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ON THE CONVOLUTION BANACH ALGEBRA /1(0,1).

YNGVE DOMAR

0. In part 1 of this paper it is shown that the convolution Banach algebra
1'(Q;) =1'((0,1) N Q) contains an element g such that the linear span of the
convolution powers of g is dense in /' (Q;). This is then used to find a Hilbert
space operator with a particularly interesting invariant subspace structure.
The function g,, defined as g on Q,, and as 0 on (0, 1) \ Q,, generates a dense
ideal in the convolution Banach algebra /'(0,1). In part 2, a family of ele-
ments of /!(0, 1) with this property is obtained by a different and more gen-
eral method.

1. For any set E and any p, | < p < oo, [?(E) denotes the Banach space of
complex-valued functions / on E with

I =[x < oo

xeE

In [1, Problem 2’], K. R. Davidson raised the question, whether there is a
bounded linear operator on /2(Q) , for which the family of non-trivial in-
variant subspaces consists of all subspaces which are either of the form

{f € P(Q), supp f C (—o0, 1)}, € R,
or of the form

{f € *(Q), supp f C (—o0, #]} t € Q.

Due to the existence of an order-reversing bijection F of Q onto
Q; =Qn(0,1), for instance

— 4l yea
X ——— 4+ — X ,
2(L+|x]) 2
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his question is answered in the affirmative by the following theorem.

THEOREM 1. There is an element g € ['(Qy) such that convolution with g is
an operator on 1>(Qy), for which the family of non-trivial invariant subspaces
consists of all subspaces which are either of the form

(1) {f € 2(Qu),supp f C (1,1)}, 1€ (0,1),
or of the form
(2) {f e 2(Qy),supp f C[t,1)}, t € Q.

Here convolution is defined by
frg(x)= > flx—yel), xeQ.
0<y<x,yeQ
To prove the theorem we need the following lemma.

LemMA 1. The convolution Banach algebra 1'(Q;) contains an element g,
such that the linear span of the convolution powers g™ m > 1, is dense in

Q).

ProoF oF LEMMA 1. Let ¢, denote the element with value 1 at the point
(p))"!, and value 0 elsewhere. Our g will be of the form

E :ap €p;
p>2

where the positive coefficients a, are determined by the following iterative
procedure, starting with a; = % Suppose that

n
&n = E ap ey
2

has been defined for a certain n>2. Since a,#0, the powers
g 1<m<n!—1, form a base in the subspace /!(Q;), formed by the ele-
ments in /'(Q,), vanishing outside ((n!)"'Z) N Q. Since this space is finite-
dimensional and due to the submultiplicativity of the norm in /'(Q;), we can
fix a constant d,, such that every element in 1,1(01) of norm < 1 has distance
< n~! from the linear span of {h*"},1 <m < n!—1,if h € ['(Q) satisfies

(3) Ih — gull < d.
Then we choose a,;; € (0,27""!) using all previously chosen d,,, so that

4) Apiy < dp2" N1 <m<n.
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Let us now prove that the linear span of the convolution powers of g is
dense in /'(Qy). By (4), we have for every n > 2

llg — &gnll = Za,, < Zd" 2" =d,.

p>n p>n

Hence (3) is satisfied for / = g, and since ||g|| < 1, we find that all points in
the closed unit ball in /!(Q,), have distance < n~! from the linear span of the
powers of g. Since n can be chosen arbitrarily, the lemma is proved.

Proor oF THEOREM 1. Take g as in Lemma 1. Obviously the subspaces (1)
and (2) of /2(Q;) are invariant under convolution with g. Conversely let
L C I>(Q) be a (closed) subspace, invariant under convolution with g. Since
the operator norm for convolution is < the corresponding /' norm, L is in-
variant under convolution with any element in the (closed) subspace of
1'(Qy), generated by g, hence invariant under convolution with any element
h € 1'(Qq). In particular, choosing / so that it vanishes except at one point,
we find that L is invariant under all right translations 7, y € Q;, where
7f(x) =0,0<x <y, 1,f(x) =f(x—y), x> y. But the (non-trivial) right
translation invariant subspaces of /2(Q;) are exactly the subspaces of the
theorem. This follows directly from the corresponding result for /2(0,1),
which is known. It was announced in Helson [4] and can be derived from his
theory of cocycles as given in Helson [5]. It is also a direct consequence of
Theorem 1 in Domar [3].

2. The function g, constructed in the lemma, is of interest, too, for the
discussion of the ideal structure of the convolution Banach algebra /!(0,1),
with the obvious analogous definition of convolution. Let g, denote the
function on (0, 1), coinciding with g on Q; and taking the value 0 elsewhere.
It follows from the lemma that the ideal generated by g, is dense in /'(0, 1).
Equivalently, the linear span of the right translates of g, is dense in /'(0, 1).
We will now construct a more general class of functions with this property.

LEMMA 2. Let f € 1'(0,1), with inf supp f = 0. Suppose that there is a po-

sitive sequence {t,}, tending to co as n — oo, and a sequence {a,} of points in
(0,1), with a, — 0, as n — oo, such that, for f,, defined by

Ju(x) = f(x) exp(—tu x), x € (0,1),
we have
(5) 2lfu(@n)| > [Ifull,
for every n. Then the linear span of the right translates of f is dense in I'(0,1).

Proor oF LEmMA 2. If the right translates of f/ do not span a dense sub-
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space of /'(0,1), then there is an element h, not =0, in the dual space
[~°(0,1), such that

1
(6) / h()f (x — y)dx = 0, y € (0,1).

Let us define &, by
hy(x) = h(x) exp(t, x), x € (0,1).

There is a sequence {b,} in (0,1), satisfying lim inf b, > 0, as n — oo, and
(b)) 1| ™ — 1,n — o0.
Then (5) gives, if n is sufficiently large,

(7) 2/ (bu) | |fu(@n)| > sup [fn] [[ful]-
and by (6),

1
[ m st =ndx=0.y € ©.1),

i
Choosing n so large that b, —a, > 0, we obtain, for y =5, —a, in the
equality above,

2|7 (by) | [fn(an)| < suplhl (|12,

which contradicts (7), and we have proved that the linear span of the right
translates of f is dense in (0, 1).

THEOREM 2. Let {a,}, n > 1, be a sequence in (0,1), converging to 0. Then
there is a function f € ['(0,1), with f(a,) > 0,n > 1, f(x) = 0 elsewhere, and
such that. for every g, with inf supp g =0, supp g C supp f, g(a,) =
o(f (an)), n — oo, the linear span of the right translates of g is dense in I' (0, 1).

PrOOF OF THEOREM 2. By a straightforward inductive procedure we can
define a function f and a sequence {¢,}, satisfying the assumptions of Lem-
ma 2 with respect to our given sequence. For every integer n > 0, we can
then find a positive number u,, such that

mi— |g(am)Hf(am)|7l exp{—untm}
takes its maximum ¢, for m = p(n) = p > n. Defining
gn(x) = g(x) exp{_(tp + ”")x}vx € (0,1),

we obtain from (5)
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2lgn(ap)| = 2enlfp(ap)| > eallfpll = llgall-

Hence g fulfils the conditions of Lemma 2 with respect to the sequences
{ty(n) + un} and {a,,},n > 1, and Theorem 2 is proved.

In particular, if @, = 27", n > 1, easy estimates show that it is possible to
take f(a,) = a*, n > 1, in Theorem 2.

It does not seem to be known, whether there exists an element 4 € /1(0, 1),
with inf supp % = 0, such that the span of its right translates is not dense in
1'(0,1). It should be observed that the function f in Lemma 2 in fact satisfies
a much stronger property: if A,(x), with x,y € (0,1), are complex numbers
of modulus 1, then the linear span of {h,7,f, y € (0,1)} is dense in /'(0,1).
Hence we can make a corresponding extension of Theorem 2. Our discussion
is related to the proof of Theorem 5 of [2], and that theorem can be extended
in a similar way.
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