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REAL INTERPOLATION OF COMPACT OPERATORS
BETWEEN QUASI-BANACH SPACES

FERNANDO COBOS* and LARS-ERIK PERSSON

Abstract.

Let �A0;A1� and �B0;B1� be couples of quasi-Banach spaces and let T be a linear operator. We
prove that if T : A0 ! B0 is compact and T : A1 ! B1 is bounded, then
T : �A0;A1��;q ! �B0;B1��;q is also compact.
Some results on the structure of minimal and maximal interpolation methods are also estab-

lished.

0. Introduction.

Assume that T is a linear operator such that T : Lp0 ! Lq0 compactly and
T : Lp1 ! Lq1 boundedly. Here 1 � po; p1; q1 � 1; 1 � q0 <1. Let 0 < � < 1
and put 1=p � �1ÿ ��=p0 � �=p1, 1=q � �1ÿ ��=q0 � �=q1. In 1960, Krasno-
selskii [13] proved that under these assumptions T : Lp ! Lq is also com-
pact.
Krasnoselskii's theorem was motivated by certain compactness results for

integral operators established by Kantorovich (see [14], p. 118) and it led to
the study of interpolation properties of compact operators between abstract
Banach spaces. These investigations has been done during two very di¡erent
periods. A ¢rst one during the 60's, simultaneous to the foundation of ab-
stract interpolation theory, and a second period developed during the last
decade, where modern interpolation techniques have been successfully used
to derive new compactness results.
Contributions on this subject are due to many authors. We refer to [8] and

[7] for a quite complete list of references and for historical remarks on the
development during the two periods. Some more recent results can be found
in the papers by Cobos [4], Cwikel and Kalton [9] and Mastylo [16].
Returning to Krasnoselskii's theorem, Zabreiko and Pustylnik [20] (see

also [14], Thm. 3.11) proved in 1965 that the result is still true for the full

MATH. SCAND. 82 (1998), 138^160

� Supported in part by Ministerio de Asuntos Exteriores (Programa de Ayudas de Coopera-
cioè n Cientí |̈¢ca a Investigadores en Instituciones de Suecia durante 1995).
Received January 15, 1996.



{orders}ms/98424/cobos.3d -17.11.00 - 11:41

rank of parameters, that is for 0 < q0; q1 � 1. Note that the last couple is
formed by quasi-Banach spaces when 0 < q0; q1 < 1. It arises then the ques-
tion if a similar result holds true for abstract quasi-Banach couples, not only
for Lq-couples. Accordingly, we establish in this paper such a result.
We follow the approach developed in [8] and [7] (see also [5], [6]) based on

the description of the real interpolation method as a maximal and a minimal
interpolation method in the sense of Aronszajn-Gagliardo [1]. The main ob-
stacle is then to ¢nd a useful extension of maximal methods for quasi- Ba-
nach couples. The natural de¢nitions based on scalar sequence spaces, give
nothing but the sum space when applying to a couple as �Lq0 ;Lq1� with
0 < q0; q1 < 1, because the spaces Lqj have trivial dual.
We overcome this di¤culty by giving a maximal description of the real

interpolation space in terms of vector valued sequence spaces involving the
couple into consideration. We have then a description for each quasi-Banach
couple, rather than a description for the real interpolation method. How-
ever, this will be su¤cient for our purposes. Such a description is given in
Section 2, where we also derive the corresponding minimal characterization.
Working in the category of Banach couples, any maximal or minimal

method de¢ned by sequence spaces satisfying certain mild conditions, can be
equivalently de¢ned by vector valued sequence spaces as we show in Section
1. This result, that we think has independent interest, is based on the Hahn-
Banach theorem and applies not only to the real method, but also to the ``�''
method (see [18], [10]) and Ovchinnikov's �u-method [17].
In the ¢nal Section 3 we prove the announced interpolation theorem for

compact operators in the quasi-Banach case.

1. Maximal and minimal methods in Banach spaces.

Let us start by recalling the construction of the Aronszajn-Gagliardo max-
imal functor H��B0;B1�;B���; ��; for Banach spaces (see [1]; see also [12], [3]).
If �A � �A0;A1� and �B � �B0;B1� are Banach couples, we write

T 2l��A; �B� to mean that T is a linear operator from A0 � A1 into B0 � B1

such that the restriction of T to each Aj de¢nes a bounded operator from Aj

into Bj �j � 0; 1�. We write

kTk�A;�B � max
j�0;1
fkTkAj ;Bj

g

We say that a Banach space A is an intermediate space with respect to the
couple �A � �A0;A1� if the following continuous embeddings hold

���A� � A0 \ A1 ,!A ,!A0 � A1 � ���A�:
If, in addition to the above property, whenever T 2l��A; �A� if follows that
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T : A! A is bounded, then A is called an interpolation space with respect to
the couple �A.
Let �B � �B0;B1� be a ¢xed Banach couple and let B be a ¢xed intermediate

space with respect to �B. Given any Banach couple �A � �A0;A1�, the space
H�A0;A1� � H��B0;B1�;B��A0;A1� is de¢ned as the collection of all those
elements a 2 ���A� such that Ta 2 B for all T 2l��A; �B�. The norm in
H��B0;B1�;B��A0;A1� is given by

kakH � supfkTakB : kTk�A;�B � 1g:
In order to give some important examples of maximal methods denote by

`q �1 � q � 1� and c0 the usual spaces of doubly in¢nite scalar sequences
and, given any positive sequence �!m�, de¢ne `q�!m� by

`q�!m� � f�m� : �!m�m� 2 `qg:
We give a similar meaning to c0�!m�.
Example 1.1. Let 1 � q � 1 and 0 < � < 1. If �B � �`1; `1�2ÿm�) and

B � `q�2ÿ�m�, then the interpolation method generated by this choice is

H��`1; `1�2ÿm��; `q�2ÿ�m���A0;A1� � �A0;A1��;q
the real interpolation method realized as a K-space (see [12]). Namely

�A0;A1��;q � a 2 ���A� : kak�;q �
X1

m�ÿ1
�2ÿ�mK�2m; a��1=q

 !1=q

<1
8<:

9=;�1�

where

K�2m; a� � inffka0kA0
� 2mka1kA1

: a � a0 � a1; aj 2 Ajg:
Example 1.2. If �B � �`1; `1�2ÿm�� and B � `1�2ÿ�m�, then we obtain

H��`1; `1�2ÿm��; `1�2ÿ�m���A0;A1� � H1�A0;A1�
Ovchinnikov's �u-method (see [12] or [17]):

Note that the sequence spaces X � `q�!m� which arise in Examples 1.1 and
1.2 satisfy the following three conditions:
a) Sequences having only a ¢nite number of coordinates di¡erent from

zero are contained in X .
b) k��m�kX � sup

n�0
k�. . . ; 0; 0; �ÿn; �ÿn�1; . . . ; �nÿ1; �n; 0; 0; . . .�kX .

c) If j�mj � j�mj for each m 2 Z and ��m� 2 X , then ��m� 2 X and
k��m�kX � k��m�kX .

140 fernando cobos and lars-erik persson



{orders}ms/98424/cobos.3d -17.11.00 - 11:42

All sequence spaces that we consider in the rest of this section are sup-
posed to satisfy conditions a), b) and c).
Next we shall show that the behaviour of a maximal method on a couple

of sequence spaces can be shifted to couples of vector valued sequence
spaces.
Let �s � �s0; s1� be any Banach couple of scalar sequence spaces over Z and

let s be any intermediate sequence space with respect to �s. Given any se-
quence of Banach spaces �Fm� with Fm 6� f0g for each m 2 Z, we put

s�Fm� � f�am� : am 2 Fm and k�am�ks�Fm� � k�kamkFm�ks <1g
and we de¢ne s0�Fm� and s1�Fm� similarly. Assumptions a), b) and c) on
scalar sequence spaces guaranteee that the vector valued sequence spaces are
Banach spaces. It is also clear that

�s�Fm� � �s0�Fm�; s1�Fm��
is a Banach couple.
We are now ready to establish the announced result.

Theorem 1.3. Let H��B0;B1�;B��:; :� be any maximal method and let
�s0; s1�, s and �Fm� be as above. If H�s0; s1� = s then

H�s0�Fm�; s1�Fm�� � s�Fm�:
Proof. Take any �am� 2 H�s0�Fm�; s1�Fm�� and let T 2l��s0; s1�,

�B0;B1�� with kTk�s;�B � 1. Using the Hahn-Banach theorem, for each m 2 Z
we can ¢nd fm 2 F �m such that

kfmkF �m � 1 and fm�am� � kamkFm :
Next consider the operator R 2l��s0�Fm�; s1�Fm��; �B0;B1�� de¢ned by

R�xm� � T�fm�xm��:
It is easy to see that

kRk�s�Fm�;�B � 1:

Hence, according to the de¢nition of the maximal method, we have that

R�am� � T�kamkFm� 2 B and

kT�kamkFm�kB � kR�am�kB � k�am�kH�s0�Fm�;s1�Fm��:
Since this holds for any T 2l��s0; s1�; �B0;B1�� with kTk�s;�B � 1, we con-
clude that �kamkFm� 2 H�s0; s1� � s with
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k�kamkFm�ks � k�am�ks�Fm� � k�am�kH�s0�Fm�;s1�Fm��:
This proves that

H�s0�Fm�; s1�Fm�� ,! s�Fm�:
Conversely, let �am� 2 s�Fm�. Given any R 2l��s0�Fm�; s1�Fm��; �B0;B1��

with kRk�s�Fm�;�B � 1 put

T��m� � R
�m
kamkFm

am

 !
:

(If for some m 2 Z is am � 0, then we replace 1
kamkFm

am by 0). The operator T

belongs to l(�s0; s1�,�B0;B1�� and kTk�s;�B � 1. It follows from

�kamkFm� 2 s � H�s0; s1�
that

T�kamkFm� � R�am� 2 B
and

kR�am�kB � k�kamkFm�ks � k�am�ks�Fm�:
Consequently

�am� 2 H�s0�Fm�; s1�Fm�� and k�am�kH�s0�Fm�;s1�Fm� � k�am�ks�Fm�:
The proof is complete.

By using Theorem 1.3 we establish now a stability property of maximal
methods.

Theorem 1.4. Let �s � �s0; s1� be a Banach couple of sequence spaces and let
s be an interpolation space with respect to �s0; s1�. Then, given any sequence of
Banach spaces �Fm� with Fm 6� f0g for each m 2 Z, the interpolation functor
H��s0; s1�; s��:; :� coincides with the maximal functor de¢ned by the vector va-
lued couple �s0�Fm�; s1�Fm�� and the intermediate space s�Fm�.
In other words, for any Banach couple �A0;A1�, we have that

H��s0; s1�; s��A0;A1� � H��s0�Fm�; s1�Fm��; s�Fm���A0;A1�:

Proof. Clearly

H��s0; s1�; s��s0; s1� � s

because s is an interpolation space with respect to �s0; s1�. Applying Theorem
1.3 we obtain that
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H��s0; s1�; s��s0�Fm�; s1�Fm�� � s�Fm�:
Since, by construction, H��s0�Fm�; s1�Fm��; s�Fm���:; :� is the biggest inter-
polation method f satisfying that

f�s0�Fm�; s1�Fm�� ,! s�Fm�;
we conclude that

H��s0; s1�; s��A0;A1� ,! H��s0�Fm�; s1�Fm��; s�Fm���A0;A1�
for any Banach couple �A0;A1�.
Conversely, let a 2 H��s0�Fm�; s1�Fm��; s�Fm���A0;A1� and take any

T 2l��A;�s� with kTk�A;�s � 1. Then T can be written as Ta � �Tma� for some
Tm 2l��A0;A1�; �K;K��. Here K stands for the scalar ¢eld. Choose any
um 2 Fm; um 6� 0, and let R be the vector valued operator de¢ned by

Ra � Tma
kumkFm

um

 !
:

The estimate

kRaksj�Fm� � jTmaj
kumkFm
kumkFm

 !











sj

� kTaksj � kakAj

yields that R belongs to l��A;�s�Fm�� with kRk�A;�s�Fm� � 1. It follows then that

Ra 2 s�Fm� and kRaks�Fm� � kakH�s0�Fm�;s1�Fm��;s�Fm���A0;A1�:

But

kRaks�Fm� � k�Tma�ks � kTaks:
Whence, since T 2l��A;�s� was chosen arbitrarily, we get that
a 2 H��s0; s1�; s��A0;A1� with

kakH��s0;s1�;s��A0;A1� � kakH��s0�Fm�;s1�Fm��;s�Fm���A0;A1�:

Next we discuss the case of minimal methods, a construction which is
``dual'' to the maximal methods.
Let again �B � �B0;B1� be a ¢xed Banach couple and let B a ¢xed inter-

mediate space with respect to �B . The Aronszajn-Gagliardo minimal functor
[1] de¢ned by these spaces associates to each Banach couple �A � �A0;A1� the
space G�A0;A1� � G��B0;B1�;B��A0;A1� formed by all sums

X1
n�1

Tnbn 2 ���A�
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where bn 2 B;Tn 2l��B; �A� and
X1
n�1
kTnk�B;�AkbnkB <1. We provide

G��B0;B1�;B��A0;A1� with the norm

kakG � inf
X1
n�1
kTnk�B;�AkbnkB : a �

X1
n�1

Tnbn

( )
:

Example 1.5. In (1) we introduced the real interpolation space �A0;A1��;q
by means of the K-functional. It can be equivalently de¢ned by means of the
J-functional

J�t; a� � maxfkakA0
; tkakA1

g:
That is to say,

�A0;A1��;q � a 2 ���A� : a �
X1

m�ÿ1
um (convergence in ���A�� with

(
�2�

�um� � ���A� and
X1

m�ÿ1
�2ÿ�mJ�2m; um��q

 !1=q

<1
9=;

see [2], [19]). Moreover, the norm of �A0;A1��;q is equivalent to

kak�;q � inf
X1

m�ÿ1
�2ÿ�mJ�2m; um��q

 !1=q

: a �
X1

m�ÿ1
um

8<:
9=;

(although we denote the two norms by the same letter, this will not cause
any confusion):
Regarded as a J-space �A0;A1��;q, if 1 � q � 1 and 0 < � < 1, coincides

with

G��`1; `1�2ÿm��; `q�2ÿ�m���A0;A1� �see �12��:

Example 1.6. Take again 0 < � < 1 and given any Banach couple
�A � �A0;A1� put

hA0;A1i� � fa 2 ���A� : a �
X1

m�ÿ1
wm �convergence in ���A���3�

with �wm� � ���A� satisfying that for every ¢nite set E � Z and every scalar
sequence � � ��m� with k�k1 � 1 it holds
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X
m2E

�m2�jÿ��mwm













Aj

� C �j � 0; 1�

with C independent of E and �}.
The norm of hA0;A1i� is given by

kakh�i � inf C : a �
X1

m�ÿ1
wm

( )
:

This interpolation method was introduced by Gustavsson and Peetre [11]
and it admits the following minimal description

hA0;A1i� � G��c0�2�m�; c0�2��ÿ1�m��; `1��A0;A1�
(see [12]).

Again the sequence spaces in Examples 1.5 and 1.6 satisfy conditions a),
b) and c). Next we show that minimal methods de¢ned by sequence spaces
ful¢ling such conditions also enjoy the stability property with respect to
vector valued sequences. We start with a result in the line of Theorem 1.3.

Theorem 1.7. Let G��B0;B1�;B��:; :� be any minimal method and let
�s � �s0; s1�; s and �Fm� be as in Theorem 1.3. If G�s0; s1� � s then

G�s0�Fm�; s1�Fm�� � s�Fm�
Proof. Let �am� 2 s�Fm�. Since any T 2l��B;�s� is given by Tb � �Tmb�

for some Tm 2l��B0;B1�; �K;K��; we can de¢ne an operator
R 2l��B0;B1�; �s0�Fm�; s1�Fm��� by the formula

Rb � Tmb
kamkFm

am

 !
:

Clearly kRk�B;�s�Fm� � 1 if kTk�B;�s � 1:
Take now any representation of �kamkFm� in s � G�s0; s1�, say

�kamkFm� �
X1
j�1

Tjbj with
X1
j�1
kTjk�B;�s kbjkB <1. Then �am� �

X1
j�1

Rjbj and

X1
j�1
kRjk�B;�s�Fm� kbjkB �

X1
j�1
kTjk�B;�s kbjkB:

Hence

s�Fm� ,! G�s0�Fm�; s1�Fm��:
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Conversely, any operator R 2l��B;�s�Fm�� can be written as Rb � �Rmb�
for some Rm 2l��B0;B1�; �Fm;Fm��. Then, for any functionals fm 2 F �m with
kfmkF �m � 1, the formula

Tx � �fm�Rmx��
de¢nes an operator from �B into �s, and

kTk�B;�s � kRk�B;�s�Fm�:

Take now any �am� 2 G�s0�Fm�; s1�Fm�� and any representation

�am� �
X1
j�1

Rjbj with
X1
j�1
kRjk�B;�s�Fm� kbjkB <1. Find fm 2 F �m such that

fm�am� � kamkFm and kfmkF �m � 1, and let Tj 2l��B;�s� be the operators ob-
tained from the Rj's composing with functionals �fm�. Then

�kamkFm� �
X1
j�1

Tjbj

and X1
j�1
kTjk�B;�s kbjkB �

X1
j�1
kRjk�B;�s�Fm� kbjkB:

This shows that

G�s0�Fm�; s1�Fm�� ,! s�Fm�
and ends the proof.

We are now ready for the stability result in the minimal case.

Theorem 1.8. Let �s � �s0; s1� be a Banach couple of sequence spaces and let
s be an interpolation space with respect to �s. Then, given any sequence of Ba-
nach spaces �Fm� with Fm 6� f0g for each m 2 Z and given any Banach couple
�A0;A1�, we have

G��s0; s1�; s��A0;A1� � G��s0�Fm�; s1�Fm��; s�Fm���A0;A1�:
Proof. Using that s is an interpolation space with respect to �s, it is easy to

see that

G��s0; s1�; s��s0; s1� � s:

It follows then from Theorem 1.7 that

G��s0; s1�; s��s0�Fm�; s1�Fm�� � s�Fm�:
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On the other hand, the de¢nition of G��s0�Fm�; s1�Fm��; s�Fm���:; :� yields that
it is the smallest interpolation method f such that

s�Fm� ,!f�s0�Fm�; s1�Fm��:
Whence

G��s0�Fm�; s1�Fm��; s�Fm���A0;A1� ,! G��s0; s1�; s��A0;A1�
for any Banach couple �A � �A0;A1�.
To check the reverse embedding, assume that T 2l��s; �A� and

� � ��m� 2 s, and put a � T�. For each m 2 Z, choose am 2 Fm with am 6� 0.
Using the Hahn-Banach theorem, we can ¢nd fm 2 F �m with kfmkF �m � 1 and
fm�am� � kamkFm . Consider then the operator R de¢ned by

R�xm� � T
fm�xm�
j�mj �m

� �
:

It is not hard to see that R 2l��s�Fm�; �A� with
kRk�s�Fm�;�A � kTk�s;�A:

Moreover, for b � j�mj
kamkFm

am

 !
2 s�Fm�, we have Rb � T� � a.

Take now any a 2 G��s0; s1�; s��A0;A1�. Given any representation

a �
X1
j�1

Tj�j of a with
X1
j�1
kTjk�s;�A k�jks <1;

let Rj 2l��s�Fm�; �A� be the operators associated to the Tj's and let bj 2 s�Fm�
be the vectors corresponding to the �j's. We know that

Rjbj � Tj�j :

Hence

a �
X1
j�1

Rjbj

and since X1
j�1
kRjk�s�Fm�;�A kbjks�Fm� �

X1
j�1
kTjk�s;�A k�jks

we conclude that a 2 G��s0�Fm�; s1�Fm��; s�Fm���A0;A1� with
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kakG��s0�Fm�;s1�Fm��;s�Fm���A0;A1� � kakG��s0;s1�;s��A0;A1�:

The proof is complete.

2. Some remarks on the quasi-Banach case.

It is well-known that de¢nitions �1� and �2� of the real interpolation space
�A0;A1��;q make sense also if �A0;A1� is only a couple of quasi-Banach
spaces (see [2], [19]). The rank of the parameter q can then be enlarged, al-
lowing any 0 < q � 1. The K- and the J-de¢nitions are still equivalent, but
the functional k � k�;q (de¢ned by the K- or by the J-construction) is no
longer a norm, it is only a quasi-norm.
Next we study the possibility of a maximal description in the quasi-Ba-

nach case.
As a ¢rst idea, one might try to replace in Example 1.1 the spaces

[�`1; `1�2ÿm��; `q�2ÿ�m�] by some other quasi-Banach sequence spaces, say
[�w0;w1�;w]. But as soon as functionals

fk : wj ! K

��m� ! �k

are continuous on wj �j � 0; 1; k 2 Z�, then
l��Lp0 ;Lp1�; �w0;w1�� � f0g�4�

where 0 < p0; p1 < 1 and Lpj � Lpj ��0; 1��. Indeed, any
T 2l��Lp0 ;Lp1�; �w0;w1�� can be written as Tf � �Tmf � with Tm 2 L�p0 \ L�p1 .
Since every continuous functional on Lpj vanishes identically, equality (4)
follows. Therefore

H��w0;w1�;w��Lp0 ;Lp1� � Lp0 � Lp1

with

kf kH � 0 for every f 2 Lp0 � Lp1 ;

while

�Lp0 ;Lp1��;p � Lp if
1
p
� 1ÿ �

p0
� �

p1
:

We can remedy in part this situation by passing to vector valued sequence
spaces. According to Theorem 1.4, in the category of Banach spaces it holds

�:; :��;q � H��`1�Fm�; `1�2ÿmFm��; `q�2ÿ�mFm���:; :�
where �Fm� is any sequence of Banach spaces. Our plan for the quasi-Banach
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case is to choose Fm depending on the quasi-Banach couple �A0;A1� under
consideration. The resulting maximal desciption is then going to be di¡erent
for each couple. However this will be su¤cient to establish the compactness
theorem.

Definition 2.1. Given any quasi-Banach couple �A � �A0;A1� we put
Fm � �A0 � A1;K�2m; :��; m 2 Z;

and for 0 < � < 1; 0 < q � 1 we de¢ne H�;q�A0;A1� as the collection of all
a 2 A0 � A1 such that Ta 2 `q�2ÿ�mFm� for every T 2l��A0;A1�;
�`1�Fm�; `1�2ÿmFm��. We endow H�;q�A0;A1� with the quasi-norm

kakH�;q
� supfkTak`q�2ÿ�mFm� : kTk�A;�̀1�Fm� � 1g

Note that if cj is the constant in the triangle inequality of Aj , then
c � maxfc0; c1g is a constant for the triangle inequality of Fm. Since c does
not depend on m, it is not hard to check that vector valued sequence spaces
involved in De¢nition 2.1 are quasi-Banach spaces.

Theorem 2.2. Let �A � �A0;A1� be a quasi-Banach couple, let 0 < � < 1 and
0 < q � 1. Then

�A0;A1��;q � H�;q�A0;A1�:

Proof. Let T 2l��A; �̀1�Fm�� with kTk�A;�̀1�Fm� � 1. Then Tx � �Tmx� for
some Tm 2l��A0;A1�; �Fm;Fm�� such that

kTmkA0;Fm � 1 and kTmkA1;2ÿmFm � 1:

Hence, given any a 2 �A0;A1��;q and any decomposition a � a0 � a1 with
aj 2 Aj, we obtain

kTmakFm � c�kTma0kFm � kTma1kFm� � c�ka0kFm � 2mka1kFm�:
It follows that

kTmakFm � cK�2m; a� � ckakFm
and therefore Ta 2 `q�2ÿ�mFm� with

kTak`q�2ÿ�mFm� � k�kTmakFm�k`q�2ÿ�m� � ck�K�2m; a��k`q�2ÿ�m� � ckak�;q:
In other words,

�A0;A1��;q ,! H�;q�A0;A1�:
Conversely, the operator

real interpolation of compact operators... 149



{orders}ms/98424/cobos.3d -17.11.00 - 11:46

Ja � �:::; a; a; a; :::�
belongs to l��A0;A1�; �`1�Fm�; `1�2ÿmFm��� and kJk�A;�̀1�Fm� � 1. Whence,
given any a 2 H�;q�A0;A1�, we derive that a 2 �A0;A1��;q with

kak�;q � k�K�2m; a��k`q�2ÿ�m� � kJak`q�2ÿ�mFm � kakH�:q:
The key of Theorem 2.2 is the characterization of �A0;A1��;q by means of

the K-functional. Using the equivalent de¢nition with the J-functional, we
shall establish next a minimal description for �A0;A1��;q in terms of vector
valued sequence spaces related to �A0;A1�.
Recall that a quasi-norm k � k is said to be a p-norm �0 < p � 1� if

ka� bkp � kakp � kbkp:
Given any quasi-normed space �A; k � k�, the functional

jjjajjj � inf
Xn
j�1
kajkp

 !1=p

: a �
Xn
j�1

aj ; n � 1

8<:
9=;

de¢nes a p-norm equivalent to k � k. Here p is given by the equation �2c�p � 2
where c is the constant in the triangle inequality of k � k (see, for example, [2],
Lemma 3.10.1).
Note also that if k � k is a p-norm then it is also an r-norm for any

0 < r � p.
Consequently, without loss of generality we may and do work with p-Ba-

nach spaces.
Given any couple �A0;A1� of p-Banach spaces, we put,

Gm � �A0 \ A1; J�2m; :��; m 2 Z:
Clearly Gm is also a p-Banach space. It is not di¤cult to check that the vec-
tor valued sequence space `q�2ÿ�mGm� is then a min�p; q�-Banach space. Since
the space �A0;A1��;q, realized as a J-space, is a quotient of `q�2ÿ�mGm� it
turns out that �A0;A1��;q is a min�p; q�-Banach space as well. This property
will be useful for our latter computations.

Definition 2.3. Let 0 < � < 1 and 0 < q � 1. Assume that �A � �A0;A1�
is a couple of p-Banach spaces �0 < p � 1� and let Gm be as above. Put
r � min�p; q� and de¢ne G�; q; r�A0;A1� as the collection of all those
a 2 ���A� which can be represented as a convergent series
a �P1j�1 Tjvj in ���A� with vj 2 `q�2ÿ�mGm�; Tj 2l��`p�Gm�; `p�2ÿmGm��,
�A0;A1�� and
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X1
j�1
kTjkr�̀p�Gm�;�Akvjkr`q�2ÿ�mGm�

 !1=r

� 1

This space becomes an r-Banach space endowed with the functional

kakG�;q;r
� inf

X1
j�1
kTjkr�̀p�Gm�;�A kvjkr`q�2ÿ�mGm�

 !1=r

: a �
X1
j�1

Tjvj

8<:
9=;

Theorem 2.4. Let �A � �A0;A1� be a couple of p-Banach spaces, let
0 < � < 1, 0 < q � 1 and write r � min�p; q�. Then

�A0;A1��;q � G�;q;r�A0;A1�:
Proof. Let � be the operator de¢ned by ��um� �

X1
m�ÿ1

um. Since A0 is a
p-Banach space, we have

k��um�kA0
�

X1
m�ÿ1

kumkpA0

 !1=p

�
X1

m�ÿ1
J�2m; um�p

 !1=p

� k�um�k`p�Gm�:

Similarly

k��um�kA1
� k�um�k`p�2ÿmGm�:

Thus

� 2l��`p�Gm�; `p�2ÿmGm��; �A0;A1�� and k�k�̀p�Gm�;�A � 1:

Given any a 2 �A0;A1��;q and any J-representation a �
X1

m�ÿ1
um of a, it fol-

lows from

��um� �
X1

m�ÿ1
um � a and k�k�̀p�Gm�;�A k�um�k`q�2ÿ�mGm�

�
X1

m�ÿ1
�2ÿ�mJ�2m; um��q

 !1=q

that

a 2 G�;q;r�A0;A1� with kakG�;q;r
� kak�;q:

Reciprocally, let a � Tv with v � �vm� 2 `q�2ÿ�mGm� and
T 2l��̀p�Gm�; �A�. Write �vm for the vector valued sequence having all co-
ordinates equal to zero except for the mth one that is vm. It is clear that
T�vm 2 A0 \ A1 and
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J�2m;T�vm� � maxfkT�vmkA0
; 2mkT�vmkA1

gk � kTk�̀p�Gm�;�akvmkGm
:

Hence a �
X1

m�ÿ1
T�vm is a J-representation of a with

kak�;q �
X1

m�ÿ1
�2ÿ�mJ�2m;T�vm��q

 !1=q

� kTk�̀�Gm�;�A
X1

m�ÿ1
�2ÿ�m kvmkGm

�q
 !1=q

� kTk�̀p�Gm�;�A kvk`q�2ÿ�mGm�:

If a is now any element of G�;q;r�A0;A1� and a �
X1
j�1

Tjvj is an arbitrary
representation of a with

X1
j�1
kTjkr�̀p�Gm�;�A kvjkr`q�2ÿ�mGm�

 !1=r

<1;

then using that �A0;A1��;q is r-normed and our previous estimate we derive
that

kak�;q �
X1
j�1
kTjvjkr�;q

 !1=r

�
X1
j�1
kTjkr�̀p�Gm�;�A kvjkr`q�2ÿ�mGm�

 !1=r

:

Consequently, a 2 �A0;A1��;q and kak�;q � kakG�q;r
.

This completes the proof.

Remark 2.5. In the Banach case de¢nition of minimal interpolation
method sets the ¢xed spaces [�B0;B1�;B� as domains of operators. Then the
obstruction that we found at the beginning of this section does not arise now
when extending de¢nition of minimal methods to quasi-Banach couples. In
fact, it is possible to give a minimal description for the real method in the
category of quasi-Banach spaces. Namely, if we take all Gm equal to the
scalar ¢eld K in De¢nition 2.3, then Theorem 2.4 remains true (see [15],
Thm. 3.2).

Remark 2.6. Gustavsson-Peetre method de¢ned in (3) also makes sense
for quasi-Banach couples (see [10]). If �A0;A1� is a couple of p-Banach
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spaces, it is easy to see that hA0;A1i� is also a p-Banach space. In that case
hA0;A1i� admits the following minimal description

hA0;A1i� � a �
X1
j�1

Tjvj : Tj 2l��c0�2�m�; c0�2��ÿ1�m��; �A0;A1��;
(

vj 2 `1 and
X1
j�1
kTjkp�c0;�A kvjk

p
`1

 !1=p

<1
9=;:

We skip details because the main idea of the proof is the same as in the Ba-
nach case (see [12], Thm. 5).

3. The compactness theorem.

In this section we establish the compactness theorem in the quasi-Banach
case.
Recall that a linear operator between quasi-Banach spaces is called com-

pact if it transforms each bounded set into a set whose closure is compact or,
equivalently, if it transforms each bounded sequence into a sequence having
a convergent subsequence.
Our arguments are based on properties of operators J and � introduced

in Theorems 2.2 and 2.4.

Theorem 3.1. Let �A � �A0;A1� and �B � �B0;B1� be quasi-Banach couples
and let T : �A! �B such that

T : A0 ! B0 compactly:

Then for any 0 < � < 1 and 0 < q � 1,

T : �A0;A1��;q ! �B0;B1��;q
is compact.

Proof. Since any quasi-Banach space is p-Banach for some 0 < p � 1, we
may assume without loss of generality that the four spaces A0;A1;B0;B1 are
p-Banach for some 0 < p � 1. As we have seen in Theorem 2.4, the map

��um� �
X1

m�ÿ1
um is then bounded acting from `p�2ÿjmGm� into Aj for

j � 0; 1. Here again

Gm � �A0 \ A1; J�2m; ���:
Moreover, when we endow �A0;A1��;q with the quasi-norm de¢ned by the J-
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functional, the map � is surjective from `q�2ÿ�mGm� into �A0;A1��;q and it
induces the quasi-norm of �A0;A1��;q. Thus

T : �A0;A1��;q ! �B0;B1��;q is compact

if and only if

T� : `q�2ÿ�mGm� ! �B0;B1��;q is compact:

On the other hand, J�a� = �:::; a; a; a; :::� is bounded acting from Bj into
`1�2ÿjmFm� for j � 0; 1. We put as in Theorem 2.2

Fm � �B0 � B1;K�2m; ���:
If we consider now on �B0;B1��;q the quasi-norm given by the K-functional,
then

J : �B0;B1��;q ! `q�2ÿ�mFm�
is a metric injection. Hence a necessary and su¤cient condition for

T� : `q�2ÿ�mGm� ! �B0;B1��;q
to be compact is that

T̂ � JT� : `q�2ÿ�mGm� ! `q�2ÿ�mFm�
is compact.
So, we have the following diagram of bounded operators

`p�Gm� ÿ!� A0 ÿ!T B0 ÿ!J `1�Fm�
`p�2ÿmGm� ÿ!� A1 ÿ!T B1 ÿ!J `1�2ÿmFm�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
`q�2ÿ�mGm� ÿ!� �A0;A1��;q ÿ!

T �B0;B1��;q ÿ!
J
`q�2ÿ�mFm�

and our task is to show that T̂ � JT� is compact.
The advantage of working with T̂ instead of T is that we can use certain

families of projections on the couples of vector valued sequences. Indeed,
write �̀

p�G� � �`p�Gm�; `p�2ÿmGm�� and for each positive integer n 2 N con-
sider mappings Pn;Q�n ;Q

ÿ
n 2l��̀p�Gm�; `p�Gm�� de¢ned by

Pn�um� � �:::; 0; 0; uÿn; uÿn�1; :::; unÿ1; un; 0; 0; :::�
Q�n �um� � �:::; 0; 0; un�1; un�2; :::�
Qÿn �um� � �:::; uÿnÿ2; uÿnÿ1; 0; 0; :::�.
These mappings satisfy the following four conditions:
(I) They are uniformly bounded in �̀

p�Gm�,
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sup
n2N

kPnk�̀p�Gm�;�̀p�Gm�; kQ�n k�̀p�Gm�;�̀p�Gm�; �kQÿn k�̀p�Gm�;�̀p�Gm�
n o

� 1;

(II) If I stands for the identity operator in ���̀p�Gm��, then
I � Pn �Q�n �Qÿn for each n 2 N;

(III) For each n 2 N,
kQ�n k`p�Gm�;`p�2ÿmGm� � 2ÿ�n�1� � kQÿn k`p�2ÿmGm�;`p�Gm�

and

kPnk���̀p�Gm��;���̀p�Gm�� � c2n;

(IV) If �um� 2 `p�Gm� then
kQÿn �um�k`p�Gm� ! 0 as n!1;

while if �um� 2 `p�2ÿmGm� then
kQ�n �um�k`p�2ÿmGm� ! 0 as n!1:

Properties (I), (II) and (III) are direct consequence of de¢nitions of pro-
jections Pn;Q�n ;Q

ÿ
n . Property (IV) follows from (II), (I) and the fact that se-

quences having only a ¢nite number of coordinates di¡erent from 0 are
dense in `p�Gm� (resp. in `p�2ÿmGm��.
The same families of mappings can be de¢ned on the couple

�̀1�Fm� � �`1�Fm�; `1�2ÿmFm��. Call them Rn;S�n ;S
ÿ
n . They satisfy the cor-

responding versions of (I), (II) and (III). Furthermore, the argument pointed
out for proving (IV) yields that
(IV') If �vm� belongs to the closure of � ��`1�Fm�� in `1�Fm� then

kSÿn �vm�k`1�Fm� ! 0 as n!1:
On the other hand,

kS�n �vm�k`1�2ÿmFm� ! 0 as n!1
provided that �vm� belongs to the closure of ���̀1�Fm�� in `1�2ÿmFm�.
We shall also need the following interpolation results

�`p�Gm�; `p�2ÿmGm���;q � `q�2ÿ�mGm��5�

�`1�Fm�; `1�2ÿmFm���;q � `q�2ÿ�mFm�:�6�
We only prove the embedding
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`q�2ÿ�mGm� ,! �`p�Gm�; `p�2ÿmGm���;q�7�
because the rest of the proof of (5) and (6) can be carried out by doing minor
modi¢cations in the arguments of [5], Lemma 2.1.
Take any u � �um� 2 `q�2ÿ�mGm� and let wm be the sequence having all

coordinates equal to zero except for the mth one which is um. Since

J�2m;wm� � maxfkwmk`p�Gm�; 2
mkwmk`p�2ÿmGm�g � kumkGm

;

we see that

u �
X1

m�ÿ1
wm (convergence in ���̀p�Gm���

with wm 2 ���̀p�Gm�� and

kuk�`p�Gm�;`p�2ÿm�Gm���;q �
X1

m�ÿ1
�2ÿ�mJ�2m;wm��q

 !1=q

�
X1

m�ÿ1
�2ÿ�mkumkGm

�q
 !1=q

� kuk`q�2ÿ�mGm�:

This establishes (7).
We are now in a position to use the approach developed in [7], Thm. 1.3,

to show the compactness of T̂ .
Using (II) we have

T̂ � T̂�Pn �Q�n �Qÿn � � T̂Pn � T̂Q�n � �Rn � S�n � Sÿn �T̂Qÿn
� T̂Pn � RnT̂Qÿn � Sÿn T̂Q

ÿ
n � S�n T̂Q

ÿ
n � T̂Q�n :

Our plan is to check that T̂Pn and RnT̂Qÿn are compact and then that the
remaining three operators have norms converging to 0 as n!1.
For T̂Pn we have the following diagram

where T̂Pn : `q�2ÿ�mGm� ! `1�Fm� is compact. Therefore we can apply
Lions- Peetre compactness theorem (see [2], Thm. 3.8.1) to derive that
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T̂Pn : `q�2ÿ�mGm� ! �`1�Fm�; `1�2ÿmFm���;q � `q�2ÿ�mFm�
is compact. Here we have used (6) to identify the interpolation space.
Note that the Lions-Peetre theorem as stated in [2] refers to Banach cou-

ples, but it is not di¤cult to adapt the proof for the present quasi- Banach
case.
For the operator RnT̂Qÿn the relevant diagram is

with RnT̂Qÿn : `p�Gm� ! `q�2ÿ�mFm� compactly. Whence, another application
of the Lions-Peetre theorem and formula (5) yield that

RnT̂Qÿn : `q�2ÿ�mGm� ! `q�2ÿ�mFm�
is also compact.
We pass now to show that the norm of

Sÿn T̂Q
ÿ
n : `q�2ÿ�mGm� ! `q�2ÿ�mFm�

tends to 0 as n!1.
It follows from formulae (5) and (6), and estimate for the norm of an in-

terpolated operator by the real method that

kSÿn T̂Qÿn k`q�2ÿ�mGm�;`q�2ÿ�mFm�

� CkSÿn T̂Qÿn k1ÿ�`q�Gm�;`1�Fm� kSÿn T̂Qÿn k�`q�2ÿmGm�;`1�2ÿmFm�

� CkSÿn T̂Qÿn k1ÿ�`q�Gm�;`1�Fm� kT̂k�`q�2ÿmGm�;`1�2ÿmFm�

where we have used (I) to get the last inequality. So, it su¤ces to check that

kSÿn T̂Qÿn k`p�Gm�;`1�Fm� ! 0 as n!1:�8�
Take any � > 0 and let U be the closed unit ball of `p�Gm�. Since

T̂ : `p�Gm� ! `1�Fm� is compact, we can ¢nd vectors w1; :::;wr in `p�Gm�
having only a ¢nite number of coordinates di¡erent from zero and such that
for any u 2 U

min
1�j�r
fkT̂uÿ T̂wjk`1�Fm�g � ��p=2�1=p:

Vectors T̂w1; :::; T̂wr belong to ���̀1�Fm��. According to (IV'), there exists
N 2 N such that for any n � N

kSÿn T̂wjk`1�Fm� � ��p=2�1=p for j � 1; :::; r:
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Take next v 2 U and n � N. Using that `1�Fm� is p-Banach, we get that
kSÿn T̂Qÿn vkp`1�Fm� � kSÿn T̂Qÿn vÿ Sÿn T̂wjkp`1�Fm� � kSÿn T̂wjkp`1�Fm�

� kT̂uÿ T̂wjkp`1�Fm� � �p=2:

Here u � Qÿn v which belongs also to U by (I). The choice of j so that

kT̂uÿ T̂wjkp`1�Fm� � �p=2

now implies that

kSÿn T̂Qÿn vk`1�Fm� � � for any n � N

and establishes (8).
It remains to check that the norms of S�n T̂Q

ÿ
n and T̂Q�n converge to 0 as

n!1. For this we can use the same argument as in [7], Thm. 1.3.
Factorization

gives that

kS�n T̂Qÿn k`p�2ÿmGm�;`1�2ÿmFm� � 2ÿn kT̂k`p�Gm�;`1�Fm�2
ÿn ! 0 as n!1:

Therefore

lim
n!1 kS

�
n T̂Q

ÿ
n k`q�2ÿ�mGm�;`q�2ÿ�mFm� � 0:

For the remaining operator T̂Q�n we have that

lim
n!1 kT̂Q

�
n k`p�Gm�;`1�Fm� � 0:�9�

Let us establish this fact proceeding by contradiction. If (9) does not hold
then there is � > 0, a subsequence �n1� and vectors un1 in the closed unit ball
of `p�Gm� such that

lim
n1!1

kT̂Q�n1un1k`1�Fm� � �:
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According to (I), the sequence �Q�n1un1� is bounded in `p�Gm�. Hence, com-
pactness of T̂ : `p�Gm� ! `1�Fm� implies, passing to another subsequence if
necessary, that �T̂Q�n2un2� converges to some w in `1�Fm�. So
kwk`1�Fm� � � > 0: On the other hand, �T̂Q�n2un2� is a null sequence in
`1�2ÿmFm� because, due to (III), the sequence �Q�n2un2� converges to zero in
`p�2ÿmGm�. By compatibility we conclude that w � 0 contradicting w 6� 0.
The fact that

kT̂Q�n k`q�2ÿ�mGm�;`q�2ÿ�mFm� ! 0 as n!1
follows now from �9�.
The proof is complete.

Since Lorentz function spaces Lp;q arise by real interpolation between Lp

spaces, namely (see [2], [3] or [19])

�Lp0 ;Lp1��;q � Lp;q for
1
p
� 1ÿ �

p0
� �

p1
and p0 6� p1;

as a direct consequence of Theorem 3.1 we have the following complement
of the result by Zabreiko and Pustylnik [20].

Corollary 3.2. Let �U ; �� and �V ; �� be �-¢nite measure spaces, with �, �
being positive measures. Assume that 1 � p0 6� p1 � 1, 0 < q0 6� q1 � 1 and
let T be a linear operator such that

T : Lp0�U ; d�� ! Lq0�V ; d�� compactly
and

T : Lp1�U ; d�� ! Lq1�V ; d�� boundedly:
If 0 < � < 1, 0 < r � 1, 1=p � �1ÿ ��=p0 � �=p1 and 1=q � �1ÿ ��=
q0 � �=q1, then

T : Lp;r�U ; d�� ! Lq;r�V ; d��
is also compact.
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d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173^190.
19. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland,

Amsterdam, 1978.
20 P. P. Zabreiko, and E. I. Pustylnik, On interpolation properties of compactness, Functional

analysis and theory of functions 2, Ucen. Zap. Kazan Univ. 124 (1965), 114^118.

DEPARTAMENTO DE ANALISIS MATEMATICO
FACULTAD DE MATEMATICAS
UNIVERSIDAD COMPLUTENSE DE MADRID
E-28040 MADRID
SPAIN

DEPARMENT OF MATHEMATICS
LULEÐ UNIVERSITY
S-97 187 LULEÐ
SWEDEN

160 fernando cobos and lars-erik persson


