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THE DIOPHANTINE SYSTEM x2 ÿ 6y2 � ÿ5; x � 2z2 ÿ 1

J. H. E. COHN*

1. Introduction.

In a recent paper [5] showing that the system of the title has only the solu-
tions in integers given by �z � 0; 1; 2; 3; 6 and 91, the introduction men-
tioned in passing that the elementary algebraic methods developed for ex-
ample in [2] do not appear su¤cient to solve this problem. The authors then
proceeded to prove their result using the high powered analytical methods
for which they, Tzanakis, de Weger, Steiner and others have become re-
nowned. We present below a short simple proof of their result.
It is clearly su¤cient to assume that x � ÿ1; y � 1 and z � 0 we shall do

so without further mention. The equation v2 ÿ 6u2 � 1 has fundamental so-
lution � � 5� 2

���
6
p

, and then it is easily shown that the general solution of
x2 ÿ 6y2 � ÿ5 is given by the two classes x� y

���
6
p � ��1� ���

6
p ��n with

n � 0. Let � � 5ÿ 2
���
6
p

and de¢ne the sequences un � ��n ÿ �n�=��ÿ ��,
vn � ��n � �n�=2. Then x � �vn � 12un, and so our problem reduces to
proving that the only solutions of the equation

2z2 � 1� vn � 12un�1�
are given by n � 0; 1 and 4 of the equation

2z2 � 1ÿ vn � 12un�2�
are given by n � 0; 1 and 2.
Here both un and vn satisfy the recurrence relation wn�2 � 10wn�1 ÿ wn and

the ¢rst few values are given in the following table:
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n un vn vn � 12un ÿvn � 12un

0 0 1 1
í
-1

1 1 5 17 7

2 10 49 169 71

3 99 485 1673 703

4 980 4801 16561 6959

We shall quote several standard identities involving the sequences un and
vn and results concerning the periodicity of these sequences modulo certain
moduli which are easily veri¢ed, without writing them all out in detail.

2. Preliminaries.

Lemma 1. The equation 3x4 ÿ 2y2 � 1 has only the solutions in non-negative
integers given by x � 1; 3.

This is shown in [1].

Lemma 2. The equation 6y2 � x4 ÿ 1 has only the solutions in non-negative
integers given by x � 1; 7.

This is shown in [3].

Lemma 3. The equation y2 � 24x4 � 1 has only the solutions in non-negative
integers given by x � 0; 1.

For, �y� 1��yÿ 1� � 24x4 and here �y� 1; yÿ 1� � 2. Thus with x � x1x2
either y� 1 � 2x41; y� 1 � 12x42 in which case �1 � x41 ÿ 6x42; here the lower
sign is impossible modulo 3, whereas the upper one gives only x1 � 1; x2 � 0
by Lemma 2;
or y� 1 � 6x41; y� 1 � 4x42 and now �1 � 3x41 ÿ 2x42. Again the lower sign is
impossible modulo 3, and the upper sign gives only x1 � x2 � 1 in view of
Lemma 2.

Lemma 4. The equation 3y2 � 2x4 � 1 has only the solution in non-negative
integers given by x � 1.

This is proved in [4], and is the only result that we use which has not been
proved by technically elementary methods.

162 j. h. e. cohn



{orders}ms/98711/cohn.3d -17.11.00 - 12:38

3. Proof of result.

There are four cases.

(A) The only solutions of (1) with n even are n � 0 and 4.
For with n � 2k; 2z2 � 1� v2k � 12u2k � 2vk�vk � 12uk�, and so since

�vk; vk � 12uk� � 1 we must have vk � z21. Then 1 � v2k ÿ 24u2k � z41 ÿ 6�2uk�2,
and so by Lemma 2, z1 � 1 or 7 whence k � 0 or 2 as required.

(B) The only solution of (1) with n odd is n � 1.
For with n � 2k� 1,

2z2 � 1� v2k�1 � 12u2k�1

� 1� �5v2k � 24u2k� � 12�v2k � 5u2k�
� �v2k ÿ 24u2k� � 17�v2k � 24u2k� � 168ukvk

� 18v2k � 168ukvk � 384u2k

� 6�vk � 4uk��3vk � 16uk�:

Here the ¢nal two factors on the right have no common factor, and since
3vk � 16uk � 3 (mod 4�, we must have vk � 4uk � z21; 3vk � 16uk � 3z22. Thus
4uk � 3z22 ÿ 3z21; vk � 4z21 ÿ 3z22, and so

1 � v2k ÿ 24u2k � �4z21 ÿ 3z22�2 ÿ 27
2 �z21 ÿ z22�2; whence

2 � 5z41 � 6z21z
2
2 ÿ 9z42 � 6z41 ÿ �z21 ÿ 3z22�2; or

1 � 3z41 ÿ 2�12 �z21 ÿ 3z22��2;
and so by Lemma 1, the only possibilities are z1 � 1 or 3. The former gives
k � 0 whence n � 1 and the latter no solution.

(C) The only solutions of (2) with n even are n � 0 and 2.
For with n � 2k; 2z2 � 1ÿ v2k � 12u2k � 24uk�ÿ2uk � vk�, and so since

vk ÿ 2uk is odd and has no factor in common with uk we must have
either uk � z21; vk ÿ 2uk � 3z22; in this case 1 � v2k ÿ 24u2k � v2k ÿ 24z41 implies
z1 � 0 or 1 in view of Lemma 3; the latter yields n � 2 whilst the former
gives no solution;
or uk � 3z21; vk ÿ 2uk � z22. Since uk � 0 (mod 3), it follows that 3jk, and with
k � 3m we ¢nd that z21 � 1

3 u3m � um�32u2m � 1�. This implies that um is a
square, and just as above this is possible only um if equals 0 or 1. The former
gives n � 0 and the latter no solution.

(D) The only solution of (2) with n odd is n � 1.
For with n � 2k� 1,
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2z2 � 1ÿ v2k�1 � 12u2k�1

� 1ÿ �5v2k � 24u2k� � 12�v2k � 5u2k�
� �v2k ÿ 24u2k� � 7�v2k � 24u2k� � 72ukvk

� 8�vk � 3uk��vk � 6uk�

and this is possible only if z21 � vk � 6uk. But then

2z41 � 1 � 2�vk � 6uk�2 � 1

� 2v2k � 24ukvk � 72u2k � v2k ÿ 24u2k

� 3�vk � 4uk�2

and by Lemma 4, this is possible only for k � 0.
This concludes the proof.

Note added in proof. By an extraordinary coincidence this same pro-
blem was considered by R. J. Stroeker & B. M. M. de Weger in ``On a
quartic Diophantine Equation'', Proc. Edinburgh Math. Soc. 39 (1996), 97^
114. Their method is as long and similar in conception to that of [5] although
the details are totally di¡erent.
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