K-THEORY FOR C*-ALGEBRAS ASSOCIATED WITH
SUBSHIFTS

KENGO MATSUMOTO

Abstract.
We present K-theory formula for C*-algebras associated with subshifts. The formula is a generalization of K-theory formula for Cuntz-Krieger algebras, which are associated with topological Markov shifts. The dimension group for a general subshift is introduced to be the dimension group for the associated AF-algebra.

1. Introduction.
In [Ma], the author has introduced and studied a class of C*-algebras associated with subshifts in the theory of symbolic dynamics. The class of C*-algebras is a generalized one of the Cuntz-Krieger algebras which are associated with topological Markov shifts. Each of the C*-algebras associated with subshifts has generators of partial isometries with mutually orthogonal ranges. It also has universal properties subject to some operator relations ([Ma; Theorem 4.9 and 5.2]) so that it becomes purely infinite and simple in many cases including Cuntz-Krieger algebras. It is an analogy to the Cuntz-Krieger algebras that AF-subalgebras are appeared inside of the C*-algebras as the algebras of all fixed points of certain one-parameter group actions, called gauge actions. However, these AF-subalgebras have more complicated structure than the AF-subalgebras appeared inside of the Cuntz-Krieger algebras.

For a subshift (A, σ), we denote by ℂ_A and F_A the C*-algebra associated with the subshift (A, σ) and the corresponding AF-subalgebra inside of it respectively. If a subshift is a topological Markov shift, then the K_0-group of the AF-subalgebra, as an ordered group, becomes the dimension group for the topological Markov shift considered in [Kr1] and [Kr2]. Hence for a general subshift, it seems to be natural to define "the dimension group" for a

Received January 8, 1996.
subshift \((A, \sigma)\) as the \(K_0\)-group \(K_0(\mathcal{F}^\infty_A)\) of the AF-algebra \(\mathcal{F}^\infty_A\) as an ordered group.

In this paper, we present K-theory formula of these \(C^*\)-algebras \(\mathcal{O}_A\) and \(\mathcal{F}^\infty_A\) (Theorem 3.11 and Theorem 4.9). We first compute the \(K_0\)-group \(K_0(\mathcal{F}^\infty_A)\) of the AF-algebra \(\mathcal{F}^\infty_A\) inside of it and show that the \(K_0\)-group is realized as an inductive limit of a sequence of the \(K_0\)-groups of the finite dimensional and commutative \(C^*\)-algebras generated by support projections of canonical generators of partial isometries (Theorem 3.11). We will next show that the AF-algebra \(\mathcal{F}^\infty_A\) is stably isomorphic to the crossed product of the \(C^*\)-algebra \(\mathcal{O}_A\) by the gauge action. Hence, \(\mathcal{O}_A\) is stably isomorphic to the crossed product of the tensor product \(C^*\)-algebra of \(\mathcal{F}^\infty_A\) and the \(C^*\)-algebra of all compact operators on a Hilbert space by an action of \(\mathbb{Z}\). Thus it becomes to be possible to compute K-groups for the \(C^*\)-algebra \(\mathcal{O}_A\) by using the Pimsner-Voiculescu six-term exact sequence for K-theory. The resulting K-group formula (Theorem 4.9) includes the K-group formula of the Cuntz-Krieger algebras ([C2]).

We will finally compute the K-group for the \(C^*\)-algebra associated with a certain sofic subshift but not conjugate to a topological Markov shift. Computation of K-groups for \(C^*\)-algebras associated with other concrete subshifts will appear in some papers (cf. [KMW]).

We remark that the \(C^*\)-algebras associated with subshifts are nuclear purely infinite simple and satisfy the Universal Coefficient Theorem in many cases. Hence, by recent results of Kirchberg and Phillips in [Ki] and [Ph], they can be completely classified by their own K-theory (Corollary 4.11).

The author would like to thank the referee for some suggestions.

After submitting the first draft of this paper, the author was informed of preprints [KPRR] and [PR] by Kumjian-Pask-Raeburn-Renault and Pask-Raeburn. They study generalization of Cuntz-Krieger algebras from graph theoretic view point, but our generalization of Cuntz-Krieger algebras are different from theirs.

2. Review of the \(C^*\)-algebras associated with subshifts.

We will review the construction of the \(C^*\)-algebras associated with subshifts along [Ma].

In the throughout this paper, a finite set \(\Sigma = \{1, 2, ..., n\}\) is fixed.

Let \(\Sigma^\mathbb{Z}, \Sigma^\mathbb{N}\) be the infinite product spaces \(\prod_{i=-\infty}^{\infty} \Sigma_i, \prod_{i=1}^{\infty} \Sigma_i\) where \(\Sigma_i = \Sigma\), endowed with the product topology respectively. The transformation \(\sigma\) on \(\Sigma^\mathbb{Z}, \Sigma^\mathbb{N}\) given by \((\sigma(x))_i = x_{i+1}, i \in \mathbb{Z}, \mathbb{N}\) is called the (full) shift. Let \(A\) be a
shift invariant closed subset of Σ^Z i.e. $\sigma(A) = A$. The topological dynamical system $(A, \sigma|_A)$ is called a subshift. We denote $\sigma|_A$ by σ for simplicity. This class of the subshifts includes the class of the topological Markov shifts (cf. [DGS]).

A finite sequence $\mu = (\mu_1, ..., \mu_k)$ of elements $\mu_j \in \Sigma$ is called a block or a word. We denote by $|\mu|$ the length k of μ. A block $\mu = (\mu_1, ..., \mu_k)$ is said to occur in $x = (x_i) \in \Sigma^Z$ if $x_{m} = \mu_1, ..., x_{m+k-1} = \mu_k$ for some $m \in \mathbb{Z}$.

For a subshift (A, σ), set for $k \in \mathbb{N}$

$$A^k = \{ \mu : \text{a block with length } k \text{ in } \Sigma^Z \text{ occurring in some } x \in A \}$$

and $A_i = \cup_{k=0}^i A^k$, $A_* = \cup_{k=0}^\infty A^k$ where A^0 denotes the empty word \emptyset.

Let $\{e_1, ..., e_n\}$ be an orthonormal basis of n-dimensional Hilbert space C^n.

We put

$$F_0^n = C e_0 \quad (e_0: \text{vacuum vector})$$
$$F_A^k = \text{the Hilbert space spanned by the vectors } e_\mu = e_{\mu_1} \otimes ... \otimes e_{\mu_k}, \mu = (\mu_1, ..., \mu_k) \in A^k,$$
$$F_A = \bigoplus_{k=0}^\infty F_A^k \quad (\text{Hilbert space direct sum})$$

We denote by $T_\nu, (\nu \in A^*)$ the creation operator on F_A of $e_\nu, \nu \in A^* (\nu \neq \emptyset)$ defined by

$$T_\nu e_0 = e_\nu \quad \text{and} \quad T_\nu e_\mu = \begin{cases} e_\nu \otimes e_\mu, & (\nu \mu \in A^*) \\ 0 & \text{else} \end{cases}$$

which is a partial isometry. We put $T_\nu = 1$ for $\nu = \emptyset$. We denote by P_0 the rank one projection onto the vacuum vector e_0. It immediately follows that

$$\sum_{i=1}^n T_i T_i^* + P_0 = 1.$$

We then easily see that for $\mu, \nu \in A^*$, the operator $T_\mu P_0 T_\nu^*$ is the rank one partial isometry from the vector e_ν to e_μ. Hence, the C^*-algebra generated by elements of the form $T_\mu P_0 T_\nu^*, \mu, \nu \in A^*$ is nothing but the C^*-algebra $K(F_A)$ of all compact operators on F_A. Let \mathcal{T}_A be the C^*-algebra on F_A generated by the elements $T_\nu, \nu \in A^*$.

Definition ([Ma]). The C^*-algebra \mathcal{O}_A associated with subshift (A, σ) is defined as the quotient C^*-algebra $\mathcal{T}_A/K(F_A)$ of \mathcal{T}_A by $K(F_A)$.

We denote by S_i, S_μ the quotient image of the operator $T_i, i \in \Sigma$, $T_\mu, \mu \in A^*$. Hence \mathcal{O}_A is generated by n partial isometries S_1, \ldots, S_n with relation

$$\sum_{i=1}^n S_i S_i^* = 1.$$

If (A, σ) is a topological Markov shift, the C^*-algebra \mathcal{O}_A is nothing but the Cuntz-Krieger algebra associated with the topological Markov shift (cf. [CK],[EFW],[Ev]).
We henceforth fix an arbitrary subshift \((A, \sigma)\) in \(\Sigma^\mathbb{Z}\). We denote by \((X_A, \sigma)\) the associated right one-sided subshift for \((A, \sigma)\).

We will present notation and basic facts for studying the \(C^*\)-algebra \(\mathcal{O}_A\).

Put \(a_\mu = S^{\mu}_* S^{\mu}, \mu \in \Lambda^*\). Since \(T^{\nu}_* T^{\mu}_\nu\) commutes with \(T^{\mu}_* T^{\mu}_\nu, \mu, \nu \in \Lambda^*\), the following identities hold

\[
(*) \quad a_\mu S^{\nu} = S^{\nu} a_{\mu \nu}, \quad \mu, \nu \in \Lambda^*.
\]

We notice that for \(\mu, \nu \in \Lambda^*\) with \(|\mu| = |\nu|\),

\[
S^{\nu}_* S^{\nu} \neq 0 \quad \text{if and only if} \quad \mu = \nu.
\]

We will use the following notation. Let \(k, l\) be natural numbers with \(k \leq l\).

\(A_l\) = The \(C^*\)-subalgebra of \(\mathcal{O}_A\) generated by \(a_\mu, \mu \in A_l\).

\(A_\Lambda\) = The \(C^*\)-subalgebra of \(\mathcal{O}_A\) generated by \(a_\mu, \mu \in \Lambda^*\).

\(\mathcal{F}^l_k\) = The \(C^*\)-subalgebra of \(\mathcal{O}_A\) generated by \(S^{\mu}_* a S^{\mu}_\nu, \mu, \nu \in \Lambda^k, a \in A_1\).

\(\mathcal{F}^\infty_k\) = The \(C^*\)-subalgebra of \(\mathcal{O}_A\) generated by \(S^{\mu}_* S^{\nu}_*, \mu, \nu \in \Lambda^k, a \in A_\Lambda\).

\(\mathcal{F}^\infty_\Lambda\) = The \(C^*\)-subalgebra of \(\mathcal{O}_A\) generated by \(S^{\mu}_* S^{\nu}_*, \mu \in \Lambda^*, |\mu| = |\nu|, a \in A_\Lambda\).

The projections \(\{T^{\mu}_* T^{\mu}_\nu; \mu \in \Lambda^*\}\) are mutually commutative so that the \(C^*\)-algebras \(A_l, l \in \mathbb{N}\) are commutative. Thus we easily see the following lemma (cf. [Ma; Section 3]).

Lemma 2.1.

(i) \(A_l\) is finite dimensional and commutative.

(ii) \(A_l\) is naturally embedded into \(A_{l+1}\) so that \(A_\Lambda = \lim_{\longrightarrow} A_l\) is a commutative \(AF\)-algebra.

(iii) Each element of \(\mathcal{F}^l_k\) is a finite linear combination of elements of the form \(S^{\mu}_* a S^{\mu}_\nu, \mu, \nu \in \Lambda^k, a \in A_1\). Hence \(\mathcal{F}^l_k\) is finite dimensional.

(iv) There are two embeddings in \(\{\mathcal{F}^l_k\}_{k \leq l}\):

(iv-a) \(\iota_l: \mathcal{F}^l_k \subset \mathcal{F}^{l+1}_k\) through the embedding \(A_l \subset A_{l+1}\) and

(iv-b) \(\eta_k: \mathcal{F}^l_k \subset \mathcal{F}^{l+1}_k\) through the identity

\[
S^{\mu}_* a S^{\nu}_\nu = \sum_{j=1}^{n} S^{\mu}_j S^{\nu}_j a S^{\nu}_j S^{\nu}_j, \quad \mu, \nu \in \Lambda^k, a \in A_1.
\]

(v) Both \(\mathcal{F}^\infty_k = \lim_{l \to \infty} \mathcal{F}^l_k\) and \(\mathcal{F}^\infty_\Lambda = \lim_{k \to \infty} \mathcal{F}^\infty_k\) are \(AF\)-algebras.

In the preceding Hilbert space \(F_A\), the transformation \(e_\mu \to z^\mu e_\mu, \mu \in \Lambda^k, z \in \mathbb{T} = \{z \in \mathbb{C}; |z| = 1\}\) on each base \(e_\mu\) yields a unitary representation which leaves \(\mathcal{N}(F_A)\) invariant. Thus it gives rise to an action \(\alpha\) of \(\mathbb{T}\) on the \(C^*\)-algebra \(\mathcal{O}_A\). It is called the gauge action and satisfies \(\alpha_z(S_i) = zS_i, i = 1, 2, \ldots, n\).
Each element X of the *-subalgebra of \mathcal{O}_A algebraically generated by $S_\mu, \mu \in \Lambda^*$ is written as a finite sum

$$X = \sum_{|\nu| \geq 1} X_{-\nu} S_\nu^* + X_0 + \sum_{|\mu| \geq 1} S_\mu X_\mu$$

for some $X_{-\nu}, X_0, X_\mu \in \mathcal{T}_A^\infty$ because of the relation (*). The map $E(X) = \int_{z \in \mathcal{T}} \alpha_\tau(X) dz, X \in \mathcal{O}_A$ defines a projection of norm one onto the fixed point algebra \mathcal{O}_A^0 under α. We then have (cf. [Ma; Proposition 3.11])

Lemma 2.2. $\mathcal{T}_A^\infty = \mathcal{O}_A^0$.

We will next describe structure theorems for the C^*-algebra \mathcal{O}_A proved in [Ma].

Theorem A ([Ma; Theorem 4.9 and 5.2]). Let \mathcal{A} be a unital C^*-algebra. Suppose that there is a unital *-homomorphism π from A_A to \mathcal{A} and there are n partial isometries $s_1, \ldots, s_n \in \mathcal{A}$ satisfying the following relations

(a) $$\sum_{j=1}^n s_j s_j^* = 1, \quad s_\mu s_\nu = s_\nu s_\mu s_\mu, \quad \mu, \nu \in \Lambda^*$$

(b) $$s_\mu^* s_\mu = \pi(S_\mu^* S_\mu), \quad \mu \in \Lambda^*$$

where $s_\mu = s_{\mu_1} \cdots s_{\mu_k}, \mu = (\mu_1, \ldots, \mu_k)$. Then there exists a unital *-homomorphism $\tilde{\pi}$ from \mathcal{O}_A to \mathcal{A} such that $\tilde{\pi}(S_i) = s_i, i = 1, \ldots, n$ and its restriction to A_A coincides with π. In addition, if \mathcal{O}_A satisfy the condition (I_A) below, this extended *-homomorphism $\tilde{\pi}$ becomes injective whenever π is injective.

Let \mathfrak{D}_A be the C^*-algebra generated by $S_\mu S_\mu^*, \mu \in \Lambda^*$ which is isomorphic to the C^*-algebra $C(X_A)$ of all continuous functions on the space of the one-sided subshift X_A for A. Put

$$\phi_A(X) = \sum_{j=1}^n S_j X S_j^*, \quad X \in \mathfrak{D}_A$$

which corresponds to the shift σ on the one-sided space X_A of A.

Consider the following condition called (I_A) in [Ma].

(I_A): For any $l, k \in \mathbb{N}$ with $l \geq k$, there exists a projection q_k^l in \mathfrak{D}_A such that

(i) $q_k^l a \neq 0$ for any nonzero $a \in A_l$,

(ii) $q_k^l \phi_A^n(q_k^l) = 0$, $1 \leq m \leq k$.

Put
\[\lambda_A(X) = \sum_{j=1}^{n} S_j X S_j, \quad X \in A_A. \]

We call \(\lambda_A \) the adjacency operator on \(A_A \). It is said to be irreducible if there is no \(\lambda_A \)-invariant ideal in \(A_A \). In addition, it is said to be aperiodic, if for any \(l \in \mathbb{N} \), there exists \(N \in \mathbb{N} \) such that \(\lambda_A^N(p) \geq 1 \) for any minimal projection \(p \) in \(A_l \). We thus have

Theorem B ([Ma; Theorem 6.3 and Corollary 7.4]). If the \(C^* \)-algebra \(\mathcal{O}_A \) satisfy the condition \((I_A)\) and \(\lambda_A \) is irreducible, then \(\mathcal{O}_A \) is simple. In addition, if \(\lambda_A \) is aperiodic (or if \(\mathcal{F}_A^{\infty} \) is simple), \(\mathcal{O}_A \) is purely infinite.

We notice the following proposition.

Proposition C ([Ma; Proposition 5.8], cf. [CK; 2.17 Proposition]). Let \((A_1, \sigma)\) and \((A_2, \sigma)\) be subshifts such that both the associated \(C^* \)-algebras \(\mathcal{O}_{A_1} \) and \(\mathcal{O}_{A_2} \) satisfy the condition \((I_A)\). If the associated one-sided subshifts \((X_{A_1}, \sigma)\) and \((X_{A_2}, \sigma)\) are topologically conjugate, then there exists an isomorphism from \(\mathcal{O}_{A_1} \) onto \(\mathcal{O}_{A_2} \) such that \(\Phi \circ \alpha_i^1 = \alpha_i^2 \circ \Phi, z \in T \) where \(\alpha_i \) is the gauge action on \(\mathcal{O}_{A_i}, i = 1, 2 \) respectively.

3. \(K_0(\mathcal{F}_A^{\infty}) \)

In this section, we will compute \(K_0 \)-group for the AF-algebra \(\mathcal{F}_A^{\infty} \).

Let \(m(l) \) be the dimension of the commutative finite dimensional \(C^* \)-algebra \(A_l, l \in \mathbb{N} \). Take a unique basis \(\{E_l^1, \ldots, E_l^{m(l)}\} \) of \(A_l \) as vector space consisting of minimal projections in \(A_l \) with orthogonal ranges so that \(\sum_{h=1}^{m(l)} E_l^h = 1 \).

We fix \(k \leq l \) for a while.

Lemma 3.1. \(\sum_{\mu \in A^k} S^*_\mu S_\mu \geq 1 \)

Proof. For any \(\nu \in A^e \), there is a block \(\mu \in A^k \) such that \(\mu \nu \in A^e \) and hence \(T^*_\mu T_\mu e_\nu = e_\nu \). Thus one has \(\sum_{\mu \in A^k} T^*_\mu T_\mu \geq 1 \) on the Hilbert space \(F_A \).

Hence we have

Lemma 3.2. For \(i = 1, 2, \ldots, m(l) \), there exists \(\mu \in A^k \) such that \(S_\mu E_i^l S^*_\mu \neq 0 \).

Let \(\mathcal{F}_k^{l,i} \) be the \(C^* \)-subalgebra of \(\mathcal{F}_k^l \) generated by elements \(S_\mu E_i^l S^*_\nu, \mu, \nu \in A^k \). Since \(\mathcal{F}_k^{l,i} \) is isomorphic to a full matrix algebra \(M_{m(k,l,i)}(\mathbb{C}) \), one has
\[F_k^i \cong M_{n(k,l,1)}(C) \oplus \cdots \oplus M_{n(k,l,m(l))}(C). \]

Put
\[\Lambda_i^{k,l} = \{ \mu \in \Lambda | E_i^j \leq S^\mu S^\mu \}. \]

Lemma 3.2 implies \(\Lambda_i^{k,l} \neq \emptyset \), \(i = 1, 2, \ldots, m(l) \) and \(n(k,l,i) = |\Lambda_i^{k,l}| \) the cardinal number of \(\Lambda_i^{k,l} \).

Corollary 3.3. \(K_0(F_k^i) \cong K_0(A_l) \cong \mathbb{Z}^{m(l)}. \)

The above isomorphism between \(K_0(F_k^i) \) and \(K_0(A_l) \) is given by the map
\[\phi_k^i : [S^\mu E_i^j S^\mu] \in K_0(F_k^i) \rightarrow [E_i^j] \in K_0(A_l), \quad i = 1, 2, \ldots, m(l), \quad \mu \in \Lambda_i^{k,l}. \]

We next study \(K_0(F_k^\infty) \). We denote by \(\iota_l \) the inclusion from \(A_l \) into \(A_{l+1} \). It yields the inclusion from \(F_k^i \) into \(F_k^{i+1} \) which is also denoted by \(\iota_l \). One write \(E_i^j \) as
\[E_i^j = \sum_{h=1}^{m(l+1)} \iota_l(i,h)E_{i+1}^h \]
for some \(\{0, 1\} \)-valued map \(\iota_l(i,h), i = 1, 2, \ldots, m(l), h = 1, 2, \ldots, m(l+1) \).

Lemma 3.4. The diagram
\[
\begin{array}{ccc}
K_0(F_k^i) & \xrightarrow{\iota_*} & K_0(F_k^{i+1}) \\
\phi_k^i \downarrow & & \downarrow \phi_k^{i+1} \\
K_0(A_l) & \xrightarrow{\iota_l} & K_0(A_{l+1})
\end{array}
\]
is commutative.

Proof. If \(S^\mu E_i^j S^\mu \neq 0 \) and \(\iota_l(i,h) \neq 0 \), then \(S^\mu E_{i+1}^h S^\mu \neq 0 \). Namely \(\Lambda_i^{k,l} \subset \Lambda_{i+1}^{k,l} \) if \(\iota_l(i,j) \neq 0 \). Hence the commutativity of the above diagram is clear.

Thus one obtains an isomorphism \(\phi_k = \lim \phi_k^i \) from \(\lim K_0(F_k^i) = K_0(F_k^\infty) \) onto \(\lim K_0(A_l) = K_0(A_{\infty}) \). Namely, one has

Proposition 3.5. \(K_0(F_k^\infty) \cong K_0(A_{\infty}) \cong \lim (\mathbb{Z}^{m(l)}, \iota_l) \) where the inclusion \(\iota_l \) of \(\mathbb{Z}^{m(l)} \) into \(\mathbb{Z}^{m(l+1)} \) is given by
\[[E_i^l] = \sum_{h=1}^{m(l+1)} t_l(i, h)[E_{l+1}^h], \quad i = 1, 2, \ldots, m(l) \]

and

\[\mathbb{Z}^{m(l)} = \mathbb{Z}[E^1_i] \oplus \cdots \oplus \mathbb{Z}[E^{m(l)}_i]. \]

We denote by \(Z_A \) the above abelian group \(\lim_{\rightarrow} Z_m \) and so that

\[Z_A \cong K_0(\mathcal{F}_k^\infty) \cong K_0(A), \quad k \in \mathbb{N}. \]

We next study \(K_0(\mathcal{F}_k^\infty) \) as the inductive limit \(\lim_{\rightarrow} K_0(\mathcal{F}_k^l) \).

The embedding \(\eta_k \) of \(\mathcal{F}_k^\infty \) into \(\mathcal{F}_{k+1}^\infty \) is given, through the embedding of \(\mathcal{F}_k^l \) into \(\mathcal{F}_{k+1}^l \), by the identity

\[S_\mu E_i^l S_\nu^* = \sum_{j=1}^{n} S_{\mu ij}^* E_i^l S_j, \quad \mu, \nu \in A^k, \quad i = 1, 2, \ldots, m(l) \]

so that the induced homomorphism \(\eta_{k+} \) from \(K_0(\mathcal{F}_k^\infty) \) to \(K_0(\mathcal{F}_{k+1}^\infty) \) is given by

\[\eta_{k+}[S_\mu E_i^l S_\nu^*] = \sum_{j=1}^{n} [S_{\mu ij}^* E_i^l S_j], \quad \mu \in A^{k}, \quad i = 1, 2, \ldots, m(l). \]

As the projection \(S_j^* E_i^l S_j \) belongs to \(A_{l+1} \), it can be written as

\[S_j^* E_i^l S_j = \sum_{h=1}^{m(l+1)} A_l(i, j, h) E_{l+1}^h \]

for some \(\{0, 1\} \)-valued map \(A_l(i, j, h), \quad i = 1, 2, \ldots, m(l), \quad j = 1, 2, \ldots, n, \quad h = 1, 2, \ldots, m(l+1) \). Hence one has

\[S_\mu E_i^l S_\nu^* = \sum_{j=1}^{n} \sum_{h=1}^{m(l+1)} A_l(i, j, h) S_{\mu ij}^* E_{l+1}^h S_{\nu j}, \quad \mu \in A^k, \quad i = 1, 2, \ldots, m(l). \]

Lemma 3.6. If \(S_\mu E_i^l S_\nu^* \neq 0 \), one has \(S_{\mu ij}^* E_{l+1}^h S_{\nu j}^* \neq 0 \) for \(A_l(i, j, h) \neq 0 \).

Proof. Since \(A_l(i, j, h) \neq 0 \), one has \(S_j^* E_i^l S_j \geq E_{l+1}^h \). We also have \(S_j^* a_\mu S_j \geq S_j^* E_i^l S_j \) because \(S_\mu E_i^l S_\nu^* \neq 0 \). Hence we obtain \(S_j^* a_\mu S_j \geq E_{l+1}^h \) which implies \(S_{\mu ij}^* E_{l+1}^h S_{\nu j}^* \neq 0 \).
Lemma 3.7. If $\Lambda_l(i,j_1,h) \neq 0$ and $\Lambda_l(i,j_2,h) \neq 0$, one has for $\mu \in A^k$

$$[S_{pj_1}E^h_{l+1}S^*_{pj_1}] = [S_{pj_2}E^h_{l+1}S^*_{pj_2}] \quad \text{in } K_0(\mathcal{F}_{k+1}^{l+1}).$$

Put

$$A_l(i,h) = \sum_{j=1}^n A_l(i,j,h) \in \mathbb{Z}_+, \quad i = 1,2,\ldots,m(l), \quad h = 1,2,\ldots,m(l+1).$$

We then define a homomorphism λ_l from $K_0(A_l)$ to $K_0(A_{l+1})$ by

$$\lambda_l([E^l]) = \sum_{h=1}^{m(l+1)} A_l(i,h)[E^h_{l+1}]$$

where

$$K_0(A_l) = \sum_{i=1}^{m(l)} \oplus \mathbb{Z}[E^l_i], \quad K_0(A_{l+1}) = \sum_{h=1}^{m(l+1)} \oplus \mathbb{Z}[E^h_{l+1}].$$

We indeed have

Lemma 3.8. $\lambda_l([P]) = \sum_{j=1}^n [S^j_PS]$ for a projection P in A_l.

Hence one has

Lemma 3.9. The diagram

$$\begin{array}{ccc}
K_0(A_l) & \xrightarrow{\lambda_l} & K_0(A_{l+1}) \\
\downarrow & & \downarrow \lambda_{l+1} \\
K_0(A_{l+1}) & \xrightarrow{\lambda_{l+1}} & K_0(A_{l+2})
\end{array}$$

is commutative.

Since $K_0(A_A) = \lim K_0(A_l)$, one can define a homomorphism $\lambda_A = \lambda_l$ on $K_0(A_A)$ induced by the sequence of homomorphisms $\lambda_l : K_0(A_l) \rightarrow K_0(A_{l+1}), l \in \mathbb{N}$. Namely, we obtain a homomorphism λ_A on $Z_A(\cong K_0(A_A) \cong K_0(\mathcal{F}_k^\infty))$. We remark that it is exactly regarded as the induced homomorphism on $K_0(A_A)$ from the adjancy operator λ_A defined in the previous section. Hence we use the same notation λ_A without confusion.
Lemma 3.10. The diagram
\[K_0(\mathcal{F}_k^\infty) \xrightarrow{\eta_k} K_0(\mathcal{F}_{k+1}^\infty) \]
\[\Phi_k \downarrow \quad \Phi_{k+1} \]
\[K_0(A_A) \xrightarrow{\lambda_A} K_0(A_A) \]
is commutative.

Proof. By Lemma 3.7, it follows that
\[\Phi_{k+1} \circ \eta_k \cdot ([S_{j,i}E_l^jS_{l,j}^*]) = \Phi_{k+1} \left(\sum_{j=1}^{n} \left(S_{j,i} \left(\sum_{h=1}^{m(l+1)} A_t(i,j,h)E_{i+1}^j \right) \right) \right) \]
\[= \sum_{h=1}^{m(l+1)} \Phi_{k+1} \left(\sum_{j=1}^{n} A_t(i,j,h)[S_{j,i}E_{i+1}^jS_{l,j}^*] \right) \]
\[= \sum_{h=1}^{m(l+1)} A_t(i,h)[E_{i+1}^j] = \lambda_A[E_{i+1}^j] = \lambda_A \circ \Phi_k([S_{j,i}E_l^jS_{l,j}^*]). \]

Therefore we conclude

Theorem 3.11. \(K_0(\mathcal{F}_A^\infty) = \lim \rightarrow (Z_A, \lambda_A). \)

Corollary 3.12. If \(A \) is a sofic subshift, \(K_0(\mathcal{F}_A^\infty) = \lim \rightarrow (Z^{m(l)}, \lambda_l). \)

Proof. Let \(j_t \) be the canonical inclusion of \(Z^{m(l)}(= K_0(A_l)) \) into \(Z_A(= K_0(A_A)) \), which is induced by the natural inclusion of \(A_l \) into \(A_A \). Since the following diagram
\[Z_A \xrightarrow{\lambda_A} Z_A \]
\[j_t \downarrow \quad j_{l+1} \downarrow \]
\[Z^{m(l)} \xrightarrow{\lambda_l} Z^{m(l+1)} \]
is commutative, there is a homomorphism \(\pi \) from \(\lim \rightarrow (Z^{m(l)}, \lambda_l) \) to \(\lim \rightarrow (Z_A, \lambda_A) \). It is easy to see that it is indeed a surjective isomorphism because \(Z_A = Z^{m(l)} \) for some large enough \(l \) by [Ma; Proposition 8.2]

Before ending this section, we define the dimension group \(DG(A) \) for a general subshift \((A, \sigma) \) as the dimension group for the AF-algebra \(\mathcal{F}_A^\infty \), namely,
The notion of the dimension group for a topological Markov shift \((A, \sigma)\) determined by a matrix \(A\) with entries in \(\{0, 1\}\) has been introduced by W. Krieger in [Kr1] and [Kr2]. It is realized as the dimension group for the canonical AF-algebra \(\mathcal{F}_A\) appeared inside of the Cuntz-Krieger algebra \(\mathcal{O}_A\) associated with the topological Markov shift \((A, \sigma)\). If we restrict our construction of \(C^*\)-algebras \(\mathcal{O}_A\) and \(\mathcal{F}_A\) to a topological Markov shift \((X, \sigma)\), they coincide with the Cuntz-Krieger algebra \(\mathcal{O}_A\) and the canonical AF-algebra \(\mathcal{F}_A\) respectively. Hence our above definition of the dimension group for general subshifts is a generalization of the case of topological Markov shifts. By Proposition C, we see

Proposition 3.13. The dimension group \(DG(A)\) for subshift \((A, \sigma)\) is an invariant under topological conjugacy for the associated one-sided subshift \((X, \sigma)\) among the class of all subshifts such that the associated \(C^*\)-algebra \(\mathcal{O}_A\) satisfies the condition \((I_\alpha)\).

4. \(K_0(\mathcal{O}_A)\).

We will, in this section, present K-theory formula for the \(C^*\)-algebra \(\mathcal{O}_A\). We denote by \(\mathcal{K}\) the \(C^*\)-algebra of all compact operators on a separable infinite dimensional Hilbert space. We will notice that the crossed product \(\mathcal{O}_A \times_{\alpha} T\) of \(\mathcal{O}_A\) by the gauge action \(\alpha\) of \(T\) is stably isomorphic to the associated AF-algebra \(\mathcal{F}_A^\infty\). Since \(\mathcal{O}_A\) is stably isomorphic to the crossed product \((\mathcal{O}_A \times_{\alpha} T) \times_{\hat{\alpha}} Z\) of \(\mathcal{O}_A \times_{\alpha} T\) by the dual action \(\hat{\alpha}\), it will be possible to present K-theory formula for the \(C^*\)-algebra \(\mathcal{O}_A\) by using the previous K-theory formula for the AF-algebra \(\mathcal{F}_A^\infty\) and by applying the Pimsner-Voiculescu’s six-term exact sequence of the K-theory for the crossed products by \(Z\) ([PV]).

We will first see that the crossed product \(\mathcal{O}_A \times_{\alpha} T\) is stably isomorphic to the AF-algebra \(\mathcal{F}_A^\infty\).

Let \(p_0 : T \to \mathcal{O}_A\) be the constant function whose value everywhere is the unit 1 of \(\mathcal{O}_A\). Hence \(p_0\) belongs to the algebra \(L^1(T, \mathcal{O}_A)\) and hence to the crossed product \(\mathcal{O}_A \times_{\alpha} T\). By [Ro], the fixed point algebra \(\mathcal{O}_A^{\alpha}\) is canonically isomorphic to the algebra \(p_0(\mathcal{O}_A \times_{\alpha} T)p_0\). The isomorphism between them is given by the correspondence \(x \in \mathcal{O}_A^{\alpha} \to \hat{x} \in L^1(T, \mathcal{O}_A) \subset \mathcal{O}_A \times_{\alpha} T\) where the function \(\hat{x}\) is defined by \(\hat{x}(t) = x, t \in T\).

Lemma 4.1. The projection \(p_0\) is full in \(\mathcal{O}_A \times_{\alpha} T\).
Proof. Suppose that there exists a nondegenerate representation \(\pi \) of \(\mathcal{O}_A \times_\alpha \mathbb{T} \) such that \(\pi(p_0) = 0 \). For any element \(S \) in \(\mathcal{O}_A \), put \(\hat{S}(z) = S, z \in \mathbb{T} \), which belongs to \(L^1(\mathbb{T}, \mathcal{O}_A) \). We denote by \(* \) the \(\alpha \)-twisted convolution product in \(L^1(\mathbb{T}, \mathcal{O}_A) \) (the usual product as elements of \(\mathcal{O}_A \times_\alpha \mathbb{T} \)). It then follows that \(\hat{S} \ast p_0 = \hat{S} \). Hence \(\hat{S} \) belongs to the ideal \(\ker(\pi) \) in \(\mathcal{O}_A \times_\alpha \mathbb{T} \). For \(S, T \in \mathcal{O}_A \), one has \((\hat{S} \ast \hat{T})(z) = S\alpha(z)(T^*) \) by using the identity \((\hat{T})(z) = \alpha(z)(T^*) \). For any \(X \in \mathcal{O}_A \) and \(\mu \in \Lambda^k \), we have

\[
(XS^*_\mu \ast \hat{S}^*_\mu)(z) = z^{-k}XS^*_\mu S^*_\mu
\]

and hence

\[
\left(\sum_{|\mu|=k} XS^*_\mu \ast \hat{S}^*_\mu \right)(z) = z^{-k}X, \quad k \in \mathbb{N}.
\]

We denote by \(B_k \) the commutative \(C^* \)-algebra generated by \(a_\mu, \mu \in \Lambda^k \). Let \(F_i, i = 1, 2, \ldots, n(k) \) be the set of all minimal projections in \(B_k \). Since one sees for \(\mu \in \Lambda^k \),

\[
(XF_i^*S^*_\mu \ast \hat{S}^*_\mu)(z) = z^kXF_i^*,
\]

one has

\[
\left(\sum_{i=1}^{n(k)} XF_i^*S^*_\mu \ast \hat{S}^*_\mu \right)(z) = z^kX, \quad k \in \mathbb{N}.
\]

Hence any \(\mathcal{O}_A \)-valued function of the form

\[
z \in \mathbb{T} \rightarrow z^kX \in \mathcal{O}_A, \quad k \in \mathbb{Z}, \quad X \in \mathcal{O}_A
\]

is contained in the ideal \(\ker(\pi) \). Thus we conclude \(\pi \equiv 0 \) on \(\mathcal{O}_A \times_\alpha \mathbb{T} \). This implies that \(p_0 \) is a full projection in \(\mathcal{O}_A \times_\alpha \mathbb{T} \).

Since the AF-algebra \(\mathcal{F}_A^\infty \) is realized as the fixed point algebra \(\mathcal{O}_A^\alpha \), one sees, by [Bro; Corollary 2.6]

Corollary 4.2. \(\mathcal{O}_A \times_\alpha \mathbb{T} \) is stably isomorphic to \(\mathcal{F}_A^\infty \).

The Pimsner-Voiculescu’s six term exact sequence of the K-theory for the crossed product \((\mathcal{O}_A \times_\alpha \mathbb{T}) \times_\alpha \mathbb{Z} \) says that the following sequence becomes exact:
Since the inclusion \((\mathcal{O}_A \times_\alpha T) \) follows from Lemma 4.1 and [Ri; Proposition 2.4], the next lemma follows from Lemma 4.1 and [Ri; Proposition 2.4].

Lemma 4.3.

(i) \(K_0(\mathcal{O}_A) \cong K_0(\mathcal{O}_A \times_\alpha T)/(\text{id} - \hat{\alpha}_e^{-1})K_0(\mathcal{O}_A \times_\alpha T) \)

(ii) \(K_1(\mathcal{O}_A) \cong K_0(\mathcal{O}_A \times_\alpha T)/\text{Ker}(\text{id} - \hat{\alpha}_e^{-1}) \)

We will next study the group \(K_0(\mathcal{O}_A \times_\alpha T) \) and the action \(\hat{\alpha}_e \) on it. The next lemma follows from Lemma 4.1 and [Ri; Proposition 2.4].

Lemma 4.4. The inclusion \(\iota: p_0(\mathcal{O}_A \times_\alpha T)p_0 \to \mathcal{O}_A \times_\alpha T \) induces an isomorphism \(\iota_*: K_0(p_0(\mathcal{O}_A \times_\alpha T)p_0) \to K_0(\mathcal{O}_A \times_\alpha T) \) on \(K \)-theory.

Under the identification, \(\mathcal{F}_A^\infty = \mathcal{O}_A^\alpha = p_0(\mathcal{O}_A \times_\alpha T)p_0 \), we define an isomorphism \(\beta \) on \(K_0(\mathcal{F}_A^\infty) \) as \(\beta = \iota_*^{-1} \circ \hat{\alpha}_e \circ \iota_* \). Namely the diagram

\[
\begin{array}{ccc}
K_0(\mathcal{O}_A \times_\alpha T) & \xrightarrow{\alpha_*} & K_0(\mathcal{O}_A \times_\alpha T) \\
\downarrow \iota_* & & \downarrow \iota_* \\
K_0(\mathcal{F}_A^\infty) & \xrightarrow{\beta} & K_0(\mathcal{F}_A^\infty)
\end{array}
\]

is commutative.

The following lemma is a key.

Lemma 4.5. For a projection \(P \) in \(\mathcal{F}_A^\infty \) and a partial isometry \(S \) in \(\mathcal{O}_A \) with \(\alpha_\circ (S) = \alpha(zT) = \alpha(S) = zS, z \in T \) and \(P \leq S^*S \), we have \(\beta[P] = [SPS^*] \) in \(K_0(\mathcal{F}_A^\infty) \).

Proof. Let \(j: \mathcal{F}_A^\infty \to p_0(\mathcal{O}_A \times_\alpha T)p_0 \) be the canonical isomorphism and \(\iota: p_0(\mathcal{O}_A \times_\alpha T)p_0 \to \mathcal{O}_A \times_\alpha T \) the inclusion. For \(P \in \mathcal{F}_A^\infty \), we denote by \(\tilde{P}(z) = P, z \in T \). As \(SPS^* \in \mathcal{F}_A^\infty \), we similarly denote by \(\tilde{SPS}^* = \iota \circ j(SP) \in L^1(T, \mathcal{O}_A) \) the constant \(\mathcal{F}^\infty \)-valued function. It suffices to show \([SPS^*] = \alpha(\tilde{P}) \) in \(K_0(\mathcal{O}_A \times_\alpha T) \). Let \(\hat{S} \in L^1(T, \mathcal{O}_A) \) be the constant \(S \)-valued function : \(\hat{S}(z) = S, z \in T \). We denote by \(* \) the twisted convolution product (usual product) in \(\mathcal{O}_A \times_\alpha T \). It then follows that \((\hat{S} * \tilde{P})(z) = SP, z \in T \) and \((\hat{S} * \tilde{P} * \hat{S})(z) = z^{-1}SPS^*, z \in T \). Thus we have \(\alpha(\tilde{P} * \hat{S})(z) = z^{-1}SPS^*, z \in T \). Since the inclusion \(\alpha(\iota_* j: \mathcal{F}_A^\infty = \mathcal{O}_A \times_\alpha T \) is a homomorphism, one has \(\tilde{P} \leq \hat{S}^* \hat{S} \) because \(P \leq S^*S \). Thus one sees...
\[
\left[\hat{S} \ast \hat{P} \ast \hat{S}^* \right] = \left[\hat{P} \right] \quad \text{in} \quad K_0(\mathcal{O}_A \times \alpha \times T)
\]
so that we conclude
\[
\hat{\alpha}_* \left[\hat{P} \right] = \left[SPS^* \right] \quad \text{in} \quad K_0(\mathcal{O}_A \times \alpha \times T) \quad \text{and} \quad \beta \left[P \right] = \left[SPS^* \right] \quad \text{in} \quad K_0(\mathcal{F}_A^\infty).
\]

Lemma 4.6. For a nonzero projection \(S_\mu E_i^j S_\nu^* \) in \(\mathcal{F}_k^l \) with \(\mu = j\nu \in \Lambda^k \), one has \(\beta^{-1} \left[S_\mu E_i^j S_\nu^* \right] = \left[S_i E_j^k S_\nu^* \right] \) in \(K_0(\mathcal{F}_k^l) \).

Proof. Since \(S_\mu E_i^j S_\nu^* \neq 0 \), we see that \(S_\mu E_i^j S_\nu^* \leq S_\nu^* S_j \) because of the identity \(S_\nu^* S_j S_i E_i^j S_\nu^* = S_\nu^* a_\mu E_i^j S_\nu^* = S_i E_j^k S_\nu^* \). Hence we have the conclusion by the previous lemma.

Corollary 4.7. The homomorphism \(\beta^{-1} : K_0(\mathcal{F}_A^\infty) \to K_0(\mathcal{F}_A^\infty) \) corresponds to the shift \(\sigma \) in \(\lim K_0(\mathcal{F}_k^l) = \lim Z_A \). Namely, if \(x = (x_1, x_2, \ldots) \) is a sequence representing an element of \(\lim K_0(\mathcal{F}_k^l) \), then \(\beta^{-1}x \) is represented by \(\sigma(x) = (x_2, x_3, \ldots) \).

Since the diagram
\[
\begin{array}{ccc}
K_0(\mathcal{F}_A^\infty) & \xrightarrow{id - \beta^{-1}} & K_0(\mathcal{F}_A^\infty) \\
\phi \downarrow & & \downarrow \phi \\
\lim Z_A & \xrightarrow{id - \sigma} & \lim Z_A
\end{array}
\]
is commutative, one has

Corollary 4.8.

(i) \(K_0(\mathcal{O}_A) \cong \lim Z_A / (id - \sigma) \lim Z_A \)

(ii) \(K_1(\mathcal{O}_A) \cong \ker (id - \sigma) \) on \(\lim Z_A \).

Let \(j \) be the homomorphism from \(K_0(\mathcal{F}_0^\infty) = Z_A \) to \(K_0(\mathcal{F}_A^\infty) = \lim Z_A \) induced by the inclusion \(: \mathcal{F}_0^\infty \hookrightarrow \mathcal{F}_A^\infty \).

As in the proof of [C2; 3.1 Proposition], we see that every element in \(\lim Z_A \) is equivalent modulo \((id - \sigma) \lim Z_A \) to an element in \(Z_A \). Since the diagram
\[
\begin{array}{ccc}
Z_A & \xrightarrow{id - \lambda_A} & Z_A \\
j \downarrow & & \downarrow j \\
\lim Z_A & \xrightarrow{id - \sigma} & \lim Z_A
\end{array}
\]
is commutative and \(j(x) \in (id - \sigma) \lim Z_A, x \in Z_A \) implies \(x \in (id - \lambda_A)Z_A \), we then have
Similarly as in the same argument in [C2; 3.1.Proposition], we have
\[K_1(\mathcal{O}_A) \cong \text{Ker} \ (\text{id} - \lambda_A) \text{ on } \mathbb{Z}. \]

Thus we present the K-theory formula for the \(C^* \)-algebra \(\mathcal{O}_A \)

Theorem 4.9.

(i) \(K_0(\mathcal{O}_A) \cong \mathbb{Z}/(\text{id} - \lambda_A) \mathbb{Z} \cong \lim_{\rightarrow} (\mathbb{Z}^{m(l+1)}/(t_l - \lambda_l) \mathbb{Z}^{m(l)}) \)

(ii) \(K_1(\mathcal{O}_A) \cong \text{Ker} \ (\text{id} - \lambda_A) \text{ in } \mathbb{Z} \cong \lim_{\rightarrow} \text{Ker} \ (t_l - \lambda_l) \text{ in } \mathbb{Z}^{m(l)} \)

where
\[Z_A = \lim_{\rightarrow} (Z^{m(l)}, t_l), \quad m(l) = \dim A_l \]

and
\[\lambda_A = \lim_{\rightarrow} \lambda_l, \quad \lambda_l : Z^{m(l)} = K_0(A_l) \to Z^{m(l+1)} = K_0(A_{l+1}) \]

is defined by
\[\lambda_l([P]) = \sum_{j=1}^{n} [S_j^* P S_j] \quad \text{for a projection } P \text{ in } A_l. \]

More precisely, for the minimal projections \(E_l^1, \ldots, E_l^{m(l)} \) of \(A_l \) with \(\sum_{i=1}^{m(l)} E_i = 1 \) and the canonical basis \(e_l^1, \ldots, e_l^{m(l)} \) of \(Z^{m(l)} \), the map \([E_l^1] \to e_l^1\) extends to an isomorphism of \(K_0(\mathcal{O}_A) \) onto \(\lim_{\rightarrow} (Z^{m(l+1)}/(t_l - \lambda_l) Z^{m(l)}) \).

Before ending this section, we note the following lemma.

Lemma 4.10. The \(C^* \)-algebra \(\mathcal{O}_A \) is nuclear and satisfies the Universal Coefficient Theorem in the sense of Rosenberg and Schochet.

Proof. Since the double crossed product \((\mathcal{O}_A \times_\alpha T) \times_\alpha \mathbb{Z} \) is stably isomorphic to \(\mathcal{O}_A \), the assertion is immediate from Corollary 4.2 (cf. [RS], [Bl; p. 287]).

Hence, as in Theorem B, one sees by [Ki] and [Ph]

Corollary 4.11. If the \(C^* \)-algebra \(\mathcal{O}_A \) satisfies the condition \((I_A)\) and the adjency operator \(\lambda_A \) is aperiodic, then \(\mathcal{O}_A \) is a separable nuclear purely infinite simple \(C^* \)-algebra satisfying the Universal Coefficient Theorem. Thus, these \(C^* \)-algebras are completely classified by their own K-theory up to isomorphism.
5. Sofic subshifts and examples.

There is a class of subshifts called sofic subshifts. It is truly wider, up to conjugate, than the class of subshifts of finite type and hence that of topological Markov shifts. Hence the C^*-algebras associated with sofic subshifts which are not conjugate to topological Markov shifts can not be dealt with within the Cuntz-Krieger’s approach. For a subshift (Λ, σ) and words $\mu, \nu \in \Lambda^*$, we write $\mu \sim \nu$ if

$$\{ \gamma \in \Lambda^* | \mu \gamma \in \Lambda^* \} = \{ \gamma \in \Lambda^* | \nu \gamma \in \Lambda^* \}. $$

If the cardinality of the equivalence classes Λ^*/\sim is finite, the subshift (Λ, σ) is said to be sofic (cf. [DGS], [W]). Hence a subshift (Λ, σ) is sofic if and only if the commutative C^*-subalgebra A_Λ of \mathcal{O}_Λ is finite dimensional (cf. [Ma; Proposition 8.2]).

Suppose that a subshift (Λ, σ) is sofic. Put $N = \dim A_\Lambda < \infty$. Hence the adjacency operator λ_Λ on A_Λ is realized as an $N \times N$ matrix with entries in non-negative integers. We then notice that λ_Λ is irreducible (resp. aperiodic) in the sense of Section 2 if and only if it is irreducible (resp. aperiodic) in the sense of non-negative matrix.

It is well-known that if λ_Λ is aperiodic, the AF-algebra $\mathcal{F}_\Lambda^\infty$ is simple and has a unique tracial state τ_Λ (cf. [Bra], [Ef], [Ev2]). Thus we can summarize the previous discussions on K-theory for the C^*-algebras \mathcal{O}_Λ and $\mathcal{F}_\Lambda^\infty$ as in the following way.

Proposition 5.1. Suppose that a subshift (Λ, σ) is sofic. If the C^*-algebra \mathcal{O}_Λ satisfies the condition (I_Λ) and the adjacency operator λ_Λ is aperiodic, then we have

(i) \mathcal{O}_Λ is simple and purely infinite.

(ii) $K_0(\mathcal{O}_\Lambda) \cong \mathbb{Z}^N/(1-\lambda_\Lambda)\mathbb{Z}^N$ and $K_1(\mathcal{O}_\Lambda) \cong \text{Ker} (1-\lambda_\Lambda)$ in \mathbb{Z}^N.

(iii) $DG(\Lambda) \cong \lim\text{sup} (\mathbb{Z}^N, \lambda_\Lambda) \cong \tau_\Lambda(\mathcal{F}_\Lambda^\infty)$ in \mathbb{R}.

where τ_Λ is a unique tracial state on $\mathcal{F}_\Lambda^\infty$.

Thus by Corollary 4.11 we see that if a subshift (Λ, σ) is sofic, the C^*-algebra \mathcal{O}_Λ is stably isomorphic to some Cuntz-Krieger algebra $\mathcal{O}_{\lambda_\Lambda}$ associated with a matrix λ_Λ with entries in non-negative integers.

We present examples of the C^*-algebras associated with sofic subshifts.

Example 1 (Cuntz algebras \mathcal{O}_n, [C], [C2], [C3]).

Let (Λ_n, σ) be the full shift over $\Sigma = \{1, 2, \ldots, n\}$. The C^*-algebra \mathcal{O}_{Λ_n} associated with it is the Cuntz algebra \mathcal{O}_n of order n. Then the commutative C^*-algebras Λ_l are reduced to the scalar \mathbb{C} so that $m(l) = 1, l \in \mathbb{N}$. It is easy
to see that the adjancy operator λ_A is the n-multiplication on $Z = K_0(A_l) = K_0(C)$. Hence we see

$$K_0(\mathcal{F}_A) = Z[\frac{1}{n}], \quad K_0(\mathcal{C}_n) = Z/(1-n)Z, \quad K_1(\mathcal{C}_n) = 0.$$

Example 2 (Cuntz-Krieger algebras C_A, [CK], [C2], [C3]).

Let (A_A, \mathcal{O}) be the topological Markov shift determined by an $n \times n$-matrix A with $\{0,1\}$-entries. The C^*-algebra \mathcal{O}_A associated with it is the Cuntz-Krieger algebra \mathcal{O}_A. Suppose that A is an irreducible but not permutation matrix with rank n. Hence one sees that $A_l^* A_l C_S^1 S_l^* \in Z^{n \times n}$; $K_0(\mathcal{O}_A) = \text{Ker}(1-A^l)$ in Z^n. Hence we see

$$K_0(\mathcal{F}_A) = \lim_{\rightarrow} Z^n, \quad K_0(\mathcal{O}_A) = Z^n/(1-A^l)Z^n,$$

$$K_1(\mathcal{O}_A) = \text{Ker}(1-A^l) \text{ in } Z^n.$$

Example 3.

Suppose $\Sigma = \{1,2\}$. Let Y be the subshift in Σ^Z defined by the condition that all blocks of 2’s which have maximal length have even length, which is called the even shift (cf. [DGS; p. 251]). It is a sofic subshift but not conjugate to a topological Markov shift. One easily sees for $\mu = (\mu_1, \ldots, \mu_k) \in Y^*$

$$S_{\mu}^* S_{\mu} = \begin{cases} 1 & \text{if } \mu = (2, \ldots, 2), \\ S_1^* S_1 & \text{if } \mu = (*, \ldots, *, 1) \text{ or } \mu = (*, \ldots, *, 1, 2, \ldots, 2) \text{ even} \\ S_2^* S_1^* S_1 S_2 & \text{if } \mu = (*, \ldots, *, 1, 2, \ldots, 2). \end{cases}$$

Put

$$P_1 = S_1^* S_1 - P_2, \quad P_2 = S_1^* S_1 \cdot S_2^* S_1 S_2 \quad \text{and} \quad P_3 = S_2^* S_1^* S_1 S_2 - P_2$$

so that one has $P_1 + P_2 + P_3 = 1$. Hence one sees

$$A_l = A_Y = C P_1 \oplus C P_2 \oplus C P_3, \quad l \geq 2$$

and hence $m(l) = 3, l \geq 2$. This means that

$$Z_Y = K_0(A_Y) = Z[P_1] \oplus Z[P_2] \oplus Z[P_3] \cong Z^3.$$
It is easy to see that the adjacency operator $\lambda_A (= \lambda_I)$ is the homomorphism on \mathbb{Z}^3 given by the matrix
\[
\begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}.
\]
Thus we have
\[
K_0(\mathcal{F}_Y) \cong \lim_{\rightarrow} \left(\mathbb{Z}^3, \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \right) \cong \mathbb{Z} \oplus \mathbb{Z} + \frac{1 + \sqrt{5}}{2} \mathbb{Z}
\text{ in } \mathbb{R} \oplus \mathbb{R},
\]
\[
K_0(\mathcal{O}_Y) \cong \left(1 - \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \right) \mathbb{Z}^3 \cong \mathbb{Z},
\]
\[
K_1(\mathcal{O}_Y) \cong \text{Ker} \left(1 - \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \right) \text{ in } \mathbb{Z}^3 \cong \mathbb{Z}.
\]

Other concrete examples which are not sofic subshifts will be dealt with in some papers (cf. [KMW]).

REFERENCES

K-THEORY FOR C^*-ALGEBRAS ASSOCIATED WITH SUBSHIFTS

