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FAMILIES OF SURFACES: HEIGHT FUNCTIONS AND
PROJECTIONS TO PLANES

J. W. BRUCE, P. J. GIBLIN and F. TARI

1. Introduction

The work in this paper is part of our investigation of the geometry of sur-
faces in Euclidean 3-space R3, and the way this changes when the surfaces
vary in 1-parameter families. In [5] we studied the geometry governed by
contact with planes, by considering projection to lines. For a given smooth
surface M in R3 this is best described by the singularities of the height
function on M. The height function fails to be stable (has an A�2 singularity)
precisely at parabolic points. Cusps of Gauss are identi¢ed by the singularity
of the height function being of type A3. There is a natural two parameter
family of height functions parametrised by the 2-sphere. The discriminant of
this family is the dual of the surface, and the bifurcation set consists of the
image of the parabolic set under the Gauss map. In [5] we use the theory of
discriminants, bifurcation sets and functions on these sets to provide models
of transitions on the parabolic set, its image in the Gauss sphere and of the
dual when the surface varies in generic 1-parameter families. We also deal
with the multi-local singularities.
Another aspect of the geometry, much studied over the last two decades, is

that related to the contact with lines. This is captured by orthogonal pro-
jections of the surface to planes. The image of the set of points on M where
the direction of projection is tangent to the surface is the so-called pro¢le
(outline, apparent contour) of the surface. The pro¢le can be described as
the discriminant of a map-germ from the plane to the plane. A list of singu-
larities of these mappings of codimension � 6 is given in 12] by Rieger, fol-
lowing earlier work of Arnold, Ga¡ney and Ruas, and du Plessis. In a sub-
sequent paper, Rieger studied their related geometry [13].
So we have two families of projections, both parametrised by the 2-sphere.

There is a striking duality result relating the bifurcation set of the family of
projections to lines to that of the family of projections to planes, described in
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[7, 2].We explain this duality in ½ 2. We also shed some new light on Rieger's
classi¢cation in section 2. For instance we relate this classi¢cation to that of
singularities of functions on surfaces with boundary.
In ½ 3 we determine modules of vector ¢elds tangent to bifurcation sets of

various germs from the plane to the plane, and then classify functions on
such sets.
We complete in ½ 4 the duality results given in [7, 2] to cover all the cases

in Rieger's list and describe the correspondences between the transitions in
1-parameter families of the bifurcations sets of the height functions and
those of orthogonal projections.
As a general reference for background results and terminology in singu-

larity theory we recommend [14].

Acknowledgements. We acknowledge support from the Esprit grant
VIVA, and the EPSRC grants GR/H 59855 and GR/J 28162.

2. Projections of Surfaces.

We ¢rst list the singularities of orthogonal projections which occur when
considering 1-parameter families of surfaces. These have been given by Rie-
ger in [12]; to be more precise he listed the singularities of mappings
R2; 0! R2; 0 which have rank 1 and codimension � 6. The codimension here
is that in the jet space.
We are interested in 1-parameter families of surfaces. So we need to con-

sider a jet-extension map X � T � S2 ! Jk�X ;R2�, where X is the surface,
moving with time t 2 T and S2 parameterises the family of orthogonal pro-
jections. Consequently we are particularly interested in those mappings of
codimension � 5 (there are 5 parameters in the source of this mapping). (As
usual we need to consider not only germs ofa-codimension � 5 but also for
example unimodular families of a-codimension � 6.) It is not di¤cult to
show that the mappings of codimension at most 5 in Rieger's list all arise
when considering projections of 1-parameter families of surfaces in R3.

Theorem 2.1 (Rieger [12]). The following table lists all map-germs of cor-
ank 1 which will occur in a generic 3-parameter family of mappings from the
plane to the plane. All but type 8 are simple, and k > 1. We also list C0-versal
unfoldings, whose signi¢cance (and that of the last column) will be explained
below.
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Type f �x; y� codimension C0 ÿ versal unfolding gy
of stratum

1 �x; y� 0
2 �x; y2� 1 sub
3 �x; xy� y3� 2 sub
4k �x; y3 � xky� k� 1 �x; y3 � xky�Pkÿ1

i�1 aix
kÿiÿ1y� Akÿ1

5 �x; xy� y4� 3 �x; xy� y4 � ay2� sub
6 �x; xy � y5 � y7� 4 �x; xy� y5 � ay3 � by2� sub
7 �x; xy� y5� 5 �x; xy� y5 � ay3 � by2� sub
8 �x; xy� y6 � y8 � �y9� 5 �x; xy � y6 � ay4 � by3 � cy2� sub

112k�1 �x; xy2 � y4 � y2k�1� k� 2 �x; xy2 � y4 � y2k�1 �Pk
i�1 aix

kÿiy� A1
alternatively

�x; xy2 � y4 � xky� k� 2 �x; xy2 � y4 � xky�Pk
i�1 aix

kÿiy� A1
12 �x; xy2 � y5 � y6� 5 �x; xy2 � y5 � axy� by3 � cy� A1
16 �x; x2y� y4 � y5� 5 �x; x2y� y4 � axy2 � by2 � cy� A2

A key invariant associated to any family of mappings is its bifurcation set.
This is the set of parameter values for which the associated mappings fail to
be stable. In the dimension range (determined by Mather) where stable
mappings are dense it will be di¡eomorphic to a proper subanalytic subset of
the unfolding space. For projections of a family of surfaces to planes we
have a subset of S2 � R, consisting of pairs �a; t� where the projection of the
surface Xt in the direction a is not stable. Recall that the stable mappings
from the plane to the plane were classi¢ed by Whitney, in [15], one of the
founding papers of singularity theory. There are three types of stable map-
ping locally, namely the submersion, the fold, and the cusp. At a semi-local
level the only type of interaction allowed is for two smooth parts of the im-
age of the critical set to meet transversally. We can now describe the manner
in which stability can fail, and consequently the various components of the
bifurcation set.
In a family stability can fail when a map has (i) a rank 1 singularity k-

equivalent to �x; yk� where k � 4 (we shall refer to this as the swallowtail set,
it corresponds geometrically to some line having 4-point or greater contact
with Xt), (ii) a singularity of rank 0 (corank 2 set), (iii) a point of multiplicity
three with the corresponding germ unstable, i.e. not a cusp (the lips/beaks
set), (iv) a pair of tangent folds, i.e. when the images of two pieces of fold
curve are tangent (the tangent folds set), (v) three concurrent fold points
(triple-fold set), (vi) a fold and incident cusp (fold+cusp). Note that in each
case one expects these sets to have codimension 1 in S2 � R, except in case
(ii) which is of codimension 2. This stratum is in the closure of stratum (i),
but it is of su¤cient interest to be considered as a separate case. Since we are
dealing with families of projections however there are no corank 2 singula-
rities.
We now need to identify the corresponding bifurcation sets for the map-

pings given Theorem 2.1. Again there is a relevant paper of Rieger, namely
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[13]. The ¢rst three cases above are stable and there is no bifurcation set to
consider. For the remainder we need to write out versal unfoldings, and lo-
cate the unstable points. This is a straightforward if messy business. Rieger
also shows that in some of the cases one can consider much smaller unfold-
ings, construct their bifurcation sets and deduce that the bifurcation set of
the full unfolding is homeomorphic to the product of the smaller unfolding
with an a¤ne space. (He uses the methods of [8], and also some of Damon's
calculations.) We have a slightly di¡erent interest in the germs. In particular
Rieger lumps together the swallowtail and lips/beaks strata, while it is im-
portant for us to separate them. Nevertheless his result (given in
Theorem 2.1) is extremely useful.
So for example in case 6 above the bifurcation set of the original germ is

homeomorphic to that of the given unfolding, and in case 7 the original bi-
furcation set is homeomorphic to the product of that of the given unfolding
with a line. Similarly in case 8 (resp. 12 and 16) the term y9 (resp. y6, y5) in
the second component of the germ is irrelevant for the unfolding.
We now wish to understand the changes in the viewgraph which occur in a

1-parameter family of surfaces. Our approach is the same as in [5]. Having
identi¢ed the singularities which will arise (those of codimension at most 3)
we need to ¢nd the associated bifurcation sets. These will sit inside the pro-
duct of the view-sphere with the time axis, S2 � R. We then need to under-
stand how this set projects down to the time axis, for this will give a de-
scription of the way in which the viewgraph changes with time. We are par-
ticularly interested in the subset of the bifurcation set corresponding to the
lips/beaks and tangent fold strata, for reasons we now explain.
As we have said a crucial geometric invariant associated to any family of

mappings is its bifurcation set. For functions, that is mappings whose target
is the reals, stability fails via a degenerate singularity, or a pair of critical
points sharing the same critical value. We shall refer to these subsets of the
bifurcation set Bif(H) as the A2 and 2A1 strata respectively. If, as in [5], we
consider the 2-parameter family of height functions on a surface, these cor-
respond respectively to normals to the surface at parabolic points, and nor-
mals to bitangent planes.
In the paper [7] the ¢rst author and M. C. Romero-Fuster considered a

curve or surface X in Euclidean 3-space R3 and the family of orthogonal
projections of X to lines and planes. The family of projections to lines is gi-
ven by H : X � S2 ! R, H�x; a� � hx; ai, where h ; i is the usual inner pro-
duct. For projections to planes let B � S2 � R3 denote the set
f�a; b� : ha; bi � 0g (B is the tangent bundle to S2). Then the family is given
by P : X � S2 ! B; P�x; a� � �a; xÿ ha; xia�: As above we think of this as a
family of maps Pa : X ! R2 parametrised by points of S2. Projections to
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lines we will refer to as height functions, projections to planes simply as
projections.
The main result in [7] showed that for a generic surface X in R3 the bi-

furcation set of the family H is dual to the lips/beaks and tangent fold sub-
set of the bifurcation set of P. The duality here assigns to a smooth point a
of either bifurcation set the pole points �a� corresponding to the unique
great circle (when viewed as an equator) tangent to the stratum at a. Note
that the bifurcation sets are really subsets of the corresponding real projec-
tive planes, so we can identify these poles and lose the apparent ambiguity.
In fact we work with the real projective planes, so that the tangent great
circle is replaced by the tangent line.
So we consider the subset of the bifurcation set for the projections corre-

sponding to lips/beaks and tangent folds. Our ¢rst result is a general one for
corank 1 mappings of the plane.

Proposition 2.2. Let f : R2; 0! R2; 0 be a smooth germ of corank 1 with
a-versal unfolding given by F : R2 � Rk; 0! R2; 0. Suppose without loss of
generality that we write f in the form f �x; y� � �x; g�x; y��, where g is singular
at the origin. Then that part of the bifurcation set of the germ F corresponding
to lips/beaks strata is di¡eomorphic to the discriminant of the function germ
given by @g=@y : R2; 0! R; 0. (More precisely we choose ak-versal unfolding
of this function of dimension k: the discriminant of this unfolding is di¡eo-
morphic to the lips/beaks stratum of F.)

Proof. We can choose an unfolding of f of the form F�x; y; u� �
�x;G�x; y; u��. Indeed by extending the number of variables we can ensure
that @G=@y is a k-versal unfolding of @g=@y. For if @g=@y�P ui�i�x; y� is
a versal unfolding we can set G � g�P ui

R
�i�x; y�dy. Now the lips/beaks

stratum corresponds to the set of unfolding variables for which @G=@y � 0 is
singular, and this corresponds to the discriminant of @G=@y. We deduce that
the lips/beaks subset of some versal unfolding of f is di¡eomorphic to the
discriminant of @g=@y, so that in a miniversal unfolding the lips/beaks stra-
tum is that of a k-miniversal unfolding of @g=@y crossed with an a¤ne
space of the relevant dimension.

The table of Theorem 2.1 contains, in the last column, the corresponding
type of @g=@y, where sub is short for submersion. We can immediately de-
duce that the lips/beaks stratum is empty in cases 2, 3, 5, 6, 7, 8, is smooth
of codimension 1 in cases 42,112k�1,12 and is a cuspidal edge in cases 43,16.
We now turn to the tangent folds stratum, in the cases 3, 5, 6, 7 and 8. The

point here is that we can arrange for the unfoldings to be of the form
�x; xy� yk �Pkÿ3

i�1 aiy
kÿiÿ1� � �x; g�x; y��: Indeed it is a consequence of the
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complete transversal classi¢cation procedure in [4] that any ¢nitely-de-
termined germ R2; 0! R2; 0 which is not a fold, but which has smooth sin-
gular set, can be chosen to have 2-jet �x; xy�, and higher jet of the form
�x; xy� p�y�� where p�y� is a polynomial in y. Similarly its unfolding can be
chosen to be of the form �x; xy� P�y; u�� where P�y; 0� � p�y�. The fact that
we have tangent folds originating from points, say �x; y1� and �x; y2�, means
that the partial derivatives of the second component with respect to x at the
two points are equal. But this would then show that y1 � y2, a contradiction.
In other words all germs with 2-jet �x; xy� have tangent folds set which is
empty. We deduce

Proposition 2.3. The germs of type 2; 3; 5; 6; 7; 8 have empty lips/beaks
and tangent folds strata.

In other words these germs are invisible to the height function geometry.
The computations of the bifurcation sets for the remaining cases are dealt
with in [13]. We reformulate some of the results there in terms of singula-
rities of functions on surfaces with boundary.

Theorem 2.4 (Compare [13]).
(i) For the germs 4k the beaks/lips subset of the bifurcation set is di¡eo-

morphic to the discriminant of an Akÿ1 singularity.
(ii) For the germs 112k�1 the beaks/lips/tangent folds subset of the bifurca-

tion set is di¡eomorphic to (a subset of) the discriminant of a function on a
manifold with boundary, namely that of type Ck with normal form
g�x; y� � xy� xk, where the boundary is given by y � 0.
(iii) For the germ of type 12 the beaks/lips/tangent folds subset of the bi-

furcation set is di¡eomorphic to the discriminant of a function on a manifold
with boundary, namely that of type B2, with normal form x2 � y2, where the
boundary is given by y � 0 again.
(iv) For the germ of type 16 the beaks/lips tangent folds subset of the bi-

furcation set is di¡eomorphic to the discriminant of x2 � 4y3 � 2axy� 2by� c
as a function on the manifold with boundary given by y � 0.

Proof. For the ¢rst result note that these germs have local multiplicity 3
(they are k-equivalent to the germs �x; y3�) so cannot deform to tangent
fold singularities. The beaks lips stratum is easily obtained. The second part
is also a straight calculation using the alternative form of the germ and its
unfolding. We give the details of part (iii), that is we consider the germ
�x; xy2 � y5 � axy� by3 � cy�. The lips/beaks stratum is the discriminant of
2xy� 5y4 � ax� 3by2 � c, which can be parametrised as the set
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BL � a; b;ÿ 5
16

a4 ÿ 3
4
a2b

� �� �
while the tangent folds stratum is given by

TF � f�a;ÿ2y2 ÿ 2ayÿ 3a2; y4 � 2ay3 � 3a2y2 � 2a4�g:
TF is a surface with boundary, the boundary, being given by the image of
b� �1=2�a � 0, is parametrised as f�a;ÿ�5=2�a2; �25=16�a4�g. This curve also
lies in the BL stratum, as one can easily check. The two surfaces TF and BL
are tangential along this common boundary and it is not di¤cult to show
that their union is di¡eomorphic to the union of the sets given in �a; b; c�-
space by fb � 0g and fb � a2 : a � 0g. This is the discriminant of another
function on a manifold with boundary, namely one of type B2.
Clearly the discriminant is a local product. We now determine the nature

of the singularities corresponding to intersection of the two strata. There is a
natural R�-action on the unfolding space: for a given � 6� 0 we change co-
ordinates in the source by �x; y� 7! ��ÿ3x; �ÿ2y� and in the target by
�u; v� 7! �u; �5y�; this gives an action on the unfolding space via
�a; b; c� 7! ��a; �2b; �4c�. So the intersection is the union of (0, 0, 0) and a
single orbit through, say, (2, 10, 25). Calculation shows that
�x; xy2 � y5 � 2xyÿ 10y3 � 25y� has an 115 singularity at �x; y� � �20;ÿ1�.
So the intersection consists of such singularities.

3. The multilocal singularities.

The multilocal singularities of mappings R2 ! R2 have also been studied.
The classi¢cations so far however have concentrated on multigerms of a-
codimension � 4; see for example [9]. The duality correspondence for these
germs is given in [2,7]. For our investigation we also need multigerms of a-
codimension 5 that correspond to codimension 3 multi-local singularities of
the height function. We shall not classify all these singularities but in-
vestigate only those relevant to the duality results. These are (i) 4-point
contact folds, (ii) triple tangent folds, (iii) tangent lips/beaks plus fold.
The multigerm (i) is part of the series of k-point contact folds represented

by f�x1; y21�; �x2; y22 � xk2�g. Its bifurcation set (which consists only of tangent
fold points) is the discriminant of an Ak singularity [2].
The case (ii) can be represented by f�x1;�y21�; �x2; y22 � x22�;

�x3; y23 � ax23 � bx33�g where a; b are moduli (b 6� 0). A versal unfolding has
the form

f�x1; y21�; �x2; y22 � x22 � c�; �x3 � c; y23 � ax23 � bx33 � e�g:
For ¢xed values of a; b the bifurcation set consists of three transverse planes.
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The case (iii) is given by f�x1; y21�; �x2; x22 � y32 � x22y2�g,with a versal un-
folding of the form f�x1; y21�; �x2; x22 � y32 � x22y2 � ax2 � by2 � c�g. The lips/
beaks stratum consists of the plane f�a; 0; c�g while the tangent folds stratum
is given by

f�ÿ2x2 � 2x2y2;ÿ3y22 � x22; x
2
2 � 2y32 � 2x22y2�g:

This is a cuspidal edge intersecting the lips/beaks stratum in a node or an
isolated point. The full bifurcation set is di¡eomorphic to the variety
�z� y2��z3 ÿ x2� � 0.

4. Sections of bifurcation sets.

We now need to determine the generic sections of these bifurcation sets,
which arise when we project them from S2 � R to R. For those singularities
whose bifurcation sets are discriminants this has already been done (see [1]).
In particular we need not concern ourselves with the germs of type 4k. Si-
milarly one can classify projections of discriminants of functions on a
manifold with boundary [10]. As an illustration we shall deal with the cases
16 in Theorem 2.1 whose bifurcation set is described in Theorem 2.4, and the
``tangent lips/beaks plus fold'' in the multilocal situation. We shall need the
following result.
Let f � �f1; . . . ; fn� : C n; 0! C n; 0 be a holomorphic map which is ¢nite,

that is the inverse image of 0 is locally 0. Let on be the set of holomorphic
function germs C n; 0! C and let F : �on�n ! on be the homomorphism de-
¢ned by F�g1; . . . ; gn� �

Pn
i�1 gifi. Then the kernel of this homomorphism is

generated by the obvious vectors, namely fiej ÿ fjei, where as usual the vec-
tor ei has a 1 in the ith place and 0's elsewhere. This follows easily from the
fact that f1; . . . ; fn form an on-regular sequence.

4.1. Generic sections of V1 � �x; y; z� : �z2 ÿ y3� 8z� x2yÿ 1
432

x6
� �

� 0
� �

.

We seek the vector ¢elds tangent to the variety V1 which is the bifurcation
set of case 16 (Theorem 2.4 (iii)). The way to do this is to consider the two
components of this variety. The subset corresponding to the lips/beaks is
given by z2 � y3. The set of tangent vector ¢elds to this variety is generated
by
e11 � @=@x; e12 � 2y@=@y� 3z@=@z; e13 � 2z@=@y� 3y2@=@z:
On the other hand those tangent to the variety given by the vanishing of

the second equation are generated by
e21 � x@=@x� 4y@=@y� 6z@=@z; e22 � ÿ8@=@x� �2xyÿ 1

72�x5�@=@z; e23 �
ÿ8@=@y� x2@=@z:
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We seek the intersection of the modules generated by these vector ¢elds. A
short calculation shows that we are seeking the kernel of the homomorphism
o33 ! o3 given by

�g1; g2; g3� 7! g1f1 � g2f2 � g3f3 � g1 3z� 1
4
yx2

� �
� g2 2xyÿ 1

72
x5

� �
� g3 ÿ3y2 ÿ 1

4
zx2

� �
:

But the map �g1; g2; g3� : C3; 0! C3; 0 is clearly ¢nite, and the result above
will apply. Substituting back we ¢nd that the required vector ¢elds are

 1 � x@=@x� 4y@=@y� 6z@=@z
 2 � ÿ8f1@=@x� f2�2y@=@y� 3z@=@z�
 3 � f3�2y@=@y� 3z@=@z� � f1�2z@=@y� 3y2@=@z�
 4 � 8f3@=@x� f2�2z@=@y� 3y2@=@z�:

These (real) vector ¢elds will be tangent to the real part of the bifurcation
set. Changes of coordinates preserving this set are obtained by integrating
linear combinations of the  i.
We can now classify generic functions on this bifurcation set, using the

usual techniques, in particular the idea of a complete transversal [4]. Here we
need to consider non-stable functions. Let g be the group of pairs of di¡eo-
morphisms �h; k� where h preserves the variety V1 in the source and k is any
change of coordinates in the target. We obtain the following result.

Theorem 4.1. On the variety V1 given above there is a unique stable func-
tion up to g-equivalence. This has normal form x� y. The next least degen-
erate germ has normal form x, and this function is topologically equivalent to
the stable germ x� y. The next least degenerate germ after this has two moduli
and is of the form y� z� ax2 � bx3,a 6� 0. The sections of the variety by this
germ are illustrated in Figure 1 for a > 0 and a < 0.

Proof. The tangent space to the g-orbit of a germ of a function f on V1 is

Tgf � e3 <  1�f �;  2�f �;  3�f �;  4�f � > �f ��m1�
where  i (i � 1; ::; 4) are as above, en the ring of germs from Rn; 0! R, mn

the maximal ideal in en and f ��m1� the pull back of m1 by f . The classi¢-
cation is carried out inductively in the jet space Jk�3; 1� for low values of k
using the complete transversal method and determinacy results described in
[4] together with Mather's Lemma. Details are left to the reader.
We need criteria for recognising the types of sections we get on the bi-

furcation set of a family of projections when the singularity at the origin is
of type 16.
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Lemma 4.2. Let W be a variety di¡eomorphic to V1. Then a function
f : W ! R yields sections equivalent to those given by y� z� ax2 � bx3 on V1

if and only if
(i) f is a submersion whose ¢bre at the origin is transverse to the smooth

stratum of W, and
(ii) the sections of f on the cuspidal edge in W are of Morse type.

This follows by an analysis of the conditions in the proof of the previous
theorem for a function to be g-equivalent to y� z� ax2 � bx3.

4.2. Generic sections of V2 � f�x; y; z� : �z� y2��z3 ÿ x2� � 0g.
The variety V2 represents the bifurcation set of the ``lips/beaks plus tan-

gent fold'' multi-local singularity. We need to ¢nd the vector ¢elds tangent
to this variety. We proceed as in the previous case and start by ¢nding the
generators for the vector ¢elds tangent to the varieties z� y2 � 0 and
z3 ÿ x2 � 0.
For z3 ÿ x2 � 0 these are given by e11 � @=@y; e12 � 3x@=@x�

2z@=@z; e13 � 3z2@=@x� 2x@=@z, while for variety given by z� y2 � 0 they
are generated by e21 � @=@x;e22 � y@=@y� 2z@=@z; e23 � @=@y� 2y@=@z:
The intersection of the corresponding modules (those ¢elds tangent to the

variety V2) is generated by

 1 � 3x@=@x� y@=@y� 2z@=@z
 2 � �x2 ÿ z3�@=@x
 3 � �3xy@=@xÿ z@=@y� 2yz@=@z
 4 � �3yz2@=@x� x@=@y� 2xy@=@z:

We can now classify generic functions on the variety V2 as we did in
Theorem 4.1.

Theorem 4.3. On the variety V2 there is a unique stable function up to
changes of coordinates in the source which preserves the variety and changes of
coordinates in the target. This has normal form y. The next least degenerate
germ has one modulus and is of the form x� z� ay2 where a 6� 0;�1. The
sections of the variety by this germ are illustrated in Figure 2.

Here we need to recognise the type of sections of the bifurcation set of a
family of projections when the multi-singularity at the originis of type ``tan-
gent lips/beaks plus fold''. Here the projection to the time coordinates is
also not generic (even for a generic family of surfaces). Recall that on its
bifurcation set the tangent beaks (res. lips) plus fold is a distinguished point,
corresponding to a point of tangency between a cuspidal edge and a smooth
surface. We claim that the section through the distinguished point of the
time t �constant sphere is also tangent to the cuspidal edge. In the case of
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the tangent lips plus fold this is clear. The lips grow into a lips proper in one
time direction only, and only then give rise to any tangent folds. If the sec-
tion were not tangent to the cuspidal edge there would be a cusp of tangent
fold points before, during and after the lips transitions. Similarly for the
tangent beaks plus fold. It is clear using the unfolding given in 2.1 that the
tangent folds stratum has cusps (corresponding to triple tangent folds) at
n£exions of the perturbed beaks, and these only occur in the direction in
which the beaks split into two cusps. We shall prove these results in the next
section.

Lemma 4.4. Let W be a variety di¡eomorphic to V2. Then a function
f : W ! R yields sections equivalent to those given by x� z� ax2 on V2 if and
only if
(i) f is a submersion whose ¢bre at the origin is transverse to the smooth

stratum of W.
(ii) The sections of f on the cuspidal edge in W are of Morse type.

This follows from the criterion in the proof of Theorem 4.3 for a function
to be g-equivalent to x� z� ax2.

5. Duality and height functions.

In this section we match up the singularities of the projections to those of the
height functions. This was done for a number of cases in [7] and [2], but a
wide variety of interesting cases remain.
We recall that for the case of monogerms the unstable singularities of

height functions that occur generically in 1-parameter families of surfaces
are A2, A3, A�3 , A4, D�4 . For the multilocal case they are A3

1, A1A2, A4
1, A

2
1A2,

A1A3, A2
2, see [5]. The local singularities for the projections are as in Theo-

rem 2.1. The multilocal ones that are of interest here are those enumerated in
[7] together with those given in ½ 3.
It is shown in [7] that the dual of an A2 point is a lips/beaks (42 in Theo-

rem 2.1). More generally, a result in [2] (Theorem 2.1 (i)) states that the
tangent line has k-point contact with the A2 stratum if and only if the dual
direction determines a projection of type 4k. In [7] the dual of an A3 is a gulls
(115). For the multilocal correspondence, the dual of a 2A1 is a tangent folds
singularity [7]. Here the tangent line has k-point contact with the 2A1 stra-
tum if and only if the dual direction determines a projection of type k-point
contact fold [2] (Theorem 2.1 (ii)).
We shall describe in this section the duality correspondence for the re-

maining cases in Theorem 2.1 and those of the local and multi-local singu-
larities of the height functions that occur in generic 1-parameter families of
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