}(\pi)$ in $\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$. For $S, T \in \mathcal{O}_{\Lambda}$, one has $\left(\widehat{S} * \widehat{T}^{*}\right)(z)=S \alpha_{z}\left(T^{*}\right) \quad$ by using the identity $\left(\widehat{T}^{*}\right)(z)=\alpha_{z}\left(T^{*}\right)$. For any $X \in \mathcal{O}_{\Lambda}$ and $\mu \in \Lambda^{k}$, we have

$$
\left(\widehat{X S_{\mu}} *{\widehat{S_{\mu}}}^{*}\right)(z)=z^{-k} X S_{\mu} S_{\mu}^{*}
$$

and hence

$$
\left(\sum_{|\mu|=k} \widehat{X S_{\mu}} * \widehat{S}_{\mu}^{*}\right)(z)=z^{-k} X, \quad k \in \mathrm{~N} .
$$

We denote by B_{k} the commutative C^{*}-algebra generated by $a_{\mu}, \mu \in \Lambda^{k}$. Let $F_{k}^{i}, i=1,2, \ldots, n(k)$ be the set of all minimal projections in B_{k}. Since one sees for $\mu \in \Lambda^{k}$,

$$
\left(X \widehat{F_{k}^{i} S_{\mu}^{*}} * \widehat{S_{\mu}^{*}}\right)(z)=z^{k} X F_{k}^{i}
$$

one has

$$
\left(\sum_{i=1}^{n(k)} \widehat{X F_{k}^{i} S_{\mu}^{*}} * \widehat{S}_{\mu}^{*}\right)(z)=z^{k} X, \quad k \in \mathrm{~N}
$$

Hence any \mathcal{O}_{Λ}-valued function of the form

$$
z \in \mathrm{~T} \rightarrow z^{k} X \in \mathcal{O}_{\Lambda}, \quad k \in \mathbf{Z}, \quad X \in \mathcal{O}_{\Lambda}
$$

is contained in the ideal $\operatorname{ker}(\pi)$. Thus we conclude $\pi \equiv 0$ on $\mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathrm{T}$. This implies that p_{0} is a full projection in $\mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathrm{T}$.

Since the AF-algebra \mathscr{F}_{A}^{∞} is realized as the fixed point algebra $\mathcal{O}_{\Lambda}{ }^{\alpha}$, one sees, by [Bro;Corollary 2.6]

Corollary 4.2. $\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$ is stably isomorphic to \mathscr{F}_{A}^{∞}.
The Pimsner-Voiculescu's six term exact sequence of the K-theory for the crossed product $\left(\mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathbf{T}\right) \times{ }_{\hat{\alpha}} \mathbf{Z}$ says that the following sequence becomes exact:

Since the double crossed product $\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathbf{T}\right) \times_{\hat{\alpha}} \mathbf{Z}$ is stably isomorphic to \mathcal{O}_{Λ}, one has

Lemma 4.3 .
(i) $K_{0}\left(\mathcal{O}_{\Lambda}\right) \cong K_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right) /\left(\mathrm{id}-\hat{\alpha}_{*}^{-1}\right) K_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right)$
(ii) $K_{1}\left(\mathcal{O}_{\Lambda}\right) \cong \operatorname{Ker}\left(\mathrm{id}-\hat{\alpha}_{*}^{-1}\right)$ on $K_{0}\left(\mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathrm{T}\right)$.

We will next study the group $K_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right)$ and the action $\hat{\alpha}_{*}$ on it. The next lemma follows from Lemma 4.1 and [Ri; Proposition 2.4].

Lemma 4.4. The inclusion $\iota: p_{0}\left(\mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathrm{T}\right) p_{0} \rightarrow \mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}$ induces an isomorphism $\iota_{*}: K_{0}\left(p_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right) p_{0}\right) \rightarrow K_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right)$ on K-theory.

Under the identification, $\mathscr{F}_{\Lambda}^{\infty}=\mathcal{O}_{\Lambda}{ }^{\alpha}=p_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right) p_{0}$, we define an isomorphism β on $K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right)$ as $\beta=\iota_{*}{ }^{-1} \circ \hat{\alpha}_{*} \circ \iota_{*}$. Namely the diagram

is commutative.
The following lemma is a key.
Lemma 4.5. For a projection P in \mathscr{F}_{A}^{∞} and a partial isometry S in \mathcal{O}_{A} with $\alpha_{z}(S)=z S, z \in \mathrm{~T}$ and $P \leq S^{*} S$, we have $\beta[P]=\left[S P S^{*}\right]$ in $K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right)$.

Proof. Let $j: \mathscr{F}_{A}^{\infty} \rightarrow p_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right) p_{0}$ be the canonical isomorphism and $\iota: p_{0}\left(\mathcal{O}_{A} \times_{\alpha} \mathrm{T}\right) p_{0} \hookrightarrow \mathcal{O}_{A} \times_{\alpha} \mathrm{T}$ the inclusion. For $P \in \mathscr{F}_{A}^{\infty}$, we denote by $\widehat{P}=\iota \circ j(P) \in L^{1}\left(\mathrm{~T}, \mathcal{O}_{\Lambda}\right) \subset \mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{\top}$ the constant P-valued function: $\widehat{P}(z)=P, z \in \mathrm{~T}$. As $S P S^{*} \in \mathscr{F}_{\Lambda}^{\infty}$, we similarly denote by $\widehat{S P S^{*}}=$ $\iota \circ j\left(S P S^{*}\right) \in L^{1}\left(\mathrm{~T}, \mathcal{O}_{A}\right)$ the constant $S P S^{*}$-valued function. It suffices to show $\left[\widehat{S P S}^{*}\right]=\hat{\alpha}_{*}[\widehat{P}]$ in $K_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right)$. Let $\widehat{S} \in L^{1}\left(\mathrm{~T}, \mathcal{O}_{\Lambda}\right)$ be the constant S valued function : $\widehat{S}(z)=S, z \in \mathrm{~T}$. We denote by $*$ the twisted convolution product (usual product) in $\mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathrm{T}$. It then follows that $(\widehat{S} * \widehat{P})(z)=S P, z \in \mathrm{~T}$ and $\left(\widehat{S} * \widehat{P} * \widehat{S}^{*}\right)(z)=z^{-1} S P S^{*}, z \in \mathrm{~T}$. Thus we have $\hat{\alpha}\left(\widehat{S} * \widehat{P} * \widehat{S}^{*}\right)=\widehat{S P S^{*}}$. As $\left(\widehat{S}^{*} * \widehat{S}\right)(z)=S^{*} S \in \mathscr{F}_{A}^{\infty}$ and hence $\widehat{S}^{*} * \widehat{S}=\widehat{S^{*} S}$. Since the inclusion $=\iota \circ j: \mathscr{F}_{\Lambda}^{\infty}=\mathcal{O}_{\Lambda}{ }^{\alpha} \hookrightarrow \mathcal{O}_{\Lambda} \times{ }_{\alpha} \mathrm{T}$ is a homomorphism, one has $\widehat{P} \leq \widehat{S^{*} S}$ because $P \leq S^{*} S$. Thus one sees

$$
\left[\widehat{S} * \widehat{P} * \widehat{S}^{*}\right]=[\widehat{P}] \quad \text { in } \quad K_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right)
$$

so that we conclude

$$
\hat{\alpha}_{*}[\widehat{P}]=\left[\widehat{S P S}^{*}\right] \quad \text { in } K_{0}\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathbf{T}\right) \quad \text { and } \quad \beta[P]=\left[S P S^{*}\right] \quad \text { in } K_{0}\left(\mathscr{F}_{\Lambda}^{\infty}\right) .
$$

Lemma 4.6. For a nonzero projection $S_{\mu} E_{l}^{i} S_{\mu}^{*}$ in \mathscr{F}_{k}^{l} with $\mu=j \nu \in \Lambda^{k}$, one $\operatorname{has} \beta^{-1}\left[S_{\mu} E_{l}^{i} S_{\mu}^{*}\right]=\left[S_{\nu} E_{l}^{i} S_{\nu}^{*}\right]$ in $K_{0}\left(\mathscr{F}_{k-1}^{l}\right)$.

Proof. Since $S_{\mu} E_{l}^{i} S_{\mu}^{*} \neq 0$, we see that $S_{\nu} E_{l}^{i} S_{\nu}^{*} \leq S_{j}^{*} S_{j}$ because of the identity $S_{j}^{*} S_{j} S_{\nu} E_{l}^{i} S_{\nu}^{*}=S_{\nu} a_{\mu} E_{l}^{i} S_{\nu}^{*}=S_{\nu} E_{l}^{i} S_{\nu}^{*}$. Hence we have the conclusion by the previous lemma.

COROLLARY 4.7. The homomorphism $\beta^{-1}: K_{0}\left(\mathscr{F}_{1}^{\infty}\right) \rightarrow K_{0}\left(\mathscr{F}_{1}^{\infty}\right)$ corresponds to the shift σ in $\lim K_{0}\left(\mathscr{F}_{k}^{\infty}\right)=\lim \mathbf{Z}_{\Lambda}$. Namely, if $x=\left(x_{1}, x_{2}, \ldots\right)$ is a sequence representing an element of $\lim \vec{K}_{0}\left(\mathscr{F}_{k}^{\infty}\right)$, then $\beta^{-1} x$ is represented by $\sigma(x)=\left(x_{2}, x_{3}, \ldots\right)$.

Since the diagram

is commutative, one has
Corollary 4.8.
(i) $K_{0}\left(\mathcal{O}_{\Lambda}\right) \cong \lim \mathbf{Z}_{\Lambda} /(\mathrm{id}-\sigma) \lim \mathbf{Z}_{\Lambda}$
(ii) $K_{1}\left(\mathcal{O}_{\Lambda}\right) \cong \overrightarrow{\operatorname{K}} \operatorname{er}(\mathrm{id}-\sigma) \quad$ on $\lim _{\rightarrow} Z_{\Lambda}$.

Let j be the homomorphism from $K_{0}\left(\mathscr{F}_{0}^{\infty}\right)=\mathbf{Z}_{A}$ to $K_{0}\left(\mathscr{F}_{A}^{\infty}\right)=\lim _{\rightarrow} \mathbf{Z}_{A}$ induced by the inclusion : $\mathscr{F}_{0}^{\infty} \hookrightarrow \mathscr{F}_{A}^{\infty}$.

As in the proof of [C2; 3.1 Proposition], we see that every element in $\underset{\rightarrow}{\lim } \mathbf{Z}_{\Lambda}$ is equivalent modulo $(\mathrm{id}-\sigma) \underset{\rightarrow}{\lim } \mathbf{Z}_{\Lambda}$ to an element in \mathbf{Z}_{A}. Since the $\overrightarrow{\text { diagram }}$

is commutative and $j(x) \in(\mathrm{id}-\sigma) \lim _{\rightarrow} \mathbf{Z}_{\Lambda}, x \in \mathbf{Z}_{\Lambda}$ implies $x \in\left(\mathrm{id}-\lambda_{\Lambda}\right) \mathbf{Z}_{\Lambda}$, we then have

$$
K_{0}\left(\mathcal{O}_{\Lambda}\right) \cong j\left(\mathbf{Z}_{\Lambda}\right) /(\mathrm{id}-\sigma) \underset{\longrightarrow}{\lim \mathbf{Z}_{\Lambda}=\mathbf{Z}_{\Lambda} /\left(\mathrm{id}-\lambda_{\Lambda}\right) \mathbf{Z}_{\Lambda}}
$$

Similarly as in the same argument in [C2; 3.1.Proposition], we have

$$
K_{1}\left(\mathcal{O}_{\Lambda}\right) \cong \operatorname{Ker}\left(\operatorname{id}-\lambda_{\Lambda}\right) \text { on } \mathbf{Z}_{\Lambda}
$$

Thus we present the K-theory formula for the C^{*}-algebra \mathcal{O}_{Λ}

Theorem 4.9 .

(i) $K_{0}\left(\mathcal{O}_{\Lambda}\right) \cong \mathbf{Z}_{\Lambda} /\left(\mathrm{id}-\lambda_{\Lambda}\right) \mathbf{Z}_{\Lambda} \cong \lim \left(\mathbf{Z}^{m(l+1)} /\left(\iota_{l_{*}}-\lambda_{l}\right) \mathbf{Z}^{m(l)}\right)$
(ii) $K_{1}\left(\Theta_{\Lambda}\right) \cong \operatorname{Ker}\left(\mathrm{id}-\lambda_{\Lambda}\right)$ in $\mathbf{\mathbf { Z } _ { \Lambda }} \cong \underset{\longrightarrow}{\lim }\left(\operatorname{Ker}\left(\iota_{l *}-\lambda_{l}\right)\right.$ in $\left.\mathbf{Z}^{m(l)}\right)$
where

$$
\mathbf{Z}_{A}=\lim _{\rightarrow}\left(\mathbf{Z}^{m(l)}, \iota_{l *}\right), \quad m(l)=\operatorname{dim} A_{l}
$$

and

$$
\lambda_{\Lambda}=\lim _{\rightarrow} \lambda_{l}, \quad \lambda_{l}: \mathbf{Z}^{m(l)}=K_{0}\left(A_{l}\right) \rightarrow \mathbf{Z}^{m(l+1)}=K_{0}\left(A_{l+1}\right)
$$

is defined by

$$
\lambda_{l}([P])=\sum_{j=1}^{n}\left[S_{j}^{*} P S_{j}\right] \quad \text { for a projection } P \text { in } A_{l}
$$

More precisely, for the minimal projections $E_{l}^{1}, \ldots, E_{l}^{m(l)}$ of A_{l} with $\sum_{i=1}^{m(l)} E_{l}^{i}=1$ and the canonical basis $e_{l}^{1}, \ldots, e_{l}^{m(l)}$ of $\mathbf{Z}^{m(l)}$, the map $\left[E_{l}^{i}\right] \rightarrow e_{l}^{i}$ extends to an isomorphism of $K_{0}\left(\mathcal{O}_{\Lambda}\right)$ onto $\lim _{\rightarrow}\left(\mathbb{Z}^{m(l+1)} /\left(\iota_{l}-\lambda_{l}\right) \mathrm{Z}^{m(l)}\right)$.

Before ending this section, we note the following lemma.
Lemma 4.10. The C^{*}-algebra \mathcal{O}_{M} is nuclear and satisfies the Universal Coefficient Theorem in the sense of Rosenberg and Schocet.

Proof. Since the double crossed product $\left(\mathcal{O}_{\Lambda} \times_{\alpha} \mathrm{T}\right) \times_{\hat{\alpha}} \mathrm{Z}$ is stably isomorphic to \mathcal{O}_{Λ}, the assertion is immediate from Corollary 4.2 (cf. [RS], [B1; p. 287]).

Hence, as in Theorem B, one sees by [Ki] and [Ph]
Corollary 4.11. If the C^{*}-algebra \mathcal{O}_{Λ} satisfies the condition $\left(I_{A}\right)$ and the adjancy operator λ_{Λ} is aperiodic, then \mathcal{O}_{Λ} is a separable nuclear purely infinite simple C^{*}-algebra satisfying the Universal Coefficient Theorem. Thus, these C^{*}-algebras are completely classified by their own K-theory up to isomorphism.

5. Sofic subshifts and examples.

There is a class of subshifts called sofic subshifts. It is truly wider, up to conjugate, than the class of subshifts of finite type and hence that of topological Markov shifts. Hence the C^{*}-algebras associated with sofic subshifts which are not conjugate to topological Markov shifts can not be dealt with within the Cuntz-Krieger's approach. For a subshift (Λ, σ) and words $\mu, \nu \in \Lambda^{*}$, we write $\mu \sim \nu$ if

$$
\left\{\gamma \in \Lambda^{*} \mid \mu \gamma \in \Lambda^{*}\right\}=\left\{\gamma \in \Lambda^{*} \mid \nu \gamma \in \Lambda^{*}\right\}
$$

If the cardinality of the equivalence classes Λ^{*} / \sim is finite, the subshift (Λ, σ) is said to be sofic (cf. [DGS], [W]). Hence a subshift (Λ, σ) is sofic if and only if the commutative C^{*}-subalgebra A_{Λ} of \mathcal{O}_{Λ} is finite dimensional (cf. [Ma; Proposition 8.2]).

Suppose that a subshift (Λ, σ) is sofic. Put $N=\operatorname{dim} A_{\Lambda}<\infty$. Hence the adjancy operator λ_{Λ} on A_{Λ} is realized as an $N \times N$ matrix with entries in non-negative integers. We then notice that λ_{A} is irreducible (resp. aperiodic) in the sense of Section 2 if and only if it is irreducible (resp. aperiodic) in the sense of non-negative matrix.

It is well-known that if λ_{Λ} is aperiodic, the AF-algebra \mathscr{F}_{A}^{∞} is simple and has a unique tracial state τ_{Λ} (cf. [Bra], [Ef], [Ev2]). Thus we can summarize the previous discussions on K-theory for the C^{*}-algebras \mathcal{O}_{Λ} and $\mathscr{F}_{\Lambda}^{\infty}$ as in the following way.

Proposition 5.1. Suppose that a subshift (Λ, σ) is sofic. If the C^{*}-algebra \mathcal{O}_{Λ} satisfies the condition $\left(I_{\Lambda}\right)$ and the adjancy operator λ_{Λ} is aperiodic, then we have
(i) \mathcal{O}_{Λ} is simple and purely infinite.
(ii) $K_{0}\left(\mathcal{O}_{\Lambda}\right) \cong \mathbf{Z}^{N} /\left(1-\lambda_{\Lambda}\right) \mathbf{Z}^{N} \quad$ and $\quad K_{1}\left(\mathcal{O}_{\Lambda}\right) \cong \operatorname{Ker}\left(1-\lambda_{\Lambda}\right) \quad$ in \mathbf{Z}^{N}.
(iii) $D G(\Lambda) \cong \lim _{\longrightarrow}\left(\mathbf{Z}^{N}, \lambda_{\Lambda}\right) \cong \tau_{\Lambda}\left(\mathscr{F}_{A}^{\infty}\right) \quad$ in R .
where τ_{Λ} is a unique tracial state on $\mathscr{F}_{\Lambda}^{\infty}$.
Thus by Corollary 4.11 we see that if a subshift (Λ, σ) is sofic, the C^{*}-algebra \mathcal{O}_{Λ} is stably isomorphic to some Cuntz-Krieger algebra $\mathcal{O}_{\lambda_{A}}$ associated with a matrix λ_{Λ} with entries in non-negative integers.

We present examples of the C^{*}-algebras associated with sofic subshifts.
Example 1 (Cuntz algebras \mathcal{O}_{n}, [C], [C2], [C3]).
Let $\left(\Lambda_{n}, \sigma\right)$ be the full shift over $\Sigma=\{1,2, \ldots, n\}$. The C^{*}-algebra $\mathcal{O}_{\Lambda_{n}}$ associated with it is the Cuntz algebra \mathcal{O}_{n} of order n. Then the commutative C^{*}-algebras A_{l} are reduced to the scalar C so that $m(l)=1, l \in \mathrm{~N}$. It is easy
to see that the adjancy operator λ_{Λ} is the n-multiplication on $\mathrm{Z}=K_{0}\left(A_{l}\right)=K_{0}(\mathrm{C})$. Hence we see

$$
K_{0}\left(\mathscr{F}_{\Lambda_{n}}^{\infty}\right)=\mathrm{Z}\left[\frac{1}{n}\right], \quad K_{0}\left(\mathcal{O}_{n}\right)=\mathrm{Z} /(1-n) \mathrm{Z}, \quad K_{1}\left(\mathcal{O}_{n}\right)=0
$$

Example 2 (Cuntz-Krieger algebras \mathcal{O}_{A}, [CK], [C2], [C3]).
Let $\left(\Lambda_{A}, \sigma\right)$ be the topological Markov shift determined by an $n \times n$-matrix A with $\{0,1\}$-entries. The C^{*}-algebra $\mathcal{O}_{\Lambda_{A}}$ associated with it is the CuntzKrieger algebra \mathcal{O}_{A}. Suppose that A is an irreducible but not permutation matrix with rank n. Hence one sees that $A_{l}=\mathrm{C} S_{1} S_{1}^{*} \oplus \cdots \oplus \mathrm{C} S_{n} S_{n}^{*}, l \in \mathrm{~N}$ so that $m(l)=n, l \in \mathrm{~N}$. It is easy to see that the adjancy operator $\lambda_{\Lambda}\left(=\lambda_{l}\right)$ is given by operating the transpose of the matrix A from $\mathrm{Z}^{n}=K_{0}\left(A_{l}\right)$ to $\mathrm{Z}^{n}=K_{0}\left(A_{l+1}\right)$. Hence we see

$$
\begin{aligned}
K_{0}\left(\mathscr{F}_{A_{A}}^{\infty}\right)= & \underset{\rightarrow}{\lim }\left(\mathbf{Z}^{n}, A^{t}\right), \quad K_{0}\left(\mathcal{O}_{A}\right)=\mathbf{Z}^{n} /\left(1-A^{t}\right) Z^{n} \\
& K_{1}\left(\mathcal{O}_{A}\right)=\operatorname{Ker}\left(1-A^{t}\right) \text { in } \mathbf{Z}^{n}
\end{aligned}
$$

Example 3.

Suppose $\Sigma=\{1,2\}$. Let Y be the subshift in Σ^{Z} defined by the condition that all blocks of 2^{\prime} s which have maximal length have even length, which is called the even shift (cf. [DGS; p. 251]). It is a sofic subshift but not conjugate to a topological Markov shift. One easily sees for $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \in Y^{*}$

$$
S_{\mu}^{*} S_{\mu}=\left\{\begin{array}{lll}
1 & \text { if } \quad \mu=(2, \ldots, 2), \\
S_{1}^{*} S_{1} & \text { if } \quad \mu=(*, \ldots, *, 1) \text { or } \mu=(*, \ldots, *, 1, \underbrace{2, \ldots, 2}_{\text {even }}) \\
S_{2}^{*} S_{1}^{*} S_{1} S_{2} & \text { if } \quad \mu=(*, \ldots, *, 1, \underbrace{2, \ldots, 2}_{\text {odd }}) .
\end{array}\right.
$$

Put

$$
P_{1}=S_{1}^{*} S_{1}-P_{2}, \quad P_{2}=S_{1}^{*} S_{1} \cdot S_{2}^{*} S_{1}^{*} S_{1} S_{2} \quad \text { and } \quad P_{3}=S_{2}^{*} S_{1}^{*} S_{1} S_{2}-P_{2}
$$

so that one has $P_{1}+P_{2}+P_{3}=1$. Hence one sees

$$
A_{l}=A_{Y}=\mathrm{C} P_{1} \oplus \mathrm{C} P_{2} \oplus \mathrm{C} P_{3}, \quad l \geq 2
$$

and hence $m(l)=3, l \geq 2$. This means that

$$
\mathbf{Z}_{Y}=K_{0}\left(A_{Y}\right)=\mathbf{Z}\left[P_{1}\right] \oplus \mathbf{Z}\left[P_{2}\right] \oplus \mathbf{Z}\left[P_{3}\right] \cong \mathbf{Z}^{3}
$$

It is easy to see that the adjancy operator $\lambda_{\Lambda}\left(=\lambda_{l}\right)$ is the homomorphism on Z^{3} given by the matrix $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Thus we have

$$
\begin{aligned}
K_{0}\left(\mathscr{F}_{Y}^{\infty}\right) \cong & \lim _{\rightarrow}\left(Z^{3},\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\right) \cong \mathrm{Z} \oplus \mathrm{Z}+\frac{1+\sqrt{5}}{2} \mathrm{Z} \quad \text { in } \mathrm{R} \oplus \mathrm{R} \\
& K_{0}\left(\mathcal{O}_{Y}\right) \cong \mathrm{Z}^{3} /\left(1-\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\right) \mathrm{Z}^{3} \cong \mathrm{Z} \\
& K_{1}\left(\mathcal{O}_{Y}\right) \cong \operatorname{Ker}\left(1-\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\right) \text { in } Z^{3} \cong \mathrm{Z}
\end{aligned}
$$

Other concrete examples which are not sofic subshifts will be dealt with in some papers (cf. [KMW]).

REFERENCES

[Bl] B. Blackadar, K-theory for operator algebras, Springer-Verlag, Berlin, Heidelberg and New York 1986.
[Bra] O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc. 17 (1972), 195-234.
[Bro] L. G. Brown, Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pacific. J. Math. 71 (1977), 335-348.
[C] J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
[C2] J. Cuntz, A class of C^{*}-algebras and topological Markov chains II: reducible chains and the Ext-functor for C^{*}-algebras, Invent. Math. 63 (1980), 25-40.
[C3] J. Cuntz, K-theory for certain simple C*-algebras, Ann. of Math. 117 (1981), 181-197.
[CK] J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.
[DGS] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces, Springer-Verlag Berlin, Heidelberg and New York 1976.
[Ef] E. G. Effros, Dimensions and C^{*}-algebras, CBMS Reginal Conference Series in Mathematics, AMS 46 (1980).
[EFW] M. Enomoto, M. Fujii and Y. Watatani, Tensor algebras on the sub Fock space associated with \mathcal{O}_{A}, Math. Japon 24 (1979), 463-468.
[Ev] D. E. Evans, Gauge actions on \mathcal{O}_{A}, J. Operator Theory 7 (1982), 79-100.
[Ev2] D. E. Evans, The C^{*}-algebras of topological Markov chains, Tokyo Metropolitan University, Lecture Note (1982).
[KMW] Y. Katayama, K. Matsumoto and Y. Watatani, Simple C*-algebras arising from β-expansion of real numbers, to appear in Ergodic Theory Dynamical Systems.
[Ki] E. Kirchberg, The classification of purely infinite C^{*}-algebras using Kasparov's theory, preprint.
[Kr1] W. Krieger, On dimension for a class of homeomorphism groups, Math. Ann 252 (1980), 87-95.
[Kr2] W. Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), 239-250.
[KPRR] A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids and Cuntz-Krieger algebras, to appear in J. Funct. Anal..
[Ma] K. Matsumoto, On C^{*}-algebras associated with subshifts, Internat. J. Math. 8 (1997), 357-374.
[Ma2] K. Matsumoto, Bowen-Franks group for subshifts and Ext-group for certain C^{*}-algebras, preprint, 1996.
[PR] D. Pask and I. Raeburn, On the K-theory of Cuntz-Krieger algebras, to appear in Proc. RIMS. Kyoto.
[Ph] N. C. Phillips, A classification theorem for nuclear purely infinite simple C^{*}-algebras, preprint.
[PV] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross-products C^{*}-algebras, J. Operator Theory 4 (1980), 93-118.
[Ri] M. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.
[Ro] J. Rosenberg, Appendix to O. Bratteli's paper on "Crossed products of UHF algebras", Duke Math. J. 46 (1979), 25-26.
[RS] J. Rosenberg and C. Schocet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55 (1987), 431-474.
[W] B. Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77 (1973), 462-474.

DEPARTMENT OF MATHEMATICS
FACULTY OF ENGINEERING GUNMA UNIVERSITY, KIRYU 376
JAPAN

DEPARTMENT OF MATHEMATICS
JOETSU UNIVERSITY OF EDUCATION
JOETSU 943
JAPAN

