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THE CHERN-EULER NUMBER OF CIRCLE BUNDLE
VIA SINGULARITY THEORY

M.E© . KAZARIAN*

Abstract.

Some formulas representing the Chern-Euler class of circle bundle over a closed surface in terms
of global singularities of restrictions of a generic function to the fibers are given. These formulas
provide new invariants of curves in Euclidean and projective two-spaces.

1. Main results.

Let c � R2 be a smooth closed convex curve. We associate with this curve
the family of functions on the curve fq�x� � jjqÿ xjj2, x 2 c, q 2 R2, para-
meterized by points of the plane R2. The differential-geometric invariants of
c can be expressed in terms of invariants of this family of functions. For ex-
ample, the curvature circles touching the curve at points of local minimum
of curvature and having no other points of intersection with c correspond to
the points q 2 R2 for which the function fq gets its global minimum at a de-
generate critical point of multiplicity 3. The circles lying inside c and having
3 points of tangency with c correspond to the points q 2 R2 for which fq gets
its minimum at 3 different points. Denote by C and T the numbers of circles
of the first and the second type respectively. According to Bose's formula
(refined by Sedykh, see [2, 9])

C ÿ T � 2 :�1�
In particular, the inequality C � 2� T � 2 implies the four-vertices theo-

rem that a convex plane curve has at least four points of extremum of cur-
vature. Indeed, between these two points of local minimum of curvature
there should exist another two points of local maximum of curvature.
In this paper we establish some formulas similar to (1) in terms of other
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singularities of the family fq. The results are formulated in terms of the more
general setting.

Throughout the paper we use the following notations. We consider a
smooth locally trivial bundle �: W !M. The base M of � is a closed or-
iented manifold of dimension 2. We assume that the fibers of � are diffeo-
morphic to the circle S1 and oriented. Denote by e��� the Chern-Euler
number of the bundle, the value of the first Chern class of � on the funda-
mental cycle of the base M.
Let f : W ! R be a generic smooth function. We consider f as the family

of functions fq, q 2M, where fq � f j�ÿ1�q� is the restriction of f to the fiber
over q. The bifurcation diagram � �M is the set of the points q 2M for
which fq is not a Morse function.
If e��� 6� 0 then � is not empty. Indeed, otherwise, the bundle � has a

global continuous section formed, for example, by the points of global
minimum of fq. Therefore, � is trivial and e��� � 0.

In general, the bifurcation diagram consists of two components,
� � ��2� [ ��11�. The set ��2� called the discriminant or the caustic is formed
by the points q 2M for which fq has degenerate critical points and the
Maxwell stratum ��11� corresponds to the functions fq which have two cri-
tical points with the same critical value.
Both ��2� and ��11� are one-dimensional subvarieties smooth everywhere

except some finite number of singular points. All possible singularities of �

are those of the types ��3�, ��21�, ��111� shown in Fig. 1, and 3 possible types
��2��2�, ��2��11�, ��11��11� of transversal selfintersections of �. The superscript
�a1 . . . al� in the notations of strata of the bifurcation diagram stands for the
functions with critical points of multiplicities a1; . . . ; al on the same critical
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level. The diagrams shown in Fig. 1 correspond to all possible bifurcation
diagrams of multigerms of codimension 2 of functions in 1 variable (cf. [1]).
The functions with the given multiplicities of critical points on the given

critical level may have different number of other critical points. This gives
the possibility to subdivide each of the classes ��3�; . . . ;��11��11�.

1.1. Definition. The subset �
�11��11�
extr � ��11��11� corresponds to the func-

tions which have two points of global minimum, two points of global max-
imum, and such that the two points of global minimum and the two points
of global maximum alternate.

1.2. Definition. The subsets �
�3�
min � ��3�, �

�111�
min � ��111� (resp. �

�3�
max

� ��3�, �
�111�
max � ��111�) correspond to the functions for which the multiple

critical level is the level of global minimum (resp. maximum) of the function.

1.3. Definition. The subset �
�3�
m � ��3� (m � 1 is odd) corresponds to the

functions which have m nondegenerate critical points and one degenerate
critical point of multiplicity 3. The subset �

�2��2�
l;m � ��2��2� (0 � l � m, l �m is

even) corresponds to the functions which have l and m nondegenerate critical
points respectively on the two arcs bounded by the two degenerate critical
points of the function.

1.4. Theorem. There is a natural way to define a sign of every singular
point from Definitions 1.1-1.3.. With the notation #��

� for the algebraic num-
ber of points of the type ��

� counted with their signs, the following relations
hold

e��� � �
�11��11�
extr ;

e��� � 1
2

�
�3�
min ÿ

1
2

�
�111�
min �

1
2

��3�max ÿ
1
2

��111�max ;

e��� �
X 2
�m�1��m�3� ��3�m �

X �ÿ1�l�14�mÿ l�
�l�m��l�m�2��l�m�4� �

�2��2�
l;m �

� 1
4

�
�3�
1 ÿ

1
6

�
�2��2�
0;2 �

1
12

�
�3�
3 �

1
24

�
�2��2�
1;3 ÿ

1
12

�
�2��2�
0;4 �

1
24

�
�3�
5 � . . . ;

(2)

(3)

(4)

where e��� is the Chern-Euler number of the bundle �. In particular, the right
hand side expressions of (2)^(4) do not depend on the choice of (generic)
function f : W ! R.

The equality (2) describes the Chern-Euler number e��� in terms of self-
intersection points of the Maxwell stratum; the equality (3) describes e��� in
terms of singularities of the minimum (maximum) function; and the equality
(4) describes e��� in terms of singularities of the caustic. Note, that the
coefficients entering into formula (4) depend on the behavior of the function
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outside the degenerate critical level. Therefore, these coefficients cannot be
seen from the caustic itself.

1.5. Remark. Independent proofs of equalities (3) and (4) are given in [].
In that paper we used notations `M-singularities of the types �3�, �13�' and
`C-singularities of types �20m�, �10l10m�' for functions on the circle corre-
sponding to singular points of � of types �

�3�
min, �

�111�
min , �

�3�
m , �

�2��2�
l;m respec-

tively.

The actual definition of the sign of a singular point q0 2 Sing� is the fol-
lowing. We identify the fibers �ÿ1�q� in a neighborhood of q0 with the circle
R=2�Z using some trivialization of the bundle �.
If q0 is the point of the type �

�11��11�
extr we denote by s1, s2 the two points of

global minimum of fq0 and by y1, y2 the two points of global maximum such
that the four points of global extremum go in the order y1, s1, y2, s2 on the
circle �ÿ1�q0�. Using the chosen trivialization we extend yi, si to smooth
sections over a neighborhood of q0. Put

�1�q� � fq�y2� ÿ fq�y1� ; �2�q� � fq�s2� ÿ fq�s1� :
If q0 is any point of the type ��3� we denote by s0 2 �ÿ1�q0� the degenerate
critical point of fq0 and put

�1�q� � f 0q�s0� ; �2�q� � f 00q �s0� :
If q0 is the point of the type �

�111�
min we denote by s1, s2, s3 the three points

of global minimum of fq0 going in this order on �ÿ1�q0�. Put
�1�q� � fq�s2� ÿ fq�s1� ; �2�q� � fq�s3� ÿ fq�s2� :

At last, assume that q0 is of the type �
�2��2�
l;m . Let s1, s2 be the two degen-

erate critical points of the function fq0 such that the arc s1s2
_

going from s1 to
s2 in positive direction contains l nondegenerate critical points and the arc
s2s1
_

contains m critical points. Put

�1�q� � f 0q�s1� ; �2�q� � f 0q�s2� :
If the function f is in general position then in the either case above the

functions �1, �2 define a coordinate system in a neighborhood of the point
q0 2M. In fact, the condition that the mapping q 7!��1�q�; �2�q�� is non-
degenerate at q0 is equivalent to the condition that the family of functions fq
forms a versal deformation of the corresponding multigerm.

1.6. Definition. We call a singular point q0 positive (resp. negative) if
the natural orientation of the plane of variables �1, �2 coincides with (resp. is
opposite to) the orientation of the manifold M.
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1.7. Proposition. The signs of singular points used in Theorem 1.4 are
those of Definition 1.6.

The S1-bundle of the family of functions associated with a convex curve
c � R2 considered at the beginning of this Section is the trivial bundle
c� R2 ! R2. The base of this bundle is not compact. Hence, its Chern-Euler
number is not defined. The correct compactification of this bundle which is
compatible with the distance-square function is described in Sect. 6. The
main observation is that when jjqjj is large enough the restriction fq has a
nondegenerate point of global minimum, a nondegenerate point of global
maximum and no other critical points. Therefore, the bifurcation diagram is
compact and the value of the right hand side expressions of (2)^(4) does not

the chern-euler number of circle bundle ... 211
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depend on the curve. We call this common value the Chern-Euler number
associated with a convex curve.

1.8. Theorem. The Chern-Euler number associated with a convex curve is
equal to 1. Moreover, let � � R2 be the bifurcation diagram of the family of
functions associated with a convex smooth curve. Then the sign of every sin-
gular point of the types �

�3�
� , �

�111�
� , �

�11��11�
extr is always positive.

An example of the bifurcation diagram associated with a convex curve is
shown in Fig. 2. The three numbers in the brackets near the singular points
of � are terms entering into the right hand side expressions of equalities (2),
the first one of (3), and (4) respectively.
For the relation (3) of Theorem we get as a consequence the relation (1).

For the relation (2) of Theorem we have

1.9. Corollary. For any smooth convex curve there is exactly one ring R
containing c such that c touches both concentric circles of the boundary @R at
two different points and the points of touching of c with the two components of
@R alternate on c (see Fig. 3)

1.10. A modification of formulas (2)^(4) leads to invariants of projective
curves. Let c � P2 be a generic smooth immersed closed curve. Denote by
�c� 2 H1�P2� � Z2 the homology class represented by c. The curve c may
have any number of components. The only assumption we use is that the
intersection of c with any projective line is not empty. For example, this is
the case if �c� 6� 0.
A projective line � � P2 is called special if the number of intersection

points of c and � is two less than the total multiplicity of the intersection of c
and �. If c is in general position then a special line is one of the following.
a) � is a tangent line to c at a point of inflection. Let m be the number of

another transversal intersection points of c and �. The set of such � is de-
noted by Im (note, that m � �c�2).
b) � is a tangent line to c at a selfintersection point of c. Let m be the

number of another transversal intersection points of c and � (m � �c�2). The
set of such � is denoted by Xm. Note, that with each selfintersection point of
c we associate two lines of this kind corresponding to different branches of c
at this point.
c) � touches c at two different points. Define numbers l and m as follows.

Let a and b be the points of touching of c and �. Let na 2 TaP2 and
nb 2 TbP2 be tangent vectors transversal to � and such that they belong lo-
cally to the same half-plane bounded by � that c. This vectors induce the
same coorientation on one of the segments of � bounded by a and b and
opposite one on the other segment. We call these segments positive and ne-
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gative ones respectively. Let l and m be the numbers of transversal intersec-
tion points of c with these segments respectively (l �m � �c� � 12). The set of
such � with prescribed numbers l and m is denoted by Bl;m.
d) � either passes through two selfintersection points of c or it passes

through a selfintersection point of c and touches c at some other point. We
use no notations for these special lines.
Denote by P2� the space of all projective lines in P2. For every � 2 P2�

define its index as follows

ind��� � 2
�m�1��m�3� ; if � 2 Im or � 2 Xm;

ind��� � 4�l ÿm�
�l�m��l�m�2��l�m�4� ; if � 2 Bl;m;

and ind��� � 0 for all other � 2 P2�.
Note, that the index of any line of types Im and Xm is positive while that of

a line of type Bl;m may have any sign.

1.11. Theorem. If c is in general position and the intersection of c with any
projective line is not empty thenX

�2P2�
ind��� � 2

For example, if �c� 6� 0 then we have

2 � 2
3

#I0 � 2
15

#I2 � 2
35

#I4 � . . .� 2
3

#X0 � 2
15

#X2 � 2
35

#X4 � . . .�
4
15

#B1;0 ÿ 4
15

#B0;1 � 4
35

#B3;0 ÿ 4
35

#B0;3 � 4
105

#B2;1 ÿ 4
105

#B1;2 � . . .

Here, # denotes the cardinality of corresponding sets. An example of in-
dices associated with a projective noncontractible curve is given in Fig. 4.
According to Mo« bius' theorem a smooth embedded noncontractible curve in

P2 has at least 3 points of inflection. Let us show that Theorem implies Mo« -
bius' theorem in case when the curve c is close enough to a projective line
(together with derivatives, see also [1]). Indeed, if c is embedded then
#Xm � 0 for all m. Hence, if c has less than 3 points of inflection then
#Bl;m > 0 for some l, m that is c has a bitangent line �. But if c is close to
this bitangent line then it follows from the Roll theorem that it has at least 5
points of inflection. At least 2 of them are situated near the positive segment
of � bounded by points of touching with c and at least 3 of them are situated
near the negative one, see Fig. 5.
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2. Chern-Euler number.

Let M be a closed oriented manifold of dimension 2. Consider an oriented
locally trivial bundle �: W !M over M the fibers of which are diffeo-
morphic to the circle S1 and oriented.
Take any Riemannian metric on W and scale it by 2� divided by the

length of the fiber through that point so that the length of every fiber in the
new metric equals 2�. Then the arc-length parameters on the fibers are de-
fined up to a shift of the origin. So, the structure group of the bundle is re-
duced to S1 �SO(2) and W can be represented as the bundle of unit circles in
some 2-dimensional vector bundle E !M.
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Figure 5. Five inflection points of projective curve close to its bitangent
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2.1. Definition. The Chern-Euler number e��� of the bundle � is the
selfintersection number of the zero section of E.

In other words, e��� is the value of the characteristic Chern-Euler class
c1 � e 2 H2�M� of the bundle E on the fundamental cycle of M.
The Chern-Euler number can be defined purely in terms of the bundle � as

the obstruction to existing of global section. Suppose that some finite set of
points X � fx1; xng 2M and a continuous section s: M n X !W n �ÿ1�X�
of � are given. By a slightly abuse of notations, we call the points xi the
singular points of the section s. Let Di �M be a small disk centered at xi.
The bundle � can be trivialized over Di. If some trivialization is chosen then
the section s is given over Di by a continuous function si: Di n xi ! S1.

2.2. Definition. The index of singular point xi of the section s is the de-
gree of the restriction of si to the circle @Di � S1.

Note, that both circles, the boundary @Di and the fiber S1 of � have nat-
ural orientations. Therefore, the index is a well defined integer.

2.3. Proposition. The Chern-Euler number e��� is equal to the sum of in-
dices of all singular points of the section s.

Proof. Let W be the bundle of unite circles in the linear bundle E. Let
�: M ! R be a continuous function satisfying the following properties

� ��xi� � 0, i � 1; . . . ; n;
� ��x� > 0 for x 2M nX.

Then the section � s: M n X ! E can be continued to the global section
�s: M ! E. Zeros of �s correspond one-to-one to the points of X . The index of
each point xi is equal to the local intersection number of �s with the zero
section. Now the Proposition follows from Definition 2.1.

3. Proof of equalities (2) and (3) of Theorem 1.4.

Equalities (2) and (3) of Theorem are the simplest applications of
Proposition . Using a given function in the total space of the bundle we try
to build a global section. The obstructions are expressed in terms of singu-
larities of the restriction of the function to the fibers.
Let �: W !M be an S1-bundle over a closed oriented surface M. Let

� �M be a close subvariety of dimension one smooth outside of a finite set
Sing� � �. By a subvariety we mean a subset in M which is diffeomorphic
in a neighborhood of every point to a semialgebraic one. One may think of �

as an embedding of some finite graph which restricted to each edge is C1.
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Consider a continuous section es: M n �! �ÿ1�M n �� given over the do-
main M n �. Let ÿ be a connected component of � n Sing� and U be its
tubular neighborhood. Choose any coorientation of ÿ. Denote by U� and
Uÿ the two components of U n ÿ bounded by ÿ and situated from its posi-
tive and negative side respectively. We assume that for every y 2 ÿ the fol-
lowing limits existes��y� � lim

x2U�; x!y
es�x� ; esÿ�y� � lim

x2Uÿ; x!y
es�x� ; y 2 ÿ :

Moreover, we assume that these limits satisfy the following condition: eitheres��y� � esÿ�y� for all y 2 ÿ or es��y� 6� esÿ�y� for all y 2 ÿ.
If � is the bifurcation diagram of the function f : W ! R then the point of

global minimum of fq on the fiber over q gives a section satisfying the prop-
erties above.
Denote by �� and � 6� the union of those components of � n Sing� for

which es� � esÿ and es� 6� esÿ respectively. The section es has a natural con-
tinuous extension over ��. When the point of the base crosses through � 6�

the section es makes a jump. This jump can be made continuous after a
change of es in a neighborhood of � 6�. More precisely, there exists a con-
tinuous section s: W n Sing�! �ÿ1�M n Sing�� coinciding with es over the
complement of some tubular neighborhood of �.
The section s is not defined uniquely up to homotopy. Its homotopy type

is defined by the homotopy types of paths on the circles �ÿ1�q�, q 2 �6�,
connecting the points esÿ�q� and es��q�.
Suppose that every component of �6� is cooriented. This allows to say

which of the two domains U� bounded by ÿ � � n Sing� is considered as
positive and negative one respectively.

3.1. Definition. The section s over M n Sing� is called the natural con-
tinuation of the section es if it makes half turn rotation in positive (resp. ne-
gative) direction when the point of the base crosses through �6� in positive
(resp. negative) direction.
Denote by i�q�, q 2 Sing�, the index of the point q with respect to the

section s defined in . According to Proposition we have the relation

e��� �
X

q2Sing�

i�q� :�5�

Let S1
" �q�, q 2 Sing�, be a small circle centered at q and oriented coun-

terclockwise. The intersection number �S1
" �q�;� 6�� is well defined because � 6�

is cooriented. Denote

ind�q� � i�q� ÿ 1
2
�S1

" �q�;� 6�� :

216 m.e© . kazarian



{orders}ms/98711/kaza.3d -17.11.00 - 13:11

3.2. Proposition. a) The index ind�q� of a singular point q does not de-
pend on the coorientation of �6�.
b) For the Chern-Euler number we have

e��� �
X
q2Sing

ind�q� :�6�

Proof. a) Let q be one of the end points of the component ÿ � �. The
change of the coorientation of ÿ leads to the change of both i�q� and
1
2�S1

" �q�;� 6�� by 1 with the same sign. Hence, their difference does not
change.
b) We haveX

q2Sing�

ind�q� �
X

q2Sing�

i�q� ÿ 1
2

X
q2Sing�

�S1
" �q�;�6�� � e��� ÿ 1

2
�
[

q2Sing�

S1
" �q�;�6�� :

The last intersection number vanishes because
S

q2Sing� S
1
" �q� represents

trivial element in the homology group of the complement M n Sing�: it is the
boundary of the complement to the union of small disks centered at points
q 2 Sing�.

For a function f : W ! R, we denote by fq, q 2M, the restriction of f to
the fiber of � over q. Let � 2M be the bifurcation diagram. If q 2M n �

then fq is a Morse function. Denote by es�q� 2 �ÿ1�q� the point where fq gets
its global minimum. This defines a section es: M n �!W n �ÿ1��� over
M n �.
The set � 6� for this section es consists of those q 2M for which fq has two

nondegenerate points of global minimum and all other critical points of fq
are also nondegenerate and have different critical values. Let q 2 � 6�. Ac-
cording to our notations introduced in the beginning of this Section es��q� are
the two points of global minimum of fq. The choice of the coorientation of
�� permits to say which of the two points of minimum is considered as es��q�
and esÿ�q� respectively. Denote y�q� 2 �ÿ1�q� the point of global maximum of
fq.

3.3. Definition. The coorientation of � 6� is called natural if for every
q 2 � 6� the points y�q�, esÿ�q�, es��q� go in this order on the fiber �ÿ1�q� with
its orientation.

3.4. Lemma. For the natural continuation of the section with respect to the
natural coorientation, the index i�q� is equal to �1 for q 2 �

�11��11�
extr and to 0 for

any other singular point of �.

3.5. Lemma. For the natural continuation of the section with respect to the
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natural coorientation, the index ind�q� is equal to �1
2 for q 2 �

�3�
min or q 2 �

�111�
min

and to 0 for any other singular point of �.

Proof of equalities (2) and (3) of Theorem 1.4. By Lemmas 3.4, 3.5
the formulas (5), (6) take form of formulas (2), (3) respectively.

Proof of Lemma 3.4. When the point q of the base crosses through � 6�

the section s makes a jump along the arc connecting the two points of mini-
mum. By Definition , this arc does not contain the point of global maximum of
fq. It follows, that the index i�q� of every singular point of � is equal to 0
provided the function fq has either the only point of global minimum or the
only point of global maximum. In the same way the index is equal to 0 if fq
has two points of global minimum and two points of global maximum but
the two points of global minimum and the two points of global maximum do
not alternate. Indeed, in this case the section s nowhere crosses that arc
connecting the points of maximum which does not contain the points of
minimum.
It remains to compute the index of a singular point of the type �

�11��11�
extr .

Let q0 be such point. The change of orientation of M changes the signs of all
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singular points. Therefore, it is enough to show that the index of positive (in
the sense of Definition 1.6) point of the type �

�11��11�
extr is equal to �1.

The proof of that is seen from Fig. . Let s1�q�, s2�q� be the two points of
local minimum of the function fq close to the two points of global minimum
of fq0 . The closure of the set � 6� is smooth at q0. A small circle S1

" �q0� around
q0 intersects � 6� at two points. When the point q goes along this circle, the
section s makes two jumps, first from s1�q� to s2�q�, and then from s2�q� to
s1�q�, both in positive direction. Hence, the section s�q� makes one turn ro-
tation in positive direction when the point q goes along S1

" �q0� which means
that i�q0� � 1.

Proof of Lemma 3.5. Let � 6�be, as above, the set of points q 2M for
which the function fq gets its global minimum at two different points. Sin-
gular points of � 6� are endpoints of type �

�3�
min and triple points of type �

�111�
min

(see Fig. 7 and 8). Therefore, the index ind�q� may not be trivial for these
points only.
Let q0 be a point of the type �

�3�
min. Without loss of generality we can as-

sume that q0 is positive in the sense of Definition . For computation of the
index we can take any coorientation of �6�, for example, that which co-
orients �6� counterclockwise as shown in Fig. 7. Let the point q go along a
small circle S1

" �q0� around q0. By Definition , the section s�q� remains close
to the point of global minimum of fq0 everywhere except a small neighbor-
hood of the intersection point of S1"�q0� with �6�, where the section s�q�
makes a jump close to 2�. Therefore, for this choice of the coorientation of
�6� we have i�q� � 1. Thus,

ind�q0� � i�q0� ÿ 1
2
�S1

" �q0�;�6�� � 1ÿ 1
2
� 1
2
:

Let q0 be now a positive point of the type �
�111�
min . Choose counterclockwise

coorientation of � 6� as shown in Fig. 8. The set � 6� divides the neighborhood
of q0 into three domains. In every of these domains the section s�q� is close
to the corresponding point of global minimum of fq0 . Every time when the
point q of the base goes along the circle S1

" �q0� and crosses through �6� the
section s�q� makes a jump in positive direction. It follows, that i�q0�, the to-
tal sum of these jumps, is equal to 2� and we have

ind�q0� � i�q0� ÿ 1
2
�S1

" �q0�;�6�� � 1ÿ 3
2
� ÿ1

2
:

Lemma 3.5 is proved.
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Figure 7. The index ind�q0� � 1
2 of the point q0 2 � �3�

min

Figure 8. The index ind�q0� � ÿ 1
2 of the point q0 2 � �111�min
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4. Multivalued sections and their singularities.

Let �: W !M be an oriented S1-bundle over a closed oriented surface M.
Let � �M be a closed one-dimensional variety smooth outside a finite set
Sing� � �. Suppose for every connected component U� �M n � some finite
number of sections are chosen s�i: U� ! �ÿ1�U��, i � 1; . . . ; n�, such that
s�i�x� 6� s�j�x� for any x 2 U�, i 6� j. We assume that these sections satisfy
the following boundary condition. Let ÿ � � n Sing� be any connected
component. Let U�, Uÿ be two components of M n � bounded by ÿ. Let s�,
sÿ be some sections chosen over U� and Uÿ respectively. We assume that
for every y 2 ÿ the following limits exist

s��y� � lim
x2U�; x!y

s��x� ; sÿ�y� � lim
x2Uÿ; x!y

sÿ�x� ; y 2 ÿ :

Moreover, we assume that these limits satisfy the following condition: ei-
ther s��y� � sÿ�y� for all y 2 ÿ or s��y� 6� sÿ�y� for all y 2 ÿ. We show in
this Section how these data can be used to express the Chern-Euler number
of the bundle.

4.1. Remark. Consider the cohomology spectral sequence of the bundle
�. Its second term is Ep;q

2 � Hp�M� 
Hq�S1�. One can prove that the Chern-
Euler class of � is the image of the class dual to the fundamental class of the
fiber under the homomorphism �2: E

0;1
2 � H1�S1� ! E2;0

2 � H2�M�. The
spectral sequence of the bundle can be defined using some cellular partition
of W . The system of sections above produces a natural partition of W . In
fact, our calculations below are the calculations of the homomorphism �2 in
terms of this partition.

Consider the collection of sections fs�ig, U� �M n �, as a multivalued
section s over M n �. Let q0 be some point. Let U �M be a small disk cen-
tered at q0. Consider a continuous section over U n �� \U� which coincides
over each component of U n �� \U� with some branch of s. The construc-
tion of Sect. 3 gives rise to the index ind�q0� for the one-valued section ob-
tained. The value of this index depends on particular choice of the branches
of s over each component of U n �� \U�.
4.2. Definition. The index ind�q0� of the point q0 is the arithmetical

mean of indices ind�q0� over all choices made in its definition.

4.3. Corollary. (of Definition 4.2). If the number n� of chosen sections
is equal to 1 for each component U� �M n � then the index ind�q0�,
q0 2 Sing�, is equal to the index ind�q0� introduced in Sect. 3.
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4.4. Theorem. For the Chern-Euler number we have

e��� �
X

q2Sing�

ind�q� :�7�

Proof. To shorten arguments we shall use the language of probability
theory.
We call the variety � �M simple if the intersection of any connected

component of M n � with a small disc around any point of � is also con-
nected if not empty.
Assume for a moment that � is simple. Let us choose in a random way

some branches of s over each component of M n �. The index ind�q�,
q 2 Sing�, for the one-valued section obtained depends on the particular
choice of branches of s. Thus, we can consider ind�q� as a random variable.
The condition of simplicity of � implies that the branches of s over every of
U n �� \U� are chosen independently, where U is a small disc centered at q.
Therefore, by Definition the index ind�q� is the mathematical expectation
of the random index ind�q�.
The equality (6) for the random indices ind�q� implies similar equality for

their mathematical expectations. This proves Theorem 4.4 for the case when
� is simple.
To prove Theorem 4.4 in the general case note that there exists some

simple �0 �M such that � � �0. In other words, � can be done simple by
adding some number of lines, see Fig. 9.
Let s0 be the restriction of s to M n �0 considered as a multivalued section

of � over M n �0. The following Lemma completes the proof of Theorem 4.4.

4.5. Lemma. The index ind�q�, q 2 Sing�0, for the multivalued section s0 is
equal to 0 if q 62 Sing� and coincides with that for s if q 2 Sing�.
One of the possible proofs of this Lemma is given below.
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It is very hard to compute the index directly from Definition . The com-
putations in the next Sections rely on the following formula for the index.
Let q0 2 Sing� be some singular point of �. The intersection of � with a

small neighborhood U of q0 form some finite number of curves ÿ1; . . . ;ÿn

going out of q0. Denote by U�k , U
ÿ
k the components of U n �� \U� such that

ÿk enters with coefficients �1 and ÿ1 into the expressions of @U�k and @Uÿk
respectively (we consider the orientation of U�k induced by the orientation of
M and the orientation ÿk directed out of q0). Let s�k1; . . . ; s�kn� and
sÿk1; . . . ; sÿknÿ be the sections chosen over U�k and Uÿk respectively. If the
curves ÿk are numerated counterclockwise then U�k � Uÿk�1, n

�
k � nÿk�1 and

so on, see Fig. 10. Consider some trivialization of the bundle � over U ,
�ÿ1�U� � U � �R=2�Z�, such that the section U � f0g does not intersect any
chosen section over any component of U n �� \U�.
4.6. Proposition. The index of the point q0 is given by

ind�q0� �
Xn
k�1

1
n�k n

ÿ
k

X
1�i�n�

k
1�j�nÿ

k

�k�i; j� ;�8�

where �k�i; j� �
0; if sÿki � s�kj on ÿk

ÿ 1
2 ; if 0 < sÿki < s�kj < 2� on ÿk
1
2 ; if 0 < s�ki < sÿkj < 2� on ÿk

8><>:
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Proof. Let s be a section over U n �� \U� the restriction of which to
every component of U n �� \U� coincides with some branch of s. Denote by
s�k the restriction of this section to U�k . Denote

�k �
0; if sÿk � s�k on ÿk

ÿ 1
2 ; if 0 < sÿk < s�k < 2� on ÿk
1
2 ; if 0 < s�k < sÿk < 2� on ÿk

8<:
4.7. Lemma. For the section s we have

ind�q0� �
Xn
k�1

�k:

Proof. The set
P 6� for the section s consists of those components ÿk for

which sÿk 6� s�k on ÿk. Let us change the coorientation of ÿk � � 6� so that the
local intersection number of S1

" �q0� with ÿk is positive if 0 < sÿk < s�k on ÿk

and negative if 0 < s�k < sÿk on ÿk. For this choice of the coorientation of � 6�

the natural continuation of the section s over S1
" �q0� nowhere intersects the

section U � f0g. So, we have i�q0� � 0 and

ind�q0� � i�q0� ÿ 1
2
��6�;S1

" �q0�� �
X

ÿk��6�
ÿ 1
2
�ÿk;S1

" �q0�� �
X

�k :

It follows from Lemma 4.7 that if �k are considered as random variables
then ind�q0� is the sum of their mathematical expectations. As the branches
of s over U�k and Uÿk are chosen independently, we have that the mathema-
tical expectation of �k is given by

�k � 1
nÿk n

�
k

X
1�i�n�

k
1�j�nÿ

k

�k�i; j� :

Proposition 4.6 follows.

We call the section sÿki (resp. s
�
kj) continuable over ÿk if there exists a

number i0 (resp j0) such that sÿki � s�ki0 (resp. s
ÿ
kj0 � s�kj) on ÿk and the number

with this property is unique.
Suppose that skiÿ and s�kj are two continuable sections and sÿki � s�ki0 ,

sÿkj0 � s�kj on ÿk. Then �k�i; j� � ÿ�k�j0; i0�. Therefore, all terms �k�i; j� for
which both sÿki and s�kj are continuable cancel in the expression (8) for
ind�q0�.
4.8. Corollary. The formula (8) remains valid if the second summation is

taken over those pairs �i; j�, 1 � i � nÿk , 1 � j � n�k , for which at least one of
the sections sÿki and s

�
kj is not continuable.
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Proof of Lemma 4.5. Suppose that the set �0 is obtained by adding one
new line ÿ to the given set � �M. We need to prove that this does not
change the indices of singular points for a given multivalued section s over
M n �. It is clear that adding ÿ does not affect on the indices of the points
which are not endpoints of ÿ.
Suppose that q0 is one of the two points of @ÿ that is ÿ [U coincides with

ÿk for some k, where U is as in the proof of Proposition 4.6. For this k we
have that nÿk � n�k and all the sections s�ki are continuable over ÿk. Therefore,
the kth summand in the expression (8) for ind�q0� calculated with respect to
the restriction of s to M n �0 vanishes and all the other summands coincide
with the corresponding summands for ind�q0� calculated with respect to s
itself. This completes the proofs of Lemma 4.5 and Theorem 4.4.

5. Indices of multivalued sections associated with a generic smooth function.

Let f : W ! R be a generic smooth function on the total space of S1-bundle
�: W !M over a closed oriented surface M. Denote by � �M the bi-
furcation diagram of f . There are several possibilities to define a multivalued
section over M n �.

5.1. Theorem. Let the set s�q�, q 2M n � be the point of global minimum
of fq. Then the index ind�q0� of every singular point q0 2 Sing � coincides with
that ind�q0� of Sect. 3. In particular,

ind�q0� � � 1
2 ; if q0 �

P�3�
min;

ind�q0� � ��ÿ 1
2�; if q0 �

P�111�
min ;

and ind�q0� � 0 for other q0 2 Sing �. The sign � above is that of Definition
1.6 and the formula (7) in this case is equivalent to the formula (3) of Theorem
1.4.

Proof. This Theorem follows from Corollary 4.3 and the proof of Lem-
ma 3.5.

5.2. Theorem. Let the set s�q�, q 2M n � be the set of all critical points of
fq. Then the points q0 2 Sing� for which ind�q0� 6� 0 are singular points of the
discriminant. Furthermore,

ind�q0� � � 2
�m�1��m�3� ; if q0 � �

�3�
m ;

ind�q0� � � �ÿ1�l�14�mÿl�
�l�m��l�m�2��l�m�4 ; if q0 � �

�2��2�
l;m :

The sign � above is that of Definition 1.6 and the formula (7) in this case is
equivalent to the formula (4) of Theorem 1.4.
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The equality (2) of Theorem 1.4 can also be interpreted in terms of the
index ind for certain multivalued sections over M n �.

5.3. Theorem. Let indmin, indmax, and indextr be the indices ind corre-
sponding to the cases when the set s�q�, q 2M n � consists of the point of glo-
bal minimum, global maximum, and the two points of global extremum of fq
respectively. Put ind�q0� � 2 indextr�q0� ÿ 1

2 indmin�q0� ÿ 1
2 indmax�q0�. Then

ind�q0� � � ; if q0 � �
�11��11�
extr ;

and ind�q0� � 0 for other q0 2 Sing�. The sign � above is that of
Definition 1.6. This index satisfies

P
ind�q� � e��� and this formula is

equivalent to the formula (2) of Theorem 1.4.

Proof of Theorem 5.2. Let q0 2 Sing� be some point. The family of
functions fq, q 2M forms a deformation of the multigerm corresponding to
the critical points of fq0 . Let �R2; 0� be the base of the versal deformation of
this multigerm. The deformation given by the family fq can be induced from
the versal deformation by a smooth map germ ': �M; q0� ! �R2; 0�. If the
function f is in general position then the mapping ' is nondegenerate for
every q0 2 Sing�. Therefore, the index of the point q0 coincides up to a sign
with the index of the origin for the corresponding versal deformation. This
sign is positive or negative depending on coincides or not the orientation of
M with that induced by the mapping '. Hence, to prove Theorem it is en-
ough to compute the index of the origin in the versal deformation of every
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singular multigerm of codimension 2. We fix the orientation of the base of
the versal deformation so that the origin is a positive point in the sense of
Definition .
The set of critical points s�q�, q 2M n �, does not depend on the critical

values of the function fq. Therefore, all possible points for which ind�q0� 6� 0
are singular points of the discriminant, that are cusp points of the dis-
criminant of the type �

�3�
m (m > 0 is odd), and its selfintersection points of

the type �
�2��2�
l;m (0 � l � m, l �m is even).

For the point of type �
�3�
m the bifurcation diagram is shown in Fig. 11. The

complement to the discriminant consists of the two domains U�1 � Uÿ2 and
U�2 � Uÿ1 . The function fq has m� 3 and m� 1 critical points over the first
and the second domain respectively. The sections which are not continuable
correspond to the couples of critical points which cancel over the dis-
criminant. Therefore, by CorollaryX

�1�i; j� � 2�m� 1� 1
2
� m� 1 ;

X
�2�i; j� � 2

1
2
� 2m�ÿ 1

2
� � 1ÿm ;

and by Proposition 4.6 we get

ind�q0� � m� 1
�m� 1��m� 3� �

1ÿm
�m� 1��m� 3� �

2
�m� 1��m� 3� :

For the selfintersection point of the type �
�2��2�
l;m the complement to the

discriminant consists of four components as shown in Fig. 12. The number
of critical points of fq over these domains is equal to l �m, l �m� 2,
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l �m� 4, and l �m� 2 respectively. The signs of the indices �k�i; j� are seen
from Figure. We getX

�1�i; j� � 2l
1
2
� 2m�ÿ 1

2
� � l ÿm ;

X
�2�i; j� � 2�l �m� 1

2
� l �m ;

X
�3�i; j� � 2�l � 2��ÿ 1

2
� � 2m

1
2
� mÿ l ÿ 2 ;

X
�4�i; j� � 2�l �m� 2��ÿ 1

2
� � ÿl ÿmÿ 2 :

This gives by Proposition 4.6

ind�q0� �
P
�1�i; j�

�l�m��l�m�2��
P
�2�i; j�

�l�m��l�m�2��
P
�3�i; j�

�l�m�2��l�m�4��
P
�4�i; j�

�l�m�2��l�m�4� �

� 4�l ÿm�
�l�m��l�m�2��l�m�4� :

It remains to observe that the counterclockwise orientation of the plane of
Fig. 12 is positive in the sense of Definition if l and m are even and it is
negative if these numbers are odd. Note that if l � m then there is no natural
orientation in the space of the versal deformation. But for the either choice
of this orientation the index ind vanishes.

Proof of Theorem 5.3. First observe thatX
ind�q� � 2

X
indextr�q� ÿ 1

2

X
indmin�q� ÿ 1

2

X
indmax�q� �

�2ÿ 1
2
ÿ 1
2
�e��� � e���

by Theorem 4.4. The indices indmin�q� and indmax�q� are given by
Theorem 5.1. Calculations of the index indextr�q� for di¡erent singular
points q 2 Sing � are similar to those in the proof of Theorem 5.2. It is left
to the reader to verify that this index is equal to 1

8 for a positive point of type
�
�3�
min or �

�3�
max; it equals 1

8 for a point of type �
�111�
min or �

�111�
max ; and it equals 1

2 for
a point of type �

�11��11�
extr respectively. Theorem 5.3 follows.

6. Convex plane curves and positive coorientations of singularities.

In this Section we prove Theorem 1.8. Let c � �c1; c2� : S1 ! R2 be a convex
plane curve parameterized counterclockwise. With this curve we associate
the following family of functions on the circle

fq�t� � jjc�t� ÿ qjj2 t 2 S1 � R=2�Z ; q � �q1; q2� 2 R2 :
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Let q� 2 R2 be a singular point of the family f . The linearization of f at q�

df �f ;�q1;�q2� � @f
@q1

���
q�

�q1 � @f
@q2

���
q�

�q2 �

2�q�1 ÿ c1�t���q1 � 2�q�2 ÿ c1�t���q2

coincides, up to a linear transformation with the restriction to c of a linear
function on R2.
By Definition 1.6, the assertion on positiveness of the point q� is equiva-

lent to the following. Consider the following mappings of the space R2� of
linear functions to the coordinate space R2

a) l 7!
�
l�c�t3�� ÿ l�c�t1��; l�c�t4�� ÿ l�c�t2��

�
;

b) l 7!
�
l�c0�t1��; l�c00�t1��

�
;

c) l 7!
�
l�c�t2�� ÿ l�c�t1��; l�c�t3�� ÿ l�c�t2��

�
;

where t1 < t2 < t3 < t4 < t1 � 2� are some fixed points. These mappings are
orientation preserving isomorphisms.
This assertion is equivalent, in turn, to the assertion that the following

vectors

a) e1 � c�t3� ÿ c�t1� ; e2 � c�t4� ÿ c�t2� ;
b) e1 � c0�t1� ; e2 � c00�t1� ;
c) e1 � c�t2� ÿ c�t1� ; e2 � c�t3� ÿ c�t2�

form a positive basis on the plane, which is evident.
This essentially completes the proof of Theorem 1.8. To compute the

Chern-Euler number associated with a convex plane curve it is enough to
compute it for any particular curve, for example, for that shown in Fig. for
which it equals 1.
The reason that this number is 1 is the following. Let D�R� � R2, R� 0,

be a disk of great radius R and S�R� � @D�R�. Then for q 2 S�R� the func-
tion fq has a nondegenerate point of global minimum, a nondegenerate one
of global maximum and no other critical points. When the point q goes
along the circle S�q� the two critical points of fq make one turn rotation on
the fiber S1. Therefore, we can modify the function f over a neighborhood of
S�R� without changing the bifurcation diagram and identify the fibers over
S�R� so that the restrictions of f to the fibers over S�R� are represented by
the same function on the circle. Thus, we get a circle bundle over
D�R�=S�R� � S2 and a function in its total space. This bundle is not trivial.
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It is isomorphic to the Hopf bundle S3 ! S2. Therefore, the number 1 in
Theorem is the Chern-Euler number of the Hopf bundle.

7. Singularities of odd functions.

A function f : S1 ! R is called odd if it satisfies

f �t� �� � ÿf �t� ; t 2 S1 � R=2�Z :

A function on the total space of an S1-bundle � : W !M is called odd if
its restriction to each fiber is odd. Let W �W={�1\}, where we consider ÿ1
as an element of the group S1 � U�1� with its natural action on W . Denote
� : W !M the natural projection induced by �. Consider the one-dimen-
sional vector bundle over W which changes its orientation along the fibers of
�. Sections of this bundle are called Mo« bius functions.
The function f on W defines a Mo« bius function f on W . Critical points of

restrictions of f to the fibers one-to-one correspond to the pairs of opposite
critical points of the restrictions of f . Hence, the set of critical points of re-
strictions of f defines a multivalued section of the bundle �, and we may
make use of the results of Sect. to find expressions for the Chern-Euler
numbers of the bundles � and �.
Our notations for singularities of odd functions are similar to those we

used for usual functions. Let �
�3�
extr and �

�111�
extr be the sets of such points q 2M

that the Mo« bius function f q gets its global extremum at a degenerate point
and at three different points respectively. We subdivide the set �

�111�
extr into

�
�111�
extr! and �

�111�
extr? according to alternate or not the three points of global
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minimum and those of global maximum of the odd function fq. Let �
�3�
m �M

be the set of such points that the restriction of f to the corresponding fiber
has a degenerate critical point of multiplicity 3 and m other nondegenerate
critical points (m � 0 is even). Let �

�2��2�
l;m �M be the set of such points that

the restriction of f to the corresponding fiber has 2 degenerate critical points
and l and m nondegenerate ones respectively on the two arcs with the ends at
the degenerate critical points. In this case l �m is odd, and to distinguish
between �

�2��2�
l;m �M and �

�2��2�
m;l �M we assume that l is even and m is odd.

7.1. Theorem. There is a natural way to define a sign of every singular
point such that with the notation #��

� for the algebraic number of points of the
type ��

� counted with their signs, the following relation hold

�9� e��� � 2e��� � #�
�111�
extr! ;

�10� e��� � 2e��� � 1
2
#�

�3�
extr �

1
2
#�

�111�
extr! ÿ

1
2
#�

�111�
extr? ;

�11� e��� � 2e��� �
X 2
�m�1��m�3�#��3�m �

X 4�l ÿm�
�l�m��l�m�2��l�m�4�#�

�2��2�
l;m �

� 2
3

#�
�3�
0 ÿ

4
15

#�
�2��2�
0;1 � 2

15
#�

�3�
2 ÿ

4
35

#�
�2��2�
0;3 � 4

105
#�

�2��2�
2;1 � 2

35
#�

�3�
4 � . . .

Note, that the equalities (9) and (10) give

e��� � 2e��� � 2
3
#�

�3�
extr ÿ

2
3
#�

�111�
extr? :

7.2. Example. Consider the unite sphere in C2 as the total space of the
Hopf bundle S3 ! CP1 � S2. Consider the function f : S3 ! R given by

f �z1; z2� � Re�z1 � z33� ; �z1; z2� 2 S3 � C2 :

This function is odd. The bifurcation diagram of this function is shown in
Fig. 13. The numbers in the brackets near the singular points of � are terms
entering into the right hand side expressions of equalities (9) and (11) (or
(12)).

Proof. First, observe that if W is the bundle of unit circles in the complex
linear bundle U over M then W is the bundle of unit circles in the bundle
U 
C U and we get

e��� � c1�U 
U� � 2c1�U� � 2e��� :
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The computation of indices of singular points of � is similar to that in the
proof of Theorem 1.4. Formulas (9) and (10) correspond to the indices i�q�
and ind�q� defined in Sect. 3 for the section s : M n �!W given by points
of global extremum of f q. Formula (11) corresponds to the index ind�q� for
the multivalued section given by all critical points of f q.
An independent proof of (11) is given in 7.
Similar formula to (11) describes the Chern-Euler number of � in terms of

degenerations of zero level of fq (or f q). Denote by Z�3�m (m � 0 is even) the
set of points q 2M such that the zero level of f q has m� 1 points one of
which is a degenerate critical point. Denote by Z�2��2�l ;m (l � 0 is even, m > 0
is odd) the set of points q 2M such that the zero level of f q has two critical
points and l and m nondegenerate ones on the two arcs connecting degen-
erate ones.

7.3. Corollary. There is a natural way to define a sign of every point of
type Z�

� such that the formula 11 of Theorem 7.1 remains valid after ex-
changing #��

� by #Z�
�

e��� � 2e��� � 2
3

#Z�3�0 ÿ
4
15

#Z�2��2�0;1 �
2
15

#Z�3�2 ÿ
4
35

#Z�2��2�0;3 �

4
105

#Z�2��2�2;1 � 2
35

#Z�3�4 � . . .

Proof. Critical points of a function are zero points of its derivative. And
vice versa, every odd function has unique odd primitive the critical points of
which are zeros of original function.

7.4. Example. Let �0 � P2 be a projective line. Consider a smooth curve
c � P2 close to �0 (together with derivatives). Fix an orientation of �0 so
that c is also oriented. Let S2� be the space of oriented projective lines. Let
U � S2� be a small neighborhood of �0 such that any line � 2 @U has un-
ique transversal intersection point with c.
Realize P2 as the quotient space of the unite sphere S2 � R3 over the an-

tipodal involution. Let \widetildec � S2 be the inverse image of c under this
covering. The space S2� can be realized as a unite sphere in the space R3� of
linear functions on R3. Denote by f� : ec! R, � 2 S2� � R3� the restriction
of the corresponding linear function to ec � S2 � R3.
The family of functions f� can be considered as a function on the space of

trivial bundle ec�U ! U . This function is odd. The points of type Z�3�m cor-
respond to tangent lines of type Im of the curve c at inflection points and
those of type Z�2��2�l;m correspond to bitangent lines of type Bl;m (see 1.10). The
formula of Corollary 7.3 is equivalent in this case to the formula of
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Theorem 1.11. To prove that the `Chern-Euler number' of this family is
equal to 2 we use the same arguments as at the end of Sect. 6.
The same construction gives an index of any oriented projective line with

respect to any noncontractible immersed projective curve. By Corollary 7.3,
the sum of these indices is equal to the Chern-Euler number of the trivial
bundle ec� S2� ! S2�, i.e. to zero. But this is evident, the change of or-
ientation of a projective line changes also the sign of its index. Therefore,
this is not the way we define the index in Theorem 1.11 in general case, see
Sect. 8.

8. Global invariants of projective plane curves.

Let c � P2 be a generic smooth immersed closed curve. Denote by
�c� 2 H1�P2� � Z2 the homology class represented by c. The curve c may
have any number of components. Assume the intersection of c with any
projective line is not empty. For example, this is the case if �c� 6� 0. Denote
by P2� the space of all projective lines in P2 and by S2� its two-sheeted
covering, the space of all oriented projective lines. Consider the tautological
S1-bundle

�: Fÿ!S2�

The space F of this bundle is the set of pairs of kind (an oriented projec-
tive line, a point of this line). The projection � is the projection onto the first
factor. For a generic line � 2 S2� this line intersects c transversally at some
finite number of different points. The set � \ c considered as a subset of �
defines a singular multivalued section s of the bundle �. We would like to
apply the results of Sect. to this section to obtain global invariants of the
curve c. Denote by ind��� the index of � 2 S2� with respect to the section s
as it was defined in Sect. 4. The multivalued section s is not related to any
Mo« bius (or usual) function. So, we compute indices of its singular points
directly from its definition using Corollary 4.8.

8.1. Lemma. The index ind��� depends neither on the orientation of � nor
on the orientation of c.

Proof. This index does not depend on the orientation of c by definition.
Note, that the involution inverting orientations of projective lines changes
orientations of both base and fibers of the bundle �. This proves that the
index ind does not depend on the orientation of � as well.

8.2. Lemma. The Chern-Euler number of the bundle � is equal to 4.

Proof. Let �0 : SU�2� ! S2 and �00 : SO�3� ! S2 be the natural bundles.
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Then there are natural two-sheeted coverings SU�2� ! SO�3�, SO�3� ! F .
Therefore, as in the proof of Theorem 7.1, we have

e��� � 2e��00� � 4e��0� � 4

because �0 is the Hopf bundle and e��0� � 1.

1.11. is the direct corollary of Lemmas 8.1, 8.2, and the following one.

8.3. Lemma. The index ind��� of a projective line � coincides with that
defined in 1.10.

Proof. Codimension 2 singularities for the section s are projective lines
which are called special in 1.10. The bifurcation diagram in a neighborhood
of points of types Im, Bl;m are diffeomorphic to those shown in Fig. 11 and
12. Calculations of indices are similar to those in the proof of Theorem 5.2.
Thus, we get

ind��� � 2
�m� 1��m� 3� ; � 2 Im ;

ind��� � 4�l ÿm�
�l�m��l�m�2��l�m�4� ; � 2 Bl;m :

For � 2 Xm the bifurcation diagram is shown in Fig. 14. The complement
to the bifurcation diagram consists of 4 components. The section s has m� 1
branches over one of these domains and m� 3 branches over the others. The
signs of the indices �k�i; j� are seen from Figure. By Corollary 4.8, we getX

�1�i; j� � 2�m� 1� 1
2
� m� 1 ;

X
�2�i; j� � 0 ;

X
�3�i; j� � 0 ;

X
�4�i; j� � 2

1
2
� 2m�ÿ 1

2
� � 1ÿm ;

and by Proposition , we get

ind��� � m� 1
�m� 1��m� 3� �

1ÿm
�m� 1��m� 3� �

2
�m� 1��m� 3� :
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It remains to show that if � passes through a selfintersection point a of the
curve c and either passes through another selfintersection point of c or tou-
ches c at some point different from a then the index ind vanishes at such �.
Let c0 � P2 be a smooth closed immersed curve which coincides with c ev-
erywhere except a small neighborhood U of the point a where the curve c0

consists of two nonintersecting arcs transversal to �, as in Fig. 15. (the curve
c0 may consist of two components).
The assertion that ind��� � 0 is equivalent to the following two.
1) The index ind��� calculated with respect to the curve c0 is equal to 0.
2) The indices ind��� calculated with respect to the curves c and c0 coin-

cide.
The first assertion is evident, because � is the point of singularity of co-

dimension 1 of the multivalued section defined with respect to the curve c0.
Let us prove the second one. In a neighborhood of �, the bifurcation dia-
gram for the curve c is the union of the bifurcation diagram for the curve c0

and the curve ÿ of projective lines passing through the point a. For all strata
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of the bifurcation diagram for c0, the indices �k�i; j� coincide with the corre-
sponding indices calculated for the curve c. It remains to show thatP

k �k�i; j� � 0 for the numbers k corresponding to the two branches of the
curve ÿ and calculated with respect to the curve c. This assertion follows
from the symmetry, as in the proof of Corollary 4.8.
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