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EXPLICIT REPRESENTATION OF THE SOLUTION
TO SOME BOUNDARY VALUE PROBLEM

S. MAZOUZI AND R. N. PEDERSON

Abstract.
In the half ray the unique solution to the boundary value problem

L�Dt�u�t� � f �t�; t > 0

Bj�Dt�u�0� � �j ; for j � 0; 1; :::; pÿ 1

rapidly decreasing at in¢nity is shown to be explicitly represented in terms of Green's function
and some boundary kernels, namely,

u�t� �
Xpÿ1
k�0
hk�t��k �

Z 1

0
g�t; s�f �s� ds

1. Introduction.

Let L�z� be a polynomial of degree m � 1, where the coe¤cient of zm is equal
to 1, and let fBj�z�g pÿ1j�0 be p polynomials of degrees fmjg pÿ1j�0 respectively, so
that mj < m for 0 � j � pÿ 1: We assume that L�z� has at most p roots
having positive imaginary parts (counting multiplicities).
Throughout this paper we denote by Dt the di¡erential operator ÿi ddt ; and

if J � R then we denote by s �J� the subspace of C1 �J� containing all the
functions u�t� such that

�1� jtj�pju�q��t�j
are bounded for all p and q in N.
Consider the following boundary value problem

L�Dt�u�t� � f �t�; t > 0�2:1�

Bj�Dt�u�0� � �j; for j � 0; 1; :::; pÿ 1�2:2�
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where the �j are complex constants. Set

Lp�z� � �zÿ �0��zÿ �1�:::�zÿ �pÿ1��2:3�
where the �j 's are the p roots of L�z� having positive imaginary parts.
Firstly, we assume that mj < p for j � 0; 1; :::; pÿ 1, then

Bj�z� �
pÿ1X
k�0

bjkzk�2:4�

for j � 0; 1; :::; pÿ 1: Now, if the matrix �bjk� is nonsingular, one can solve
Eq. (2.4) for the unknown variables zk (for ¢xed z).
Hence, if we denote by �bjk� the inverse matrix of �bjk�, we get

zj �
pÿ1X
k�0

bjkBk�z��2:5�

for j � 0; 1; :::; pÿ 1: So that, Eq. (2.2) is equivalent to

Dk
t u�0� �

pÿ1X
j�0

bkj�j�2:6�

for k � 0; 1; :::; pÿ 1: Thus, any solution of the Cauchy problem (2.1), (2.2)
is a solution of the problem

L�Dt�u�t� � f �t�; t > 0�2:7�

Dk
t u�0� �

pÿ1X
j�0

bkj�j�2:8�

for k � 0; 1; :::; pÿ 1: Conversely, any solution of (2.7), (2.8) is a solution of
(2.1), (2.2).

Remarks. If the matrix �bjk� is singular, then there are constants cj not
all zero so that

pÿ1X
j�0

cjBj�z� � 0�2:9�

Consequently, a necessary condition for the problem (2.1), (2.2) to have a
solution is the following

pÿ1X
j�0

cj�j � 0�2:10�
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This shows that we can not hope to get a solution for all choices of the �j 's.
Furthermore, even when we can solve, the solution is generally not unique.
Now if we allow to the mj's to be greater than p, then, by partial fractions

we can write

Bj�z� � Qj�z�L�p �z� � B
0
j�z��2:11�

Where the degree of B
0
j is less than p.

When p < m we de¢ne the polynomial

Lÿ�z� � L�z�
L�p �z�

�2:12�

We conclude by the following Lemma [5]:

Lemma. Let L�Dt� be any constant coefficient differential operator, and let
f �t� be any function in s(R). Then, there exists a function u�t� 2s�R� which
satisfies the differential equation

L�Dt�u�t� � f �t�; for t > 0�2:13�
that the di¡erential equation

Lÿ�Dt�v�t� � f �t�; t > 0�2:14�
has always a solution v�t� belonging to s(R) for any choice of f �t�ins�R�.
Thus, the boundary value problem (2.1), (2.2) is equivalent to the following

L�P �Dt�u�t� � v�t�; t > 0�2:15�

B
0
j�Dt�u�0� � �j ÿQj�Dt�v�0�; j � 0; 1; :::; pÿ 1�2:16�

which is the form just treated. If we write

B
0
j�z� �

pÿ1X
k�0

b
0
jkz

k; 0 � j � pÿ 1�2:17�

then the problem (2.15), (2.16) has a unique solution for any given v�t� in
s(R) and {�j}� C if and only if the matrix �b0jk� is nonsingular.
We observe from Eq. (2.9) that the matrix �bij� is nonsingular if and only

if the polynomials Bj�z� are linearly independent. Similarly, the matrix �b0ij�
is nonsingular if and only if the polynomials B

0
j�z� are linearly independent.

We say that the fBj�z�g are linearly independent modulo L�p �z� if the fB0jg
are linearly independent.

explicit representation of the solution... 103
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2. Main results.

Now we are able to give explicitly the solution to the boundary value pro-
blem (2.1), (2.2) in terms of Green's function; we shall follow closely
Pederson's work after rede¢ning in a convenient manner the functions u�j �t�
(see [3], [4]).

Theorem 1. Let L�z� be a polynomial of degree m, having at most p roots
�0, �1,..., �pÿ1 with positive imaginary parts and no real roots. Let fBj�z�g pÿ1j�0 be
p polynomials of degrees fmjg with mj < m, which are linearly independent
modulo

L�p �z� � �zÿ �0��zÿ �1�:::�zÿ �pÿ1�
Then, for any f 2 s�R�� and for any choice of the constants �0; �1; :::; �pÿ1;
there exists a unique solution u�t� 2 s�R�� satisfying the boundary value pro-
blem (2.1), (2.2). Furthermore, this solution can be represented as follows

u�t� �
pÿ1X
j�0
hj�t��j �

Z 1
0
g�t; s�f �s� ds�2:18�

Proof. Let us first consider the case f � 0; then, the general solution of
the equation

L�Dt�u�t� � 0�2:19�
has the form

u�t� �
mÿ1X
k�0

�kexp�i�k�

where the �k's are the roots of L�z� � 0. It is worth to recall that the coe¤-
cients �k become polynomials in t whenever there are multiple roots. Now,
in order for u�t� to be in L2�0; 1�; the coe¤cients �k must vanish for any k
such that Im �k � 0 otherwise u�t� could not be in L2�0;1�. Therefore, the
solution of (2.19) which belongs to the space L2�0;1� is

u�t� �
pÿ1X
k�0

�kexp�i�k��2:20�

with Im�k > 0.
Following AGMON, DOUGLIS and NIRENBERG [1], we de¢ne

L�k ��� �
kX
j�0

a�j �
kÿj; k � 0; 1; :::; pÿ 1�2:21�
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where the constants a�j are de¢ned through the expression

L�p ��� �
pX
j�0

a�j �
pÿj�2:22�

Let ÿ� and ÿÿ be recti¢able Jordan contours in the upper and the lower half
plane enclosing the roots of L�p �z� and L ÿp �z� respectively.
De¢ne the functions

u�j �t� �
1
2�i

I
ÿ�

L�pÿjÿ1���
L�p ���

exp�it�� d��2:23�

We claim that

L�Dt�u�j �t� � 0; t > 0�2:24�
and

Dk
t u
�
j �0� � �jk�2:25�

for j; k � 0; 1; :::; pÿ 1, where �jk is the Kronecker Delta. Indeed, by dif-
ferentiation under the integral sign (which is of course allowed), we get

Dk
t u
�
j �t� �

1
2�i

I
ÿ�

L�pÿjÿ1���
L�p ���

�k exp�it�� d��2:26�

Now, if we take ÿ� to be a large circle about the origin with radius n 2 N*
so that ÿ� encloses �0; �1; :::; �pÿ1; then,

Dk
t u
�
j �0� �

1
2�

Z 2�

0

L�pÿjÿ1�nei!�
L�p �nei!�

nk�1 ei!�k�1�d!

� 1
2�

Z 2�

0

Q�nei!�
L�p �nei!�

d!

Where Q is a polynomial of degree p� kÿ j in n. Since L�p is of degree p,
then, by letting n go to in¢nity, we obviously get

Dk
t u
�
j �0� � �jk; for kÿ j � 0

For the case kÿ j > 0, we note that the polynomial �k L�pÿjÿ1 di¡ers from
�kÿjÿ1L�p by a polynomial Q of degree at most equals to kÿ 1. Thus,
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Dk
t u
�
j �0� � 1

2�i

I
ÿ�

L�pÿjÿi���
L�p ���

�k d�

� 1
2�i

I
ÿ�

�kÿjÿ1L�p ��� �Q���
L�p ���

d�

� 1
2�i

I
ÿ�
�kÿjÿid�

1
2�i

I
ÿ�

Q���
L�p ���

d�

� 1
2�i

I
ÿ�

Q���
L�p ���

d�

By the same argument as before, since the degree of Q�z� is equal to
kÿ 1 < pÿ 1, we can observe that the last integral is zero. As a con-
sequence, we obtain

Dk
t u
�
j �0� � �jk; j; k � 0; 1; :::; pÿ 1

On the other hand we have

L�Dt�u�j �t� �
1
2�i

I
ÿ�

L�pÿjÿi���L�p ���Lÿ���
L�P ���

eit�d� � 0:

It follows that the set fu�j �t�g spans the negative exponential solutions of the
homogeneous boundary value problem associated to (2.1), (2.2). Now, in
order to obtain a solution to the inhomogeneous boundary value problem
(2.1), (2.2), we de¢ne the functions

v��t� � 1
2�

I
ÿ�

eit�

L��� d��2:27�

It follows from the fact that the contour ÿ� [ ÿÿ can be deformed into a
large circle that

Dk
t �v��0� � vÿ�0�� � i�mÿ1;k�2:28�

where k � 0; :::;mÿ 1. As a consequence, the functionZ t

0
�v��tÿ s� � vÿ�tÿ s��f �s� ds�2:29�

is a solution of the Eq. (2.1) with zero Cauchy Data.
Thus, the general solution of the inhomogeneous boundary value problem

(2.1), (2.2) which is bounded must have the form:
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u�t� �
Xpÿ1
j�0

�ju�j �t� �
Z t

0
�v��tÿ s� � vÿ�tÿ s� �f �s� ds�2:30�

ÿ
Z 1
0

vÿ�tÿ s�f �s� ds

This is a consequence of the facts that v��t� is a sum of the negative ex-
ponentials when t > 0, and vÿ �t� is a sum of negative exponentials when
t < 0. Now, by virtue of the complementing condition (linear independence
of the B0js�, we conclude that

Bk�Dt�
Z t

0
�v��tÿ s� � vÿ�tÿ s��f �s� ds � 0

t�0

Since the function (2.30) is a formal solution of (2.1), (2.2) then, it must sa-
tisfy the following

�k � Bk�Dt�u�0� �
Xpÿ1
j�0

�jBk�Dt�u�j �0��

� Bk�Dt�
Z t

o
�v��tÿ s� � vÿ�tÿ s��f �s� ds ÿ

t�0

ÿ
Z 1
0

f �s�Bk�Dt�vÿ�tÿ s� ds
t�0

�
Xpÿ1
j�0

�jfQk�Dt�L�p �Dt�u�j �0� � B0k�Dt�u�j �0�gÿ

ÿ
Z 1
0

f �s�Bk�Dt�vÿ�tÿ s� ds
t�0

�
Xpÿ1
j�0

�j b�kj ÿ
Z 1
0

f �s�Bk�Dt�vÿ�tÿ s� ds
t�0

where Bk�z� � Qk�z�L�p �z� � B0k�z� � B
0
k�z� mod�L�p � and

explicit representation of the solution... 107
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B0k�z� �
Xpÿ1
j�0

b�kjz
j

We get an algebraic system of equations with unknown variables �j

�
Xpÿ1
j�0

b�kl�j � �k �
Z 1
0

f �s�Bk�Dt�vÿ�tÿ s� ds
t�0

; k � 0; 1; :::; pÿ 1

We deduce from the complementing condition that the determinant of the
matrix �b�kj� is not zero; so, as a consequence, the above set of equations has
a unique solution f�0; ::: ; �pÿ1g:
De¢ne the inverse matrix

�bkj�� � �b�kj�ÿ1

Hence,

�j �
Xpÿ1
k�0

bjk��k �
Z 1
0

Xpÿ1
k�0

bjk�f �s�Bk�Dt�vÿ�tÿ s�
t�0

; j � 0; 1; :::; pÿ 1

and upon substitution of the �j's into (2.30) we obtain the bounded solution
of the given BVP,

u�t� �
Xpÿ1
j�0

Xpÿ1
k�0

bjk��k u
�
j �t��

�
Z 1
0

Xpÿ1
j�0

Xpÿ1
k�0

bjk�Bk�Dt�vÿ�tÿ s� f �s�ds
( )

u�j �t��
t�0

�
Z t

0
v��tÿ s�f �s�dsÿ

Z 1
t

vÿ�tÿ s�f �s�ds

If we set

hk�t� � 1
2�i

I
ÿ�

Xpÿ1
j�0

bjk�L
�
pÿjÿ1���

L�p ���
eit�d�

for k � 0; ::: ; pÿ 1
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g1�t� � 1
2�

I
ÿ�

eit�

L��� d�; if t > 0

� ÿ1
2�

I
ÿÿ

eit�

L��� d�; if t < 0

g2�t; s� � ÿi4�2

I
ÿ�

I
ÿÿ

Xpÿ1
j�0

Xpÿ1
k�0

L�pÿjÿi���Bk���

L�p ���L���
ei�t�ÿs��d� d�

and

g�t; s� � g1�tÿ s� � g2�t; s�
then, the solution of the boundary value problem (2.1), (2.2) takes the ¢nal
form

u�t� �
Xpÿ1
j�0
hj�t��j �

Z 1
0
g�t; s�f �s� ds

An immediate computation shows that the above kernels satisfy the follow-
ing estimates

jDk
thj�t�j � C0 exp�ÿr0t�; 8t > 0; 8k � 0; 1; :::

j Dk
tg1�t�j � C1 exp�ÿr1 j t j�; 8t 2 R�; 8k � 0; 1; :::

jDk
tg2�t; s�j � C2 exp�ÿr2�t� s��; 8t > 0; 8s > 0;8k � 0; 1; :::

for some positive constants C0, C1, C2, r0, r1, and r2, depending only on L�z�
and fBjg.
Now to see that the expression (2.18) is rapidly decreasing at in¢nity it

su¤ces to show that the function

vj�t� � tj
Z 1
0
j f �s�j �C1 exp �ÿr1 jtÿ sj� � C2 exp �ÿr2�t� s��ds

is bounded for each nonnegative integer j. Since f 2 s�R�� there is a con-
stant C > 0 such that

j f �s�j� C

�1� s�j�2 ; 8s > 0

it then follows that

explicit representation of the solution... 109
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vj�t� � C0tj
2
t

� �jZ t
2

0

ds

�1� s�j�2 � C1
�2t�j
�2� t�j

Z t

t
2

ds

�1� s�2

�C1
t

1� t

� �jZ 1
t

ds

�1� s�2 � C02t
j
Z 1
0

exp�ÿr2�t� s�� ds

� C�j�
Z 1
0

ds

�1� s�2 � C3tjexp�ÿr2t� < �1

Hence vj�t� is bounded in R� and consequently u�t� 2 s�R��:
Finally, using classical techniques we can easily prove the uniqueness of this
solution. This establishes the proof of the given theorem.

Let us denote by Hk�R��; k � 0 the completion of the space s�R�� with
respect to the norm

kuk2k�
Xk
j�0

Z 1
0
ju�k��t�j2 dt�2:31�

and we de¢ne the subspace

Vk � Hk�R�� \ Ck�0;1�
As a consequence of the previous representation theorem and Theorem 6^9
[5] we obtain the estimate of the solution to the problem (2.1)^(2.2) in terms
of the Data f and �0; :::; �pÿ1 :

Theorem 2. Under the same assumptions of Theorem 1, we conclude that
for each k 2 N; there is a constant C > 0 (depending only on L�z�;Bj�z� and k)
such that, for each f 2 Vk and �0; ::: ; �pÿ1 2 Cp; the solution u 2 Vm�k to the
BVP �2:1� ÿ �2:2� satisfies the estimate

kukm�k� C
Xpÿ1
j�0
j�j j � k f kk

 !

and has the representation

u�t� �
Xpÿ1
j�0
hj�t��j �

Z 1
0
g�t; s�f �s� ds�2:32�

(wherehj�t� and g�t; s� are the same as in Theorem 1.).
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Proof. We deduce form the density of s�R�� in Vk that there is a se-
quence �fn� � s�R�� converging to f in Vk: On the other hand there
corresponds to each fn at most one solution un 2 s�R�� satisfying:

L�Dt�un�t� � fn�t�; �t > 0�

Bj�Dt�un�0� � �j; j � 0; ::: ; pÿ 1

and given by

un�t� �
Xpÿ1
j�0
hj�t��j �

Z 1
0
g�t; s�fn�s� ds�2:33�

We conclude by Theorem 6ÿ9 [5] that there is a constant C0 > 0 depending
only on L�z� and k such that

kun ÿ
Xpÿ1
j�0
hj�t��jkm�k � C0k fnkk�2:34�

and

kun ÿ ukm�k � C0k fn ÿ f kk�2:35�
Hence,

kukm�k �
Xpÿ1
j�0
khjkm�k �j�j j �C0k f kk� C

Xpÿ1
j�0
j�j j�k f kk

 !
�2:36�

where C � max C0; khjkm�k; j � 0; ::: ; pÿ 1
� 	

:

The estimate (2.36) shows that the isomorphism

P : �0; ::: ; �pÿ1; f
ÿ �! u

is continuous from Cp � Vk onto Vm�k: Consequently, by letting n! �1 in
(2.33) we obtain

u�t� �
Xpÿ1
j�0
hj�t��j �

Z 1
0
g�t; s�f �s� ds; �t > 0�

� P �o; ::: ; �pÿ1; f
ÿ �

This proves the theorem.

Remarks. 1) If L�z� admits a real root then we cannot hope to get an
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estimate of the form (2.36) even under smooth Data as shows the following
example:

du
dt
� 1
t� 1

2 L2�R�� \ C1�R��;

u�0� � �0
whose unique solution is

u�t� � �0 � ln�1� t�; �t > 0�
which is not in L2�0;1� whatsoever the value of the constant �0:
2) The best constant C in (2.36) is equal to the norm of the isomorphism

P de¢ned by

Sup j
Xpÿ1
j�0
hj�t��j �

Z 1
0
g�t; s�h�s� dsj

where the supremum is taken over all h 2 Vk and �0; ::: ; �pÿ1 2 C such that

Xpÿ1
j�0
j�j j � khkk� 1
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