
{orders}ms/98424/roseng.3d -17.11.00 - 10:26

MULTILINEAR HANKEL FORMS OF HIGHER ORDER
AND ORTHOGONAL POLYNOMIALS

HJALMAR ROSENGREN

Abstract.

The theory of bilinear Hankel forms of higher order (or higher weight) initiated in [12] is ex-
tended to the multilinear case. We study multilinear forms appearing in the decomposition of
tensor products of function spaces on the disc with respect to a weighted action of the MÎbius
group. We obtain a trace ideal criterion for these forms, and study discrete and continuous sys-
tems of orthogonal polynomials in several variables connected with the decomposition. Some of
these polynomials are related to spherical harmonics.

1. Introduction.

Let D be the unit disc in C. We will denote by G the MÎbius group of con-
formal automorphisms of D and by ~G its universal cover. One can de¢ne an
element of ~G to be an element � of G and a determination of log�0. We will
abusively denote such an element by the same letter �. Then, for any � 2 C,

�f ����z� � f ��z��0�z��=2�1�
de¢nes an action of ~G on functions on D. When � is a real integer we have
an action of the double cover SU�1; 1� ' SL�2;R� of G, and if � is even, an
action of G. We will be concerned with the case when � > 0 and the func-
tions f are analytic. There is then an essentially unique [4] Hilbert space a�

of analytic functions on the disc whose norm is invariant under the action
(1), so that

U����f � f ��ÿ1

gives a unitary representation of ~G on a�. The unitary representations of ~G
were classi¢ed in [26]. What we have here is the positive discrete series, in a
realization which was ¢rst considered in this generality in [28]. The scalar
product in the space a� is given by
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hf ; gi� �
X1
k�0

k!

���k
f̂ �k�ĝ�k�;�2�

where f �z� �P f̂ �k�zk and
���k � ��� � 1� � � � �� � kÿ 1�; ���0 � 1

is the Pochhammer symbol. The norm will be denoted by k k� , it is normal-
ized so that k1k� � 1. The space a� has the reproducing kernel
kw�z� � �1ÿ �wz�ÿ�, that is

f �w� � hf ; kwi�; f 2a�; w 2 D:�3�
When � > 1, a� is the Dzhrbashyan (or weighted Bergman) space [9], with
inner product

hf ; gi� �
Z
D
f �z�g�z� dm��z�;

where

dm��z� � � ÿ 1
�
�1ÿ jzj2��ÿ2 dxdy:

In particular, a2 is the (unweighted) Bergman space. When � � 1, we have
the Hardy space H2 with inner product

hf ; gi1 �
1
2�

Z
@D

f �g jdzj:

For 0 < � < 1, a� is not the analytic part of an L2-space, so there is no so
simple integral formula. We are interested in bounded multilinear forms on a
product a�1 � � � � �a�n . These can uniquely be written as

�f1; . . . ; fn� 7!
X1

k1;...;kn�0

k1! � � � kn!
��1�k1 � � � ��n�kn

f̂1�k1� � � � f̂n�kn�K̂�k1; . . . ; kn�;�4�

where the kernel K�z� �P K̂�k1; . . . ; kn�zk is analytic on the polydisc Dn;
here and throughout we use multi-index notation such as

z � �z1; . . . ; zn�; zk � zk11 � � � zknn :
We have an action of ~G, which on the kernel level takes the form

�K � ���z� � K��z1; . . . ; �zn��0�z1�
1
2�1 � � ��0�zn�

1
2�n :�5�

The Hilbert tensor product a�1 
 � � � 
a�n can be identi¢ed with the
space of kernels such that
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kKk2 �
X1

k1;...;kn�0

k1! � � � kn!
��1�k1 � � � ��n�kn

jK̂�k1; . . . ; kn�j2 <1;

or with the corresponding forms. ~G acts unitarily on this Hilbert space by

�U�1 
 � � � 
U�n����K � K��ÿ1:
When � � ��1; . . . ; �n� is ¢xed we will use the notations h ; i�, k k� for this
space as well, and denote it for short by

N
a�. When �i > 1, we will denote

the measure dm�1�z1� � � � dm�n�zn� by dm��z�, so that
N
a� is the analytic

part of L2�Dn; dm��.
Note that although a� is irreducible under the action of ~G, the tensor

product is not. In fact, there is a decomposition

a�1 
a�2 �
M1
s�0
hs

into closed irreducible subspaces. When viewed as bilinear forms, the ele-
ments ofhs can be written as

H�f1; f2� � Hs
g�f1; f2� � js�f1; f2�; gh i�;

where � � �1 � �2 � 2s, the symbol g is in a�, and js is given by

js�f1; f2� �
Xs
k�0

s
k

� �
�ÿ1�sÿk f �k�1 f �sÿk�2

��1�k��2�sÿk
:�6�

This is shown in [12] for �1 � �2 and in [33] for �1 6� �2. The bilinear di¡er-
ential operators js are called transvectants. (To obtain the transvectants
occuring in classical invariant theory, one formally replaces the �i with ne-
gative integers. For higher order Hankel forms in this context, cf. [22].) In
particular,h0 is the space of forms

�f1; f2� 7! hf1f2; gi�1��2 :
This is usually called a Hankel form, and accordingly the elements ofhs for
general s are called Hankel forms of higher order (or higher weight).
A fundamental fact is that the correspondence between H and g gives an

equivalence of unitary representations, that is

kHs
gk� � Ckgk�; �U�1 
U�2����Hs

g � Hs
U����g

(where C is a constant depending on s, �1 and �2), so that

a�1 
a�2 '
M1
s�0
a�1��2�2s:�7�

multilinear hankel forms of higher order... 55
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In itself, this equivalence is not very hard to prove. However, in the papers
mentioned it is given a very explicit form. Moreover, the operators Hs

g make
sense also for more general symbols g, and one still has the intertwining
property �Hs

g��� � Hs
g��. This arises for example the question of relating

Schatten class properties of these forms to properties of the symbol (the
Hilbert tensor product equals the Schatten class S2), which is answered in
[12, 33] (for �1; �2 � 1).
In this paper we study the general case a�1 
 � � � 
a�n . From (7) follows

by induction the equivalence

a�1 
 � � � 
a�n '
M1

s1;...;snÿ1�0
aj�j�2�s1�����snÿ1� �

M1
s�0

n� sÿ 2
nÿ 2

� �
aj�j�2s

(where j�j �P �i), which we intend to make more explicit. In Section 2 we
start our study of this decomposition by considering the derived representa-
tion of the Lie algebra of ~G. In Section 3 we give explicit expressions for the
elements of the components, involving multilinear generalizations of the
transvectant and Newton's divided di¡erences. In Section 4 we study Schat-
ten class properties of our forms. Our approach is di¡erent from that in [12].
The proof of that paper depends on the theory of paracommutators, whereas
we use the theory of MÎbius invariant function spaces. In Sections 5 to 7 we
generalize some of the contents of [19]. That is we study certain discrete and
continuous systems of orthogonal polynomials connected with the decom-
position, and more precisely with the Clebsch-Gordan and Wigner coe¤-
cients of our representation. In the bilinear case three classical polynomial
systems appear, namely the Jacobi polynomials, the Hahn polynomials and
the Hahn polynomials of imaginary argument. In the n-linear case we obtain
analogues of these with nÿ 1 variables. Special cases of these polynomials
have been introduced by Appell [1], Karlin and McGregor [13] and Proriol
[25]. When the �i are half-integers, the polynomials of Jacobi-type are re-
lated to spherical harmonics. This is explained in Section 8. In fact we sketch
an alternative approach to higher order Hankel forms, based on the Segal-
Shale-Weil representation, where harmonic polynomials arise in a natural
way.
We would like to point out that the disc is just the ¢rst case to consider. It

should be possible to extend our ¢ndings to more general domains. In the
bilinear case, this has been studied in [20] for the complex ball and for gen-
eral bounded symmetric domains in [21]. Another generalization involves q-
analogues of the spaces a�, where the Lie group ~G is replaced by a ``quan-
tum group''. This gives rise to basic hypergeometric polynomials of several
variables. We will treat this in detail in the future publication [27]. For fur-
ther ideas of generalizations we refer to [23].
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2. An in¢nitesimal approach.

In this section we apply some fundamental facts about highest weight mod-
ules to the space

N
a� �a�1 
 � � � 
a�n . Recall the derived representa-

tion, which is de¢ned by

Xf � lim
t!0

U��exp�tX��f ÿ f
t

for X in the Lie algebra su�1; 1� of ~G. (Compared to [12], we have replaced
Xf by ÿXf . This is one reason why we prefer to speak of forms of higher
order, since strictly speaking these are now of lower weight.) It extends by
linearity to the complexi¢cation g � sl�2;C� of su�1; 1�, which is more con-
venient to use. In the standard basis E � �0 1

0 0�, F � �0 0
1 0�, H � �10 0

ÿ1� of g it
is given on a� by

E � ÿ d
dz
; F � z2

d
dz
� �z; H � ÿ 2z

d
dz
� �

� �
;

and on
N
a� by

E � ÿ
Xn
i�1

@

@zi
; F �

Xn
i�1

z2i
@

@zi
� �izi

� �
; H � ÿ

Xn
i�1

2zi
@

@zi
� �i

� �
:

When considered as operators, they are unbounded, though densely de¢ned.
They satisfy

�EF � � H; �HE� � 2E; �HF � � ÿ2F ;
E� � ÿF ; F � � ÿE; H� � H;

where � denotes the Hilbert space adjoint. We also compute the Casimir
operator

C � H2 � 2EF � 2FE �
X
i

�i��i ÿ 2�

� 2
X
i<j

�i�j � 2�zi ÿ zj� �j
@

@zi
ÿ �i @

@zj

� �
ÿ 2�zi ÿ zj�2 @2

@zi@zj

� �
:

This is a symmetric operator which commutes with the actions of g and ~G.
An irreducible g-module of highest weight � is by de¢nition a module A

multilinear hankel forms of higher order... 57
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generated by a vector of highest weight �, i.e. an element q 6� 0 satisfying
Eq � 0; Hq � �q. Then

EFkq � k��ÿ k� 1�Fkÿ1q; HFkq � ��ÿ 2k�Fkq;

so A is generated over C by fFkq j k � 0; 1; 2; g. Also Cp � ���� 2�p for all
p 2 A.
Let us for a while con¢ne attention to the space pi of polynomials, con-

sidered as a g-submodule of a�i . It is an irreducible module of highest
weight ÿ�i, with 1 as a highest weight vector. By purely algebraic arguments
(cf. [11], p. 71) it follows that

Nn
i�1pi �

M1
s�0

Hs;

where Hs is a sum of �n�sÿ2nÿ2 � irreducible g-modules of highest weight
ÿ�j�j � 2s�. Writinghs for the closure of Hs in

N
a�, it follows that

Nn
i�1a

�i �
M1
s�0
hs '

M1
s�0

n� sÿ 2
nÿ 2

� �
aj�j�2s;�8�

where the sum and tensor product now are interpreted in the Hilbert space
sense. Note that hs is also the eigenspace of C with the eigenvalue
�j�j � 2s��j�j � 2sÿ 2�. We de¢ne a Hankel form of higher order to be a
multilinear form of type (4) whose kernel K is a eigenvector (not necessarily
in
N
a�) of C. A Hankel form of order s is a form with the eigenvalue

�j�j � 2s��j�j � 2sÿ 2�.

3. Explicit expressions.

In this section we ¢nd some explicit expressions for our generalized Hankel
forms. Let us ¢rst determine the highest weight vectors, i.e. the solutions inN
a� �a�1 
 � � � 
a�n to the system Hq � ÿ�j�j � 2s�q; Eq � 0. The ¢rst

equation means that they are homogeneous polynomials of degree s, the
second one that they can be expressed as functions of zi ÿ zj �1 � i; j � n�.
Alternatively, the second equation means that

q�z1 � w; . . . ; zn � w� � q�z1; . . . ; zn��9�
for all w. The space of all such polynomials has indeed dimension �n�sÿ2nÿ2 �.
We now ¢x such a highest weight polynomial q. It will be convenient to

write

� � j�j � 2s:
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We want to construct the intertwining embedding kq from a� to
N
a�

that takes 1 to q. Then wk � Fk1=���k should be mapped to Fkq=���k, so we
set

kq�g� �
X1
k�0

ĝ�k�
���k

Fkq:�10�

By a computation, using that F � � ÿE, or by Schur's lemma,

kkq�g�k2� � kgk2�kqk2�:�11�
Thus we may write (8) as

Nn
i�1a

�i '
M1
s�0
aj�j�2s 
Qs;

where Qs is the space of highest weight polynomials of degree s and g
 q
corresponds to kq�g�. (When all the �i are equal this is the decomposition
with respect to ~G� Sn, where Sn is the symmetric group.) The space hs of
the previous section equals the space of ¢nite sums of kernelskq�g�, where q
is a highest weight polynomial of degree s and g 2a�.
Note thatkq�g� can be de¢ned also for many analytic g which are not in

a�. We will denote by H � Hq
g (for Hankel) the form on a�1 � � � � �a�n

with kernelkq�g�: This is a Hankel form of order s, and intertwining in the
sense that �Hq

g ��� � Hq
g��, where H transforms as an element of

N
a� and g

as an element of a�. A general Hankel form of order s can be written as a
¢nite sum of forms Hq

g .
We denote by jq :a�1 � � � � �a�n !a� the n-linear operator de¢ned by

jq�f1; . . . ; fn� �k�
q�f1 
 � � � 
 fn�;

where k�
q :
N
a� !a� is the Hilbert space adjoint of kq. We call the

operators jq transvectants. In Proposition 3.2 we will see that jq is a dif-
ferential operator of the same degree as q. In the rest of this section we will
write for short

K �kq�g�;�12�

J � jq�f1; . . . ; fn�:�13�
Thus we may write

Hq
g �f1; . . . ; fn� � hf1 
 � � � 
 fn;Ki� � hJ; gi�:

To ¢nd explicit expressions for J and K , we ¢rst observe that
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J�w� � hJ; kwi� � hf1 
 � � � 
 fn;kq�kw�i�:
But since

kw�z� � 1
�1ÿ �wz�� �

X1
k�0

���k�wk

k!
zk;

it follows from (10) that

kq�kw� �
X1
k�0

�wk

k!
Fkq � e�wFq;

which gives

J�w� � hf1 
 � � � 
 fn; e�wFqi�:
Since �e�wF �� � eÿwE we may also write

J�w� � heÿwE�f1 
 � � � 
 fn�; qi�;�14�
provided that eÿwE�f1 
 � � � 
 fn� 2

N
a�: Now one may check that

e�wF �f1 
 � � � 
 fn�

� f1
z1

1ÿ �wz1

� �
� � � fn zn

1ÿ �wzn

� �
1

�1ÿ �wz1��1 � � � �1ÿ �wzn��n;

eÿwE�f1 
 � � � 
 fn� � f1�z1 � w� � � � fn�zn � w�:

(In fact, for any X 2 sl�2;C�, ewX acts as in (5).) This gives integral formulas
for jq and kq. If some of the �i are less than 1, the formulas of the fol-
lowing proposition are valid if properly reinterpreted (the integrals must be
replaced by sums such as (2) and (4)).

Proposition 3.1. The operators jq andkq are given by

J�w� �
Z
Dn

q
z1

1ÿ �wz1
; . . . ;

zn
1ÿ �wzn

� �
f1�z1� � � � fn�zn�

�1ÿ w�z1��1 � � � �1ÿ w�zn��n dm��z�;�15�

K�z� �
Z
D
q

z1
1ÿ �wz1

; . . . ;
zn

1ÿ �wzn

� �
g�w�

�1ÿ �wz1��1 � � � �1ÿ �wzn��n dm��w�;�16�

where K and J are as in (12) and (13). If f1 
 � � � 
 fn can be extended to the
polydisc

Dn
w � fz 2 Cn j jzi ÿ wj < 1; 1 � i � ng;

we may also write
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J�w� �
Z
Dn

f1�z1 � w� � � � fn�zn � w�q�z1; . . . ; zn� dm��z��17�

�
Z
Dn

w

f1�z1� � � � fn�zn�q�z1; . . . ; zn� dm��z1 ÿ w; . . . ; zn ÿ w�:�18�

Proof. The formulas (15) and (17) follow from the corresponding for-
mulas in the preceeding paragraph. It is also clear that (16) follows from
(15), and (18) is immediate from (17) and (9).

It is not hard to check the intertwining properties of jq and kq directly
from (15) and (16). Using the invariance of the scalar products and the
identity

1ÿ �zi�zj � �1ÿ zi�zj��0�zi�1=2�0�zj�
1=2
; � 2 ~G

one veri¢es that they reduce to the fact that

q
z1

1ÿ �wz1
; . . . ;

zn
1ÿ �wzn

� �
� q

�z1
1ÿ �w�z1

; . . . ;
�zn

1ÿ �w�zn

� �
�0�w�s:

This follows in turn from the properties of q and the two identities

�zi ÿ �zj � �zi ÿ zj��0�zi�1=2�0�zj�1=2;
zi

1ÿ �wzi
ÿ zj
1ÿ �wzj

� zi ÿ zj
�1ÿ �wzi��1ÿ �wzj� :

We will now generalize the expression (6) to the multilinear case.

Proposition 3.2. If q�z� �Pjsj�s cszs is a highest weight polynomial, then
jq�f1; . . . ; fn� �

X
jsj�s

�cs
f �s1�1 � � � f �sn�n

��1�s1 � � � ��n�sn
:�19�

Proof. It su¤ces to take the fi as polynomials, so that (14) is valid. By
Taylor's formula, eÿwE�f1 
 � � � 
 fn� is given by

f1�z1 � w� � � � fn�zn � w� �
X

s1;...;sn�0

f �s1�1 �w� � � � f �sn�n �w�
s1! � � � sn! zs11 � � � zsnn :

Inserting this in (14) we obtain (19).

Alternatively, we may di¡erentiate the reproducing formula (3) k times to
obtain

f �k��w�
���k

�
Z
D

�zkf �z�
�1ÿ �zw���k dm��z�;
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and use this to see that (19) is equivalent to (15). Note also that for n � 2 we
have up to a constant only q�z1; z2� � �z1 ÿ z2�s, and then jq �� js� is given
by (6).
Let us now return to the topic of integral formulas. It is sometimes con-

venient to express our generalized Hankel forms as boundary integrals. One
has then only to apply the easily veri¢ed formula

hf ; gi� � hf ; bi1 �
1
2�

Z
@D

f �b jdwj;

where

b�z� �
X1
k�0

k!

���k
ĝ�k�zk:

It follows that

Hq
g �f1; . . . ; fn� � 1

2�

Z
@D

J �b jdwj

and that

K�z� � 1
2�

Z
@D

q
z1

1ÿ �wz1
; . . . ;

zn
1ÿ �wzn

� �
b�w�

�1ÿ �wz1��1 � � � �1ÿ �wzn��n jdwj:�20�

This is of particular interest when � is an integer. We can then write

g�z� � h��ÿ1��z�
��ÿ 1�! ;

where h�z� � z�ÿ1b�z�. The function h is interesting because it also behaves
nicely under the group action, a fact that has been called Bol's lemma (cf.
[22] for a historical discussion):

d
dz

� ��ÿ1
�h��z��0�z��2ÿ��=2� � h��ÿ1���z��0�z��=2:

This re£ects the fact that a� is equivalent as a representation to a space of
analytic functions modulo polynomials of degree < �ÿ 1, transforming ac-
cording to

U��ÿ1�h � h��z��0�z��2ÿ��=2;
and an isomorphism is given by h��ÿ1� 7! h. Our kernel can be expressed as

K�z� � 1
2�i

Z
@D

q
z1

1ÿ �wz1
; . . . ;

zn
1ÿ �wzn

� �
h�w� �w�

�1ÿ �wz1��1 � � � �1ÿ �wzn��n dw:�21�
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In [12], higher order Hankel forms were introduced through Newton's di-
vided di¡erences

h�z1; z2� � h�z1� ÿ h�z2�
z1 ÿ z2

; h�z1; z2; z3� � h�z1; z2� ÿ h�z1; z3�
z2 ÿ z3

etc.

Let us see how to ¢nd expressions involving these. We now assume that all
the �i (and hence �) are positive integers. First suppose that q is of the form

q�z� �
Y
i;j

�zi ÿ zj�sij :�22�

We let si �
P

j�sij � sji�, so that
P

i si � 2s. In that case we ¢nd that

K�z� � 1
2�i

Z
@D

Y
i;j

zi ÿ zj
�1ÿ �wzi��1ÿ �wzj�
� �sij h�w��w�

�1ÿ �wz1��1 � � � �1ÿ �wzn��n dw�23�

� q�z�
2�i

Z
@D

h�w�
�wÿ z1�s1��1 � � � �wÿ zn�sn��n

dw

� q�z� h�z1; . . . ; z1|������{z������}
s1��1

; . . . ; zn; . . . ; zn|������{z������}
sn��n

z��������������������}|��������������������{�

�;

using a well-known integral formula for the divided di¡erences. If q is not of
the form (22), we get a linear combination of such expressions.
To summarize, a Hankel form Hq

g of order s is given by

Hq
g �f1; . . . ; fn� � hf1 
 � � � 
 fn;Ki� � hJ; gi� � hJ; bi1;

where J is given by (19), K � Kg by (16) and K � Kb by (20). For integer � we
can write K � Kh as in (21), and when all the �i are integers it is given by a
linear combination of expressions like (23).

4. Trace class criterion.

We will now discuss Sp-properties of our forms. In the caseP
�i ÿmax �i > 1 and p � 1 we obtain a complete trace class criterion. Our

proof generalizes the one for the case n � 0, s � 0, �1 � �2 > 1 (that is for
little Hankel operators on Dzhrbashyan spaces) given in [18]. For the theory
of trace classes of multilinear forms we refer to [7], though we will denote by
S1 the space of bounded forms, not the compact ones. Note that S2 is just
the space

N
a� (when viewed as a space of forms). For s 2 R and

0 < p � 1, we introduce the Besov space bs; p of analytic functions on the
disc such that
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�1ÿ jzj2�mÿsjf �m��z�j 2 Lp dxdy

1ÿ jzj2
 !

;�24�

where m is any natural number with m > s. Then a� � b1
2�1ÿ��; 2. This de¢-

nition is independent of m, that is

f 2 bs; p , f 0 2 bsÿ1; p �so f 2a� , f 0 2a��2�:�25�
Also, b

1
pÿ�2; p is invariant under the action (1) for any � 2 R. We ¢nally let bs

0
be the closure of the polynomials in bs;1; then (with m as above)

f 2 bs
0 , lim

jzj%1
�1ÿ jzj2�mÿsjf �m��z�j � 0:

The main step in the proof of our trace class criterion is Lemma 4.1 below.
It is also true in the case � � 0, when it is due to Arazy and Fisher [3]. It was
observed in [18] that it can be extended to other values of �. We will deduce
the lemma from the atomic decomposition of analytic Besov spaces as given
by Peloso in [24], generalizing earlier work by Coifman and Rochberg [8].

Lemma 4.1. Let X be a Banach space of analytic functions on D such that
1 2 X and the norm of X is invariant under the action (1) for some � > 0. Then
b1ÿ�2; 1 is continuously contained in X.

Proof. By [24], for any � > 0 there exists a sequence �wi�1i�1 in D and a
constant C such that any function f 2 b1ÿ�2; 1 can be decomposed as

f �z� �
X1
i�1

ci
�1ÿ jwij2��
�1ÿ z�wi���

�
2
; where

X1
i�1
jcij � Ckf k

b1ÿ�2; 1 :

We take � � �=2, so that this can be written as f �P ci�1 � �i�; with
�iz � �zÿ wi�=�1ÿ �wiz�. Then

kf kX �
X1
i�1
jcij k1 � �ikX � Ck1kX kf kb1ÿ�2; 1 ;

which proves the lemma.

Lemma 4.2. For �i > 0 �1 � i � n� andP �i ÿmax �i > 1 we have

fi 2a�i ) f1 � � � fn 2 b1ÿ j�j2 ; 1:

Proof. First let us show that

a� � b1
pÿ�2; p �2 � p � 1; � > 0�:

(This is a version of Sobolev's imbedding theorem.) Since
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f 2 b1
pÿ�2; p , �1ÿ jzj2�12���2�jf 0�z�j 2 Lp dxdy

�1ÿ jzj2�2
 !

it su¤ces to prove this when p � 1. But in that case the inclusion follows
from

jf �z�j � jhf ; kzi�j � kf k��kz�z��
1
2 � kf k��1ÿ jzj2�ÿ

�
2:

Using (25) one sees that it su¤ces to prove the lemma when
max �i � �1 > 2, and thus �2 � � � � � �n > 1. We can then choose p2; . . . ; pn
with 1=p2 � � � � � 1=pn � 1=2 and pi > 2=�i �2 � i � n�, which gives, by HÎl-
der's inequality,Z

D
jf1 � � � fnj�1ÿ jzj2�

1
2��1������n�ÿ2dxdy

�
Z
D
jf1j2�1ÿ jzj2��1ÿ2dxdy

� �1
2 Yn
i�2

Z
D
jfijpi �1ÿ jzj2�

1
2�ipiÿ2dxdy

� � 1
pi

:

This completes the proof since fi 2 b1=piÿ�i=2; pi , and the parameters are cho-
sen so that one may take m � 0 in (24).

We can now state

Theorem 4.3. Let H be a Hankel form of order s in a�1 
 � � � 
a�n , writ-
ten as in the previous section

H �
Xk
j�1

Hqj
gj ;

where k � �n�sÿ2nÿ2 � and �q1; . . . ; qk� is any basis for the space of highest weight
polynomials of degree s, and let � � j�j � 2s. If

P
�i ÿmax �i > 1, we have

the equivalences

H 2 Sp , gj 2 B1
pÿ�2;p for all j �1 � p � 1�;�26�

H is compact , gj 2 bÿ
�
2

0 for all j:�27�
If �i > 0 are arbitrary, we have in (26) the implication( for 1 � p � 2 and)
for 2 � p � 1 and in (27) the implication ).

Proof. We ¢x j, put q � qj and let X � fg j Hq
g 2 S1g. This is a Banach

space with norm kgkX � kHq
gkS1

, which is invariant when g transforms as an
element of a�. Since g � 1 gives the form with kernel q which is trivially in
S1, Lemma 4.1 gives b1ÿ�2; 1 � X : This shows that
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gj 2 b1ÿ�2; 1 for all j ) H 2 S1:

Assume conversely that H 2 S1, and that
P

�i ÿmax �i > 1. We want to
show that

H 2 S1 ) gj 2 b1ÿ�2; 1

for a ¢xed j. We may then assume that �q1; . . . ; qk� is orthogonal. By de¢ni-
tion, one can write

H�f1; . . . ; fn� �
X1
i�1

ci hf1;  i1i�1 � � � hfn;  i
ni�n ;

where the  i
j satisfy X1

i�1
jcij k i

1k�1 � � � k i
nk�n <1:

Equivalently,

Xk
i�1
kqi�gi� �

X1
i�1

ci� i1 
 � � � 
  i
n�:

We now apply the equality

jqjkqi � hqi; qji� Id;�28�
which is just the polarization of (11). It gives

gj � kqkÿ2�
X1
i�1

cijq� i
1; . . . ;  i

n�

(where still q � qj), so it su¤ces to prove that, for some constant C,

kjq� i1; . . . ;  i
n�kb1ÿ�2; 1

� Ck i
1k�1 � � � k i

nk�n :�29�

Now if �s1; . . . ; sn� is a multi-index of length s, we clearly haveX
��i � 2si� ÿmax��i � 2si� > 1:

But then (29) follows from Lemma 4.2 and (25), so the theorem holds for
p � 1.
Now, since S�1 � S1 and �b1ÿ�2; 1�� � bÿ�2;1 with respect to the dualities

given by S2 and a� respectively, the theorem follows for p � 1 from the
case p � 1, using (28), and then for general p by interpolation. The com-
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pactness criterion follows since the space of compact forms is the closure in
S1 of the forms with polynomial kernels.

What happens when the �i are so small that there is no equivalence in
Theorem 4.3? This seems to be much more di¤cult. One certainly has to go
beyond the scale of Besov spaces, since for n � 2, s � 0 and �1 � �2 � 1, H is
bounded if and only if g 2 BMO. We refer to [32] for trace ideal criteria for
Hankel type operators in this situation.

5. Orthogonal polynomials.

So far we have formulated our theory only for the unit disc D. However, it
applies to any Riemann surface U conformally equivalent to D. One has
only to de¢ne

a��U� � f�f �  �� 0��=2 j f 2a��D�g �� > 0�;
where  : U ! D is a conformal isomorphism. This space is independent of
 . We carry over the Hilbert space structure and get a unitary representation
as before. When U is a disc, a half-plane or a strip the objects in study can
be expressed using Fourier transform on the boundary. In the case a� 
a�

�� � 1�, this was worked out in [19]. The orthogonality of the decomposition
then leads naturally to three systems of orthogonal polynomials. The rest of
this paper will be concerned with generalizations of these systems to the
multilinear case.
Let us write down expressions for the norm in a� of the half-plane

fIm z > 0g and the strip f0 < Im z < �g respectively:

kf k2� �
ÿ���
2�

Z 1
0
j f̂ ���j2�1ÿ� d�

2�
;�30�

kf k2� � ÿ���
Z 1
ÿ1
j f̂ ���j2 eÿ��

ÿ
�

2
� i�

� ���� ���2
d�
2�
:

Here the hat denotes Fourier transform of (in general distributional)
boundary values on the real axis. This can be found in [19], except that for
the strip one there ¢nds the alternative expression

kf k2� �
�� ÿ 1�2�ÿ2

�

Z 1
ÿ1
j f̂ ���j2

Z �

0
eÿ2y��sin y��ÿ2 dy d�

2�
�� > 1�:

The inner integral can, however, be expressed as indicated (cf. [31], formula
3.4.6(5)), which also gives an extension to all positive �. Since
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f̂y��� � eÿy� f̂ ���, where fy�x� � f �x� iy�, (30) can also be written more
symmetrically as

kf k2� � ÿ���
Z 1
0
�j f̂ 0���j2 � j f̂ ��ÿ��j2�

eÿ��

ÿ
�

2
� i�

� ���� ���2
d�
2�
:

The expressions for higher order Hankel forms given in [19] extend im-
mediately to the multilinear case, so we will just write them down. It is con-
venient to use the symbol corresponding to b. In the halfplane, disc and strip
respectively, they are then given by (using the same somewhat arbitrary
normalization as in [19])

H�f1; . . . ; fn� �
Z
Rn
�

b̂��1 � � � � � �n�p��� f̂1��1� � � � f̂n��n� d�
�2��n ;�31�

H�f1; . . . ; fn� �
X1
k�0

b̂�k�
X

m1�����mn�k�s
p�m1; . . . ;mn� f̂1�m1� � � � f̂n�mn�;�32�

H�f1; . . . ; fn� �
Z
Rn

b̂��1 � � � � � �n�p����1� eÿ2���1������n�� f̂1��1� � � � f̂n��n� d�
�2��n ;

where

p � Tq; p � Tq; p � Tq

and T ; T and T are the operators sending zs11 � � � zsnn to

�s11 � � � �snn
��1�s1 � � � ��n�sn

; �ÿ1�s �ÿm1�s1 � � � �ÿmn�sn
��1�s1 � � � ��n�sn

;

�ÿ1�s
�1
2
ÿ i�1

� �
s1
� � � �n

2
ÿ i�n

� �
sn

��1�s1 � � � ��n�sn
respectively. Note that p; p and p are polynomials of degree s. Now if q and
q0 are two orthogonal highest weight polynomials, then the corresponding
Hankel forms are orthogonal for all g. It follows that the polynomials
p � Tq; . . . ;p0 � Tq0 satisfy the orthogonality relationsZ

p��� p0��� ��1ÿ11 � � � ��nÿ1n d� � 0;�33�

where the integration is over �1 � � � � � �n � C; �1; . . . ; �n > 0 and C > 0 is
arbitrary,
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X
m1�����mn�M

p�m1; . . . ;mn� p0�m1; . . . ;mn�
��1�m1

� � � ��n�mn

m1! � � �mn!
� 0�34�

for M � s; s� 1; . . . andZ
p���p0��� ÿ

�1
2
� i�1

� ���� ���2� � � ÿ
�n
2
� i�n

� ���� ���2d� � 0;

where the integration is over the entire plane �1 � � � � � �n � C and C 2 R is
arbitrary.
When q is of the form (22) we have found an amusing Rodrigues-type

formula for p � Tq:

p��� � �ÿ1�
s�1ÿ�11 � � � �1ÿ�nn

��1�s1 � � � ��n�sn
q
@

@�

� �
���1�s1ÿ11 � � � ��n�snÿ1n ��35�

(where si �
P

j �sij � sji�). To see this, write

q�z� �
X
jtj�t

ct zt; p��� �
X
jtj�t

ct
�t11 � � � �tnn

��1�t1 � � � ��n�tn
:

Then (35) reduces to ct � �ÿ1�scsÿt, that is to the immediately veri¢ed iden-
tity

zs11 � � � zsnn q
1
z1
; . . . ;

1
zn

� �
� �ÿ1�sq�z1; . . . ; zn�:

We remark that in the case when p and p0 have di¡erent homogeneity, (33)
follows directly from (35) by partial integration.
The polynomials p, p and p have a ``group-theoretical'' meaning. In fact

they are (generalized) Clebsch-Gordan coe¤cients of our representation. To
understand this, ¢rst note that Fourier expansion in our three cases means
expansion in eigenfunctions of certain one-parameter subgroups of G, which
are given by a¤ne automorphisms. For the unit disc we have the rotations,
that is the elliptic subgroup of G, for the half-plane and the strip the trans-
lations which form the parabolic and hyperbolic subgroup respectively. (The
hyperbolic subgroup can also be represented as dilations of the half-plane;
one then has the Fourier transform on �R�;��, that is the Mellin transform.)
Let us consider the case n � 2. We know two orthogonal bases of
a�1 
a�2 , namely �zi1zj2�1i;j�0, that is the tensor products of eigenfunctions of
the elliptic subgroup, and �Fk�z1 ÿ z2�l�1k;l�0. The change between these is
given by
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Fk�z1 ÿ z2�l �
X

i�j�k�l

��1�i��2�j
i! j!

hzi1zj2;Fk�z1 ÿ z2�li� zi1zj2

� k!
X

i�j�k�l

��1�i��2�j
i! j!

H�zi1; zj2� zi1zj2;

where H is the Hankel form of order l given by q � �z1 ÿ z2�l and b � wk.
Comparing with (32) we ¢nd that

Fk�z1 ÿ z2�l � k!
X

i�j�k�l

��1�i��2�j
i! j!

�Tq��i; j�zi1zj2;

so the polynomial p � Tq gives the matrix for a change between our two
bases. Similarly the polynomials Tq and Tq appear in the integral kernel for
the (continuous) expansion of Fk�z1 ÿ z2�l in tensor products of eigenfunc-
tions of the parabolic and hyperbolic subgroups respectively. This means
that, when n � 2, our three classes of polynomials agree after normalization
with the Clebsch-Gordan coe¤cients, with respect to the three subgroups, of
our representation. These can (when the �i are integers) be found in [31],
where it is shown that they are given by Hahn polynomials, Jacobi poly-
nomials and ``Hahn polynomials of imaginary argument'' respectively. So, in
particular, the polynomials of [19] must agree with those.
In the case n � 2, two highest weight polynomials are orthogonal precisely

if they have di¡erent degree of homogeneity, so there is essentially one sys-
tem of orthogonal polynomials in each of the three cases. In the case n � 3
we may get di¡erent systems starting with di¡erent bases in the space of
highest weight polynomials. In Section 6 we will consider the non-orthogo-
nal basis

qs�z� � �z1 ÿ zn�s1 � � � �znÿ1 ÿ zn�snÿ1 ; s � �s1; . . . ; snÿ1�:�36�
In that case the polynomials Tqs, Tqs and Tqs can be expressed in terms of a
single (generalized) hypergeometric function. It turns out that for n � 3 the
polynomials Tqs where introduced by Appell in [1], see also the book [2]. So
we call the polynomials that appear generalized Appell polynomials. In Sec-
tion 7 we will consider the case when one starts with an orthogonal basis of
the space of highest weight polynomials, so that application of T , T and T
gives complete systems of orthogonal polynomials. Expressions for these in
terms of hypergeometric functions are more complicated.

6. Generalized Appell polynomials.

In this section we will study Tqs, Tqs and Tqs for qs given by (36), where s is
a multi-index of length s. Note that since T , T and T commute with permu-
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tations of the variables, our results extend to the bases
Q

j 6�i�zj ÿ zi�sj
�1 � i � nÿ 1�. Let us start with the case of the half-plane. The polynomials
ps � Tqs can then be expressed in terms of the Lauricella function F �nÿ1�A , for
which we recall the de¢nition

F �n�A
a; b1; . . . ; bn
c1; . . . ; cn

����x1; . . . ; xn

� �
�

X1
k1;...;kn�0

�a�jkj�b1�k1 � � � �bn�kn
k1! � � � kn! �c1�k1 � � � �cn�kn

xk11 � � � xknn ;

where jkj � k1 � � � � � kn (cf. [29] or [31]). Indeed, from the expansion

qs�z� �
X1

k1;...;knÿ1�0

�ÿs1�k1 � � � �ÿsnÿ1�knÿ1
k1! � � � knÿ1! �ÿ1�szk11 � � � zknÿ1nÿ1z

sÿjkj
n

we obtain, writing ��n�sÿjkj � �ÿ1�jkj��n�s=�1ÿ �n ÿ s�jkj, that

ps��� �
X1

k1;...;knÿ1�0

�ÿs1�k1 � � � �ÿsnÿ1�knÿ1�ÿ1�
s�k11 � � � �knÿ1nÿ1 �

sÿjkj
n

k1! � � � knÿ1!��1�k1 � � � ��nÿ1�knÿ1��n�sÿjkj

� �ÿ�n�
s

��n�s
X1

k1;...;knÿ1�0

�1ÿ �n ÿ s�jkj�ÿs1�k1 � � � �ÿsnÿ1�knÿ1
k1! � � � knÿ1!��1�k1 � � � ��nÿ1�knÿ1

ÿ �1
�n

� �k1

� � � ÿ �nÿ1
�n

� �knÿ1

� �ÿ�n�
s

��n�s
F �nÿ1�A

1ÿ �n ÿ s;ÿs1; . . . ;ÿsnÿ1
�1; . . . ; �nÿ1

� ����ÿ �1�n ; . . . ;ÿ �nÿ1
�n

�
:

If we ¢x C and assume that �1 � � � � � �n � C, we may eliminate �n and get
orthogonal polynomials in nÿ 1 variables. Without loss of generality we
take C � 1. The polynomials

~ps��1; . . . ; �nÿ1� � ps��1; . . . ; �nÿ1; 1ÿ �1 ÿ � � � ÿ �nÿ1�
are then, for di¡erent values of jsj � s, orthogonal on

�1 � � � � � �nÿ1 � 1; �1; . . . ; �nÿ1 > 0

with respect to the weight

��1ÿ11 � � � ��nÿ1ÿ1nÿ1 �1ÿ �1 ÿ � � � ÿ �nÿ1��nÿ1:
One easily obtains a Rodrigues formula for these polynomials:

~ps��1; . . . ; �n ÿ 1� � �ÿ1�
s�1ÿ�11 � � � �1ÿ�nÿ1nÿ1 �1ÿ �1 ÿ � � � ÿ �nÿ1�1ÿ�n

��1�s1 � � � ��nÿ1�snÿ1��n�s
� @s

@�s11 � � � @�snÿ1nÿ1
���1�s1ÿ11 � � � ��nÿ1�snÿ1ÿ1nÿ1 �1ÿ �1 ÿ � � � ÿ �nÿ1��n�sÿ1�:
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For n � 3 they are as remarked above studied in [2]. In the notation of that
book we have in this case

~ps1;s2��1; �2� �
�ÿ1�s
��3�s

fs1;s2��1 � �2 � �3 ÿ 1; �1; �2; �1; �2�:�37�

For n � 2 we recognize the Jacobi polynomials

~ps��� �
�ÿ1�s
��2�s

fs��1 � �2 ÿ 1; �1; �� � �ÿ1�ss!
��1�s��2�s

P��1ÿ1;�2ÿ1�s �1ÿ 2��;

in the notation of [2] and of most modern authors [17, 31] respectively.
When �1 � �2 we get Gegenbauer polynomials as in [19].
We now turn to the corresponding polynomials for the disc, that is

ps � Tqs, with qs as before. For di¡erent values of s � jsj, these polynomials
are orthogonal in the sense of (34). They can be expressed in terms of one of
Karlsson's generalized Kampeè de Feè riet functions [29], namely

F 1:2
1:1

a : b1; c1; . . . ; bn; cn
d : e1; . . . ; en

� ���� x1; . . . ; xn

�

�
X1

k1;...;kn�0

�a�jkj�b1�k1 � � � �bn�kn�c1�k1 � � � �cn�kn
k1! � � � kn!�d�jkj�e1�k1 � � � �en�kn

xk11 � � � xknn

(with n replaced by nÿ 1). In fact, the same calculation as above gives

ps�m1; . . . ;mn�

� �ÿmn�s
��n�s

X1
k1;...;knÿ1�0

�ÿs1�k1 � � � �ÿsnÿ1�knÿ1�ÿm1�k1 � � � �ÿmnÿ1�knÿ1�1ÿ �n ÿ s�jkj
k1! � � � knÿ1!��1�k1 � � � ��nÿ1�knÿ1�1�mn ÿ s�jkj

� �ÿmn�s
��n�s

F 1:2
1:1

1ÿ �n ÿ s : ÿs1;ÿm1; . . . ;ÿsnÿ1;ÿmnÿ1
1�mn ÿ s : �1; . . . ; �nÿ1

����1; . . . ; 1
� �

:

When n � 2 we get the function 3F2,

ps�m1;m2� � �ÿm2�s
��2�s

X1
k�0

�ÿs�k�ÿm1�k�1ÿ �2 ÿ s�k
k! ��1�k�1�m2 ÿ s�k

� �ÿm2�s
��2�s 3F2

ÿs;ÿm1; 1ÿ �2 ÿ s
�1; 1�m2 ÿ s

����1� �
:

Applying the transformation formula

3F2
ÿs; a; b
c; d

����1� �
� �b�s�d ÿ a�s
�c�s�d�s 3F2

ÿ s; cÿ b; 1ÿ d ÿ s
1ÿ bÿ s; 1� aÿ d ÿ s

����1� �
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and the expression (2.7.19) in [17] for the Hahn polynomials

h��;��n �x;N� � �ÿ1�
n

n!
�N ÿ n�n�� � 1�n 3F2

ÿn; �� � � n� 1;ÿx
� � 1; 1ÿN

����1� �
we ¢nd that

ps�m1;m2� � �ÿ1�ss!
��1�s��2�s

h��1ÿ1;�2ÿ1�s �m2;m1 �m2 � 1�:�38�

Finally, in the case of the strip we have in the same way

ps��1; . . . ; �n� � Tqs��1; . . . ; �n� �
�12 �n ÿ i�n�s
��n�s

� F 1:2
1:1

1ÿ �n ÿ s : ÿs1; 12 �1 ÿ i�1; . . . ;ÿsnÿ1; 12 �nÿ1 ÿ i�nÿ1
1ÿ 1

2 �n ÿ s� i�n : �1; . . . ; �nÿ1

�����1; . . . ; 1

 !
:

For n � 2 this reads

ps��1; �2� �
�12 �2 ÿ i�2�s
��2�s 3 F2

ÿs; 12 �1 ÿ i�1; 1ÿ �2 ÿ s
�1; 1ÿ 1

2 �2 ÿ s� i�2

�����1
 !

;

which is, in agreement with [31], a Hahn polynomial of imaginary argument

6. Complete orthogonal systems.

If one replaces the qs of the previous section by an orthogonal basis of the
space of highest weight polynomials, it will give an orthogonal decomposi-
tion of the spacehs into �n�sÿ2nÿ2 � parts. Applying the operators T , T and T to
such a basis one obtains three orthogonal systems of polynomials. This can
be done in many ways, and there is no ``canonical'' one. There is however a
method that allows us to construct many di¡erent bases, and we then have
the problem how to change between these. Related questions have received
much attention from phycisists (cf. [5]), especially for the group SO�3� (or its
double cover SU�2�).
To construct our bases we use a ``binary coupling'' technique. If q1 is a

polynomial of highest weight ÿ�1 in a�1 
 � � � 
a�m and q2 one of highest
weight ÿ�2 in a�m�1 
 � � � 
a�n (where 1 � m � nÿ 1), then we de¢ne

�q1; q2�s � ��1�s��2�s�kq1 
kq2��z1 ÿ z2�s�39�

�
Xs
k�0

s
k

� �
�ÿ1�sÿk ��1�s��2�s��1�k��2�sÿk

Fkq1 
 Fsÿkq2:�40�

Herekq1 :a�1 !Nm
i�1a

�i and similarly forkq2 , and the factor ��1�s��2�s

multilinear hankel forms of higher order... 73



{orders}ms/98424/roseng.3d -17.11.00 - 10:38

is introduced for convenience. From the properties of k follows that
�q1; q2�s is a polynomial of highest weight ÿ�2s� �1 � �2� in
a�1 
 � � � 
a�n . (This is the well-known Clebsch-Gordan formula.)
Equivalently, �q1; q2�s is the unique highest weight polynomial such that

j�q1;q2�s�f1; . . . ; fn� � ��1�s��2�sjs�jq1�f1; . . . ; fm�;jq2�fm�1; . . . ; fn��;
where js � j�z1ÿz2�s is given by (6), with �i replaced by �i (i � 1; 2).
An integral formula (with the obvious interpretation in the case when �1

or �2 is small) follows from (16):

�q1; q2�s�z��41�

�
Z
D�D

q1
z1

1ÿ �w1z1
; . . . ;

zm
1ÿ �w1zm

� �
q2

zm�1
1ÿ �w2zm�1

; . . . ;
zn

1ÿ �w2zn

� �

� ��1�s��2�s�w1 ÿ w2�sdm�1�w1�dm�2�w2�
�1ÿ �w1z1��1 � � � �1ÿ �w1zm��m�1ÿ �w2zm�1��m�1 � � � �1ÿ �w2zn��n

:

Writing, for example,

a�1 
a�2 
a�3 � �a�1 
a�2� 
a�3

�
M1
s�0
a�1��2�2s 
a�3 �

M1
s;t�0
a�1��2��3�2s�2t;

we see that the polynomials��1�1 ; 1�2�s; 1�3�t for s; t � 0; 1; 2; . . ., where
1�i � 1 2a�i , form an orthogonal basis of the space of highest weight poly-
nomials, and thus

�Fk��1�1 ; 1�2�s; 1�3�t�1k;s;t�0
an orthogonal basis ofa�1 
a�2 
a�3 . To describe the bases constructible
in this way, it will be convenient to use labeled binary trees (as is done in si-
milar contexts e.g. in [5,17,31]). Instead of giving formal de¢nitions, we will
explain the concepts needed by means of examples.

Figure 1a Figure 1b Figure 1c

74 hjalmar rosengren



{orders}ms/98424/roseng.3d -17.11.00 - 10:38

Figure 2a Figure 2b

Figure 1a pictures an unlabeled binary tree with three terminal points A, B
and C and two bifurcation points D and E. A tree with n terminal points has
nÿ 1 bifurcation points. In a labeled binary tree a natural number is at-
tached to each bifurcation point. To each labeled tree we associate a highest
weight polynomial. Trees 1b and 1c then correspond to

��1�1 ; 1�2�s; 1�3�t and �1�1 ; �1�2 ; 1�3�s�t�42�
respectively, where s and t are natural numbers. Each unlabeled tree with n
terminal points gives the orthogonal basis of the highest weight polynomials
in a�1 
 � � � 
a�n (or of the space itself, by applying Fk) corresponding to
all possible labellings of the tree, so for example trees 2a and 2b give the
bases

Fk��1�1 ; 1�2�s; �1�3 ; 1�4�t�u and Fk���1�1 ; 1�2�s; 1�3�t; 1�4�u �k; s; t; u � 0; 1; . . .�
of
N4

i�1a
�i respectively. One can construct other bases by permuting the

variables. For example we can ¢rst form the polynomial ��1�1 ; 1�3�s; 1�2�t in
a�1 
a�3 
a�2 and then permute the last two variables to get back to
a�1 
a�2 
a�3 . Our results below extend immediately to such poly-
nomials, though for simplicity we state them only for the case when the
spaces a�i are taken in order.
It is easy to compute the norm of one of these polynomials, so that we can

normalize our bases. From (39) and (11) follows that

k�q1; q2�sk2 � ��1�2s ��2�2skq1k2kq2k2k�z1 ÿ z2�sk2a�1
a�2

� ��1�2s ��2�2skq1k2kq2k2
Xs
k�0

s
k

� �2 k!�sÿ k�!
��1�k��2�sÿk

:

The sum can be computed using the Chu-Vandermonde formula (see below),
which gives

k�q1; q2�sk2 � s!��1�s��2�s��1 � �2 � sÿ 1�skq1k2kq2k2:
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If q is given by a tree, one thus obtains a product formula for kqk, with one
factor for each bifurcation point.
We will now consider the problem of giving explicit expressions for our

polynomials as functions of zi ÿ zj. There are of course in¢nitely many ways
of doing this, but we have found one particularly symmetric and transparent
expression, which is given as Theorem 7.2 below. Let us begin with a special
case in the form of a lemma.

Lemma 7.1. The polynomial q � �q1; q2�s, where q1 � 1 2a�1 
 � � � 
a�m ,
q2 � 1 2a�m�1 
 � � � 
a�n �1 � m � nÿ 1� can be expressed as

q�z� �
X
kij

s!��1�k1 � � � ��n�kn
Y

1�i�m;m�1�j�n

�zi ÿ zj�kij
kij!

;�43�

where the sum is over all natural numbers kij with 1 � i � m, m� 1 � j � n
such that

Pm
i�1
Pn

j�m�1 kij � s; and where

ki �
Pn

j�m�1 kij 1 � i � m;Pm
j�1 kji m� 1 � i � n:

(
Proof. By (41) we have

q�z� �
Z
D2

��1�s��2�s�w1 ÿ w2�s dm�1�w1�dm�2�w2�
�1ÿ �w1z1��1 � � � �1ÿ �w1zm��m�1ÿ �w2zm�1��m�1 � � � �1ÿ �w2zn��n ;

where �1 � �1 � � � � � �m, �2 � �m�1 � � � � � �n. Using the expansion
�1ÿ z�ÿa �P1k�0 �a�kzk=k! in the denominator we get the expression

q�z� �
X

p1�����pn�s

s!��1�s��2�s��1�p1 � � � ��n�pn�ÿ1�
pm�1�����pn

p1! � � � pn!��1�p1�����pm��2�pm�1�����pn
zp11 � � � zpnn :

The lemma follows from this by applying the binomial theorem to each of
the factors �zi ÿ zj�kij in (43).
For the sake of clarity, let us illustrate this by considering the case

m � 2; n � 4. We then write (43) as
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X
k13�k23�k14�k24�s

s!
k13! k23! k14! k24!

��1�k13�k14��2�k23�k24��3�k13�k23��4�k14�k24

��z1 ÿ z3�k13�z1 ÿ z4�k14�z2 ÿ z3�k23�z2 ÿ z4�k24

�
X

p13�p23�p14�p24�p31�p32�p41�p42�s

s!��1�p13�p31�p14�p41 � � � ��4�p14�p41�p24�p42
p13! p23! p14! p24! p31! p32! p41! p42!

� zp13�p141 zp23�p242 �ÿz3�p31�p32�ÿz4�p41�p42

�
X

p1�p2�p3�p4�s
s!��1�p1��2�p2��3�p3��4�p4�ÿ1�

p3�p4zp11 z
p2
2 z

p3
3 z

p4
4

�
X

p13�p14�p1 ;
p23�p24�p2

��3 � p3�p13�p23��4 � p4�p14�p24
p13! p23! p14! p24!

X
p31�p32�p3 ;
p41�p42�p4

��1 � p1�p31�p41��2 � p2�p32�p42
p31! p32! p41! p42!

:

The equality then follows if we can prove thatX
p13�p14�p1 ;
p23�p24�p2

�
1�p13�p23�
2�p14�p24
p13! p23! p14! p24!

� �
1 � 
2�p1�p2
p1! p2!

:

For general m and k � nÿm one similarly arrives at (changing pi;m�j to qij)X
q11�����q1k�p1 ;
qm1�����qmk�pm

�
1�q11�����qm1 � � � �
n�q1k�����qmk
q11! � � � qmk! � �
1 � � � � � 
k�p1�����pm

p1! � � � pm!
:

(For m � 1, k � 2 this is the Chu-Vandermonde formula.) To prove it in
general, expand both sides of

�1ÿ x1 ÿ � � � ÿ xm�ÿ�
1�����
k�
� �1ÿ x1 ÿ � � � ÿ xm�ÿ
1 � � � �1ÿ x1 ÿ � � � ÿ xm�ÿ
k

and identify the coe¤cient of xp11 � � � xpmm :
To formulate our theorem, we need the concept of the bifurcation point

where two terminal points of a binary tree meet. As before, we only indicate
what we mean by an example: A and C in Figure 1a meet at E.

Theorem 7.2. Let q be a highest weight polynomial in a�1 
 � � � 
a�n gi-
ven by a binary tree with bifurcation points labeled s1; . . . ; snÿ1, and with the
terminal points numbered from left to right by 1; . . . ; n. Then
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q�z� �
X
kij

s1! � � � snÿ1!��1�k1 � � � ��n�kn
Y

1�i<j�n

�zi ÿ zj�kij
kij !

;

where the sum is over all natural numbers kij with 1 � i < j � n such that, for
each bifurcation point N, the sum of all kij such that i and j meet at N equals
the label of N, and where ki �

P
1�j<i kji �

P
i<j�n kij �1 � i � n�.

As an example, the polynomial q � ��1�1 ; 1�2�s; �1�3 ; 1�4�t�u can be written
as

q�z� � �z1 ÿ z2�s�z3 ÿ z4�t
X

k13�k14
�k23�k24�u

u!

k13! k14! k23! k24!
��1�s�k13�k14��2�s�k23�k24

� ��3�t�k13�k23��4�t�k14�k24�z1 ÿ z3�k13�z1 ÿ z4�k14�z2 ÿ z3�k23�z2 ÿ z4�k24 :
We now prove the theorem.

Figure 3

Proof. We will use induction on the tree. Suppose that q � �q1; q2�s is gi-
ven by the tree in Figure 3, and that the theorem is true for the polynomials
q1 and q2 given by the trees T1 (labelled by t1; . . . ; tmÿ1) and T2 (labelled by
u1; . . . ; unÿmÿ1) respectively. We then have

q1�z� �
X
kij2A

t1! � � � tmÿ1!��1�k01 � � � ��m�k0m
Y

1�i<j�m

�zi ÿ zj�kij
kij!

;

q2�z� �
X
kij2B

u1! � � � unÿmÿ1!��m�1�k0m�1 � � � ��n�k0n
Y

m�1�i<j�n

�zi ÿ zj�kij
kij!

;

where
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k0i �
P

1�j<i kji �
P

i<j�m kij 1 � i � m;P
m�1�j<i kji �

P
i<j�n kij m� 1 � i � n

(
and the sets A and B are determined by T1 and T2 according to the theorem.
By (41),

q�z� �
X

kij2A[B
t1! � � � tmÿ1! u1! � � � unÿmÿ1!��1�k01 � � � ��n�k0n

Y
1�i<j�m or
m�1�i<j�n

�zi ÿ zj�kij
kij !

�
Z
D2

��1�s��2�s�w1 ÿ w2�sdm�1�w1�dm�2�w2�
�1ÿ �w1z1��1�k

0
1 � � � �1ÿ �w1zm��m�k0m�1ÿ �w2zm�1��m�1�k

0
m�1 � � � �1ÿ �w2zn��n�k0n ;

where �1 �
Pm

i�1 �i � 2
Pmÿ1

i�1 ti �
Pm

i�1 �i �
Pm

i�1 k
0
i and analogously for �2.

By (41) again and Lemma 7.1, the integral is given by

XPm

i�1
Pn

j�m�1 kij�s
s!��1 � k01�k001 � � � ��n � k0n�k00n

Y
1�i�m;m�1�j�n

�zi ÿ zj�kij
kij!

;

where

k00i �
Pn

j�m�1 kij 1 � i � m;Pm
j�1 kji m� 1 � i � n:

(
Writing ��i�k0i��i � k0i�k00i � ��i�ki , one arrives at

q�z� �
X

kij2A[B

XPm

i�1
Pn

j�m�1 kij�s
s! t1! � � � unÿmÿ1!��1�k1 � � � ��n�kn

Y
1�i<j�n

�zi ÿ zj�kij
kij!

;

where ki � k0i � k00i is now as in the formulation of the theorem. Checking
how A and B are de¢ned one sees that this completes the proof.

We will now study the polynomials Tq, Tq and Tq where q is given by a
tree as above. We then ¢rst check that if q is a homogeneous polynomial of
degree � in a�1 
 � � � 
a�n , then

TFkq��� � ��1 � � � � � �n�kTq���;
TFkq�j� � �ÿ1�k��ÿ j1 ÿ � � � ÿ jn�kTq�j�;

TFkq��� � �ÿ1�k�12 ��1 � � � � � �n� � �ÿ i��1 � � � � � �n��kTq���:
Also T�p
 q� � Tp
 Tq, and similarly for T and T. If q1 is a highest weight
polynomial of degree �1 in a�1 
 � � � 
a�m and q2 one of degree �2 in
a�m�1 
 � � � 
a�n , it then follows from (40) that
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T�q1; q2�s
�
Xs
k�0

s
k

� � �ÿ1�sÿk��1�s��2�s
��1�k��2�sÿk

��1 � � � � � �m�k��m�1 � � � � � �n�sÿk Tq1 
 Tq2;

where �1 � �1 � � � � � �m � 2�1 and �2 � �m�1 � � � � � �n � 2�2. When q is a
highest weight polynomial given by a tree, this gives a product formula for
Tq with one factor for each bifurcation point, each being of the form (with
di¡erent �1, �2, s, m and n)

Xs
k�0

s
k

� � �ÿ1�sÿk��1�s��2�s
��1�k��2�sÿk

��1 � � � � � �m�k��m � 1� � � � � �n�sÿk�44�

� s!�ÿ�1 ÿ � � � ÿ �n�sP��1ÿ1;�2ÿ1s � 1ÿ 2
�1 � � � � � �m
�1 � � � � � �n

� �
;

where P is a Jacobi polynomial. For the operator T we have

T�q1; q2�s�j� �
Xs
k�0

s
k

� �
�ÿ1�k ��1�s��2�s��1 ÿ jj

0j�k��2 ÿ jj00j�sÿk
��1�k��2�sÿk

Tq1�j0�Tq2�j00�;

where j � �j1; . . . ; jn�, j0 � �j1; . . . ; jm� and j00 � �jm�1; . . . ; jn�, which gives a
product formula for Tq, each factor being of the formXs

k�0

s
k

� �
�ÿ1�k ��1�s��2�s��1 ÿ jj

0j�k��2 ÿ jj00j�sÿk
��1�k��2�sÿk

�45�

� �ÿ1�s��2�s��1 � �2 ÿ jjj�s 3F2
ÿs; �1 � �2 � sÿ 1; �2 ÿ jj00j

�2 ; �1 � �2 ÿ jjj
����1� �

� �ÿ1�ss! h��1ÿ1;�2ÿ1�s �jj00j ÿ �2; jjj ÿ �1 ÿ �2 � 1�;
where the latter two expressions are immediately veri¢ed by comparison
with the identities leading to (38). Similarly there is a product formula for
Tq, each factor being a Hahn polynomial of imaginary argument.
We will not write down these product formulas explicitly. Let us note,

however, that we have found some special cases in the literature. In the case
n � 3 (when there is essentially only one tree), the polynomials Tq were in-
troduced by Proriol in [25]. These have been applied to genetics and atomic
physics, see the survey [16] for references. For general n and for the special
type of tree exempli¢ed by Figures 1b and 2b, the polynomials Tq are stu-
died by Karlin and McGregor in [13], again in the context of genetics.
The product formula for Tq is of particular interest because we can use it

to expand q in monomials and the polynomials Tq, Tq and Tq in the gen-
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eralized Appell polynomials of the previous section. Indeed, if s and t are
two multi-indices of the same length, the de¢nition of T gives

Tzs�t� �
0 s 6� t;
s1! � � � sn!

��1�s1 � � � ��n�sn
s � t:

8><>:
It follows that for any homogeneous polynomial q of degree s,

q�z� �
X

s1�����sn�s

��1�s1 � � � ��n�sn
s1! � � � sn! Tq�s1; . . . ; sn� zs11 � � � zsnn :�46�

Using (9) we ¢nd

q�z� �
X

s1�����snÿ1�s

��1�s1 � � � ��nÿ1�snÿ1
s1! � � � snÿ1! Tq�s1; . . . ; snÿ1; 0�

�z1 ÿ zn�s1 � � � �znÿ1 ÿ zn�snÿ1

and analogous expansions in
Q

j 6�i�zj ÿ zi�sj �i � 1; . . . ; nÿ 1�. The results of
the previous section then gives n expressions for each of Tq, Tq and Tq.
Consequently each tree gives us a set of expansion formulas for orthogonal
polynomials. As an example, let us write down some of these relations for
q � ��1�1 ; 1�2�s; 1�3�t. The product formula for Tq is then, by (45),

Tq�j1; j2; j3� � �ÿ1�s�t��2�s��3�t�ÿj1 ÿ j2�s�sÿ j1 ÿ j2 ÿ j3�t

�3F2
ÿs; �1 � �2 � sÿ 1;ÿj2

�2;ÿj1 ÿ j2

����1� �
3F2

ÿt; �1 � �2 � �3 � 2s� tÿ 1;ÿj3
�3; sÿ j1 ÿ j2 ÿ j3

����1� �
:

We now plug this into (46), replacing si by ji. Then j1 � j2 � j3 � s� t, so we
can write

�sÿ j1 ÿ j2 ÿ j3�t � �ÿ1�t t!;

�ÿj1 ÿ j2�s �
�ÿ1�s�j3�j1 � j2�!�ÿt�j3

t!

and (with 
 � �1 � �2 � 2s� tÿ 1)

3F2
ÿt; �3 � 
;ÿj3
�3; sÿ j1 ÿ j2 ÿ j3

����1� �
� 2F1

�3 � 
;ÿj3
�3

����1� �
� �ÿ
�j3��3�j3

;

another instance of the Chu-Vandermonde formula. This gives
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q�z� � ��2�s��3�t
X

j1�j2�j3�s�t

�j1 � j2�!
j1! j2! j3!

�47�

� ��1�j1��2�j2�ÿt�j3�1ÿ 2sÿ tÿ �1 ÿ �2�j3

��ÿ1�j3 3F2 ÿs; �1 � �2 � sÿ 1;ÿj2
�2 ; ÿj1 ÿ j2

����1� �
zj11 z

j2
2 z

j3
3

� ��2�s��3�t
X

j1�j2�s�t

�s� t�!��1�j1��2�j2
j1! j2!

� 3F2
ÿs; �1 � �2 � sÿ 1;ÿj2

�2 ; ÿsÿ t

����1� �
�z1 ÿ z3�j1�z2 ÿ z3�j2

� ��2�s��3�t
X

j1�j3�s�t

��1�j1�ÿt�j3
j3!

� �1ÿ 2sÿ tÿ �1 ÿ �2�j3�ÿ1�
j3�z1 ÿ z2�j1�z3 ÿ z2�j3

and one expansion in �z2 ÿ z1�j2�z3 ÿ z1�j3 . (In this case these expansions are
also easily obtained from Theorem 7.2. This seems not to be so for poly-
nomials given by more complicated trees.) Proriol's polynomial
p��1; �2� � �Tq���1; �2; 1ÿ �1 ÿ �2� can then be written, in terms of Jacobi
polynomials P and Appell's polynomials f, as

p��1; �2� � �ÿ1�s�ts!t!��1 � �2�sP��1ÿ1;�2ÿ1�s 1ÿ 2
�1

�1 � �2

� �

� P��1��2�2sÿ1;�3ÿ1�t 1ÿ 2��1 � �2�� �

� ��2�s��3�t
X

j1�j2�s�t

�s� t�!��1�j1��2�j2
j1! j2!

3F2
ÿs; �1 � �2 � sÿ 1;ÿj2

�2;ÿsÿ t

����1� �

� �ÿ1�
s�t

��3�s�t
fj1;j2��1 � �2 � �3 ÿ 1; �1; �2; �1; �2� �

��2�s��3�t
X

j1�j3�s�t

��1�j1�ÿt�j3�1ÿ 2sÿ tÿ �1 ÿ �2�j3�ÿ1�
j3

j3!

� �ÿ1�
s�t

��2�s�t
fj1;j3��1 � �2 � �3 ÿ 1; �1; �3; �1; 1ÿ �1 ÿ �2�:
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The ¢rst of these expressions follows from (44), the other from (37) and (47).
Applying T and T leads to other identities involving orthogonal poly-
nomials.
The matrix elements for a change between two of our bases (or rather the

corresponding normalized bases) are the transformation coe¤cients, or
Wigner symbols, of our representation. We conclude this section with a re-
mark on the simplest non-trivial case, namely the Racah coe¤cients (or
Wigner 6-j-symbols) corresponding to the bases (42). As far as we know,
these are the only ones that can be expressed in terms of a single hypergeo-
metric function, namely 4F3� j1� [31]. Our previous ¢ndings can be used to
obtain a relatively simple deduction of this expression. This is based on the
observation that the basis vectors can be expressed using Gauss' hypergeo-
metric function 2F1. In fact, either from the last expression in (47) or from
Theorem 7.2, we ¢nd, after some manipulations,

��1�1 ; 1�2�s; 1�3�t�z1; z2; z3�

� ��1�s�t��2�s��3�t�z1 ÿ z2�s�t2F1 ÿt; 1ÿ 2sÿ tÿ �1 ÿ �2
1ÿ �1 ÿ sÿ t

���� z3 ÿ z2
z1 ÿ z2

� �
;

�1�1 ; �1�2 ; 1�3�u�v�z1; z2; z3�

� ��2�u��3�u��1�v��2 � �3 � 2u�v�z1 ÿ z2�v�z2 ÿ z3�u2F1 ÿv; �3 � u
�2 � �3 � 2u

���� z3 ÿ z2
z1 ÿ z2

� �
:

If we now apply Chaundy's formula [6] (which is easily proved by elemen-
tary means):

2F1
A;B
C

����x� �

�
X1
u�0

�a�u�b�u�ÿ1�u
u!�c� uÿ 1�u 4

F3
A;B; c� uÿ 1;ÿu

a; b;C

����1� �
xu 2F1

a� u; b� u
c� 2u

����x� �
;

with A � ÿt;B � 1ÿ 2sÿ tÿ �1 ÿ �2 and so on, we ¢nd after simpli¢cations
that

��1�1 ; 1�2�s; 1�3�t �
X

u�v�s�t
Ru;v
s;t �1�1 ; �1�2 ; 1�3�u�v;

where
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Ru;v
s;t �

�ÿ1�uN!��1 � v�u��2�s��3�t��2 � �3 � 2uÿ 1�
u!v!��2�u��2 � �3 � uÿ 1�N�1

� 4F3
ÿt; 1ÿ �1 ÿ �2 ÿ 2sÿ t; �2 � �3 � uÿ 1;ÿu

ÿN; �3; 1ÿ �1 ÿN

����1� �
�s� t � u� v � N�;

which thus, after normalization, are the Racah coe¤cients of our re-
presentation.

8. Spherical harmonics.

When the �i are all half-integers, the polynomials p � Tq of the previous two
sections are related to spherical harmonics. In fact, if q is a highest weight
polynomial, then

r�x1; . . . ; x2j�j� � �Tq��x21 � � � � � x22�1 ; . . . ; x22��1������nÿ1��1 � � � � � x22j�j��48�
is harmonic, and if q1 and q2 are orthogonal in a�1 
 � � � 
a�n , then the
corresponding polynomials r1 and r2 are orthogonal with respect to Eu-
clidean measure on the unit sphere of R2j�j. This is not hard to prove directly:
the harmonicity follows from the equations

X2j�j
i�1

@2

@x2i
r � 4

Xn
i�1

�i
@2

@�2i
� �i @

@�i

 !
Tq � 4T

Xn
i�1

@

@zi
q � 0;

and the orthogonality is immediately reduced to (33).
We will now sketch an alternative approach to higher order Hankel forms

based on the metaplectic representation, which gives a better understanding
of these facts. This is in line with how similar problems are treated in [14].
We will assume that the �i are positive half-integers, so that a�i are re-
presentation spaces of the four-fold cover G0 �Mp�1� of G. We will consider
the Segal-Shale-Weil (metaplectic, harmonic, oscillator) representation of G0

on L2�R�. Its k-th tensor power commutes with the natural action of O�k� onNk L2�R� � L2�Rk�. (Actually, one can embed G0 and O�k� as subgroups of
Mp�k� in such a way that these two representations are obtained by restric-
tion of the metaplectic representation of Mp�k�. In the terminology of Howe
[10], �G0;O�k�� is then a dual pair.) The decomposition with respect to
G0 �O�k� is

L2�Rk� '
M1
s�0
a

k
2�s 
hk

s ;�49�

wherehk
s is the irreducible representation of O�k� on homogeneous harmo
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nic polynomials in k variables of degree s. In the case k � 1 this is the ¢nite
decomposition

L2�R� 'a1
2 �a3

2 �� even� odd functions�:
If we view a� as function spaces on the upper half-plane, the intertwining
embeddings

a
k
2�s 
hk

s ! L2�Rk��50�
are given by

�g
 r��x� � ĝ
jxj2
2

 !
jxj2ÿ2�k2�s�r�x�;�51�

where ĝ is the Fourier transform of the boundary values of g (cf. [31], Sec-
tions 7.7.8 and 12.3.2 for these facts).
Taking s � 0 in (50), we may identify a

k
2 with the space of rotation in-

variant functions in L2�Rk�, and thus
Nn

i�1a
ki
2 with the subspace of

L2�Rk� � L2�Rk1� 
 � � � 
 L2�Rkn�; k �
X

ki;

invariant with respect to the subgroup

O�k1� � � � � �O�kn� � O�k�:
The decomposition (49) then givesOn

i�1
a

ki
2 '

M1
s�0
a

k
2�s 
 ~hk

s ;

where ~hk
s is the subspace of h

k
s consisting of harmonic polynomials of the

form

r�x� � p�jx1j2; . . . ; jxnj2�; xi 2 Rki :

Let V1
2s
be the corresponding space of polynomials p. It is not hard to see

that

dimV1
2s
�

0 s odd

�n�1
2 sÿ2
nÿ2 � s even;

(

which gives the decompositionsOn
i�1
a

ki
2 '

M1
s�0
a

k
2�2s 
 Vs �

M1
s�0

n� sÿ 2
nÿ 2

� �
a

k
2�2s
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with respect to G0 �O�k� and G0 respectively. So we recover (8) (in the case
when the �i are half-integers).
From (51) one obtains explicit formulas for higher order Hankel forms. In

fact, g
 p corresponds to

H�f1; . . . ; fn� �
Z
Rk

f̂ 1
jx1j2
2

 !
jx1j2ÿk1 � � � f̂ n

jxnj2
2

 !
jxnj2ÿkn

� jxj2ÿkÿ4sĝ jxj
2

2

 !
p�jx1j2; . . . ; jxnj2� dx

� C
Z
Rn
�

f̂ 1��1� � � � f̂ n��n� b̂��1 � � � � � �n�p��� d�;

where b̂�t� � t1ÿ2sÿ
k
2ĝ�t�, so, as expected, we recover (31).

We also remark that it would lead to nothing new if we were to consider
embeddings corresponding to s > 0 in (50). This would, for any choice of
ri 2hki

ti �1 � i � n�; allow us to identify
Nn

i�1a
ki
2�ti with functions in

L2�Rk� of the form
r1�x1� � � � rn�xn�F�jx1j; . . . ; jxnj�; xi 2 Rki ;

and thus give On
i�1
a

ki
2�ti '

M1
s�0
a

k
2�s 
 ~h

k
s ;

where now elements of ~h
k
s are harmonic polynomials of the form

r�x� � r1�x1� � � � rn�xn� p�jx1j2; . . . ; jxnj2�; xi 2 Rki :

However, the harmonicity of r is equivalent to the harmonicity of the poly-
nomial

p�jx1j2; . . . ; jxnj2�; xi 2 Rki�2ti ;

so we recover the same classes Vs and the same decomposition as above.
In [30] (cf. also [17, 31]) bases of the spaces Vs indexed by labeled binary

trees are constructed. Each tree then corresponds to a system of poly-
spherical coordinates, and the bases are obtained by separation of variables
with respect to these. It is not hard to see that this is equivalent to what we
did in the previous section, with the correspondence (48) between highest
weight polynomials q and harmonic polynomials r. This yields a proof of a
fact ¢rst found in [15], namely that the Wigner symbols for the discrete series
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of Mp�1� agree with the ``T-coe¤cients'' corresponding to a change between
polyspherical coordinates.
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