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Cï ECH HOMOLOGY AND THE NOVIKOV
CONJECTURES FOR K- AND L-THEORY

GUNNAR CARLSSON AND ERIK KJ�R PEDERSEN

1. Introduction.

In [5], we studied the assembly map in algebraic K- and L-theory, and
showed that the assembly map splits for a class of groups ÿ with ¢nite Bÿ

for which Eÿ admits a metrizable, contractible, equivariant compacti¢cation
such that the ÿ-action is ``small at in¢nity''. This means that every compact
subset of Eÿ when translated out near a point in the boundary becomes
small i.e. for every y 2 @Eÿ and for every neighborhood U of y in Eÿ, there
is a neighborhood V of y so that 
K \ V 6� ; implies 
K � U . The method
used in [5] was to use continuously controlled K- and L-theory.
Given a spectrum S one may de¢ne homology with coe¤cients in the

spectrum S by the formula

h��X ; x0;S� � ���X ^ S�
for any ¢nite pointed CW-complex X . If X does not come exhibited with a
basepoint we add a disjoint basepoint and get what is usually called un-
reduced homology by the formula h��X ;S� � h��X�;�;S� � ���X� ^ S�.
When X is not a CW-complex this does not give a good de¢nition of the
homology of X . The main theme of this paper is a Cï ech construction which
gives a homotopy theoretically de¢ned extension of such a functor to all
compact Hausdor¡ spaces. Boris Goldfarb [10] has pointed out to us, that
this construction is close to the constructions used by Edwards and Hastings
[8, ½8.2], and can be seen as one possible solution to a problem posed by
Edwards and Hastings [8, p. 251]. We refer the reader to [10] for further
discussion of the history of this subject. We also construct natural transfor-
mations from various continuously controlled theories such as K-theory and
L-theory to Cï ech theory. The theory satis¢es the Steenrod axioms [13].
Hence using [14] the natural tranformation will be an isomorphism on the
smaller category of compact metrizable spaces.
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As an application of this we show how this may be used to split assembly
maps for various groups. We still need compacti¢cations of Eÿ but we relax
both the condition that the given compacti¢cation must necessarily be me-
trizable and the condition that the action be small at in¢nity.
The Cï ech homotopy type of a space Z is the homotopy limit of the nerve

of the ¢nite coverings of Z. We say Z is Cï ech contractible if the Cï ech
homotopy type is contractible (in particular if Z is contractible). If we are
given a familyf of open subsets of Z, the Cï ech homotopy type with respect
to f, is the homotopy limit of the nerve of ¢nite coverings of Z, where we
only use open sets from f in the ¢nite coverings.
We prove the following theorems

Theorem A. Assume ÿ is a group with a finite Bÿ and that Eÿ has an
equivariant compact Hausdorff compactification which is C̄ech contractible
and such that the action is small at infinity then

a) If R is any ring then the assembly map

Bÿ� ^Kÿ1�R� ! Kÿ1�Rÿ�

is equivalent to an inclusion of a direct summand of spectra.
b) If R is a ring with involution such that Kÿi�R� � 0 for i su¤ciently large
then the assembly map

Bÿ� ^ Lÿ1�R� ! Lÿ1�Rÿ�
is equivalent to an inclusion of a direct summand of spectra.

We also have results about splitting assembly maps when the action is not
small at in¢nity

Theorem B. Assume ÿ is a group with a finite Bÿ and that Eÿ has an
equivariant compact Hausdorff compactification which is Cï ech contractible
and such that there exists a family of coverings f of @Eÿ by sets which are
boundedly saturated (see Definition 8.16 ), which is invariant under the group
action and such that the Cï ech homotopy type defined by the family f is
homotopy equivalent to the Cï ech homotopy type of @X. Then

a) If R is any ring then the assembly map

Bÿ� ^Kÿ1�R� ! Kÿ1�Rÿ�

is equivalent to an inclusion of a direct summand of spectra.
b) If R is a ring with involution such that Kÿi�R� � 0 for i su¤ciently large
then the assembly map

Bÿ� ^ Lÿ1�R� ! Lÿ1�Rÿ�
is equivalent to an inclusion of a direct summand of spectra.
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Boris Goldfarb in his Cornell thesis [10] has veri¢ed these conditions
for various groups. Speci¢cally he treats groups ÿ such that ÿ is the (tor-
sion-free) fundamental group of a complete non-compact ¢nite-volume
Riemannian manifold with pinched negative sectional curvatures:
ÿb2 � K�M� � ÿa2 < 0. The L-theory assembly map was known to be split
for this class of groups, but not the algebraic K-theory assembly map.
Throughout this paper we shall use the language of algebraic K-theory,

the modi¢cations needed to deal with L-theory are immediate using [5]. The
results of this paper do work to split assembly maps in A-theory and topo-
logical K-theory as well, by using the excision results in [7] , [12] and [6]. For
the readers convenience we state

Theorem C. Assume ÿ is a group as in Theorem A or B. Then

a) If X is a space with Kÿi��1�X�� � 0 for i su¤ciently large, then the assem-
bly map

Bÿ� ^Aÿ1�X� ! Aÿ1�Bÿ �X�
is equivalent to an inclusion of a direct summand of spectra.

b) If C is a C�-algebra then the assembly map

Bÿ� ^Ktop�C� ! Ktop�C �r ÿ�
is equivalent to an inclusion of a direct summand of spectra.

We would like to thank the referee for numerous useful suggestions.

2. Preliminaries.

Throughout this paper, ss will denote the category of based simplicial sets
and k will denote the full subcategory of Kan complexes. We will assume
familiarity with the standard properties of homotopy inverse limits, also
called homotopy limits, as presented in [3]. We shall conventionally only
consider homotopy limits of Kan complexes, so if we ever encounter a
homotopy limit in the category of simplicial sets, it is to be understood that
we ``Kan-ify'' before taking the homotopy limit. Homotopy limits and coli-
mits are extended to the category of spectra, by doing the constructions in
each degree. If C and D are categories, �: D !k is a functor, and f :C ! D
is a functor, the induced map limD� ! limC� � f will be referred to as pull-
back or restriction. Recall also that if N: � ! 	 is a natural transformation
of k-valued functors on D, then N induces a map limD� ! limD	. As
mentioned above, we will only consider homotopy inverse limits of functors
with values in k. This means that the cosimplicial spaces used in de¢ning

c̄ech homology and the novikov conjectures for ... 7
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the homotopy inverse limits are always ¢brant, and all homotopy inverse
limits will themselves be Kan complexes. A map of simplicial sets will be
called a weak equivalence if its geometric realization is a homotopy equiva-
lence. A map between Kan complexes is a weak equivalence if and only if it
is a homotopy equivalence, i.e. there is a two-sided homotopy inverse map.
We will refer to a weak equivalence between Kan complexes as an equiva-
lence.
Similarly, if �: C ! ss is any functor, we may construct the homotopy

colimit of � over C, hocolim C�. In this case we have pushforward maps
corresponding to functors f :C ! D, and natural transformations again in-
duce maps of homotopy colimits. If �;	: C ! ss are functors, and
N: � ! 	 is a natural transformation, we say N is a weak equivalence if
N�c� is a weak equivalence for each object c of C. Weak equivalences of ss-
valued functors induce weak equivalences on homotopy colimits, and weak
equivalences of k-valued functors induce weak equivalences of homotopy
limits. We also recall from [4] that a homotopy natural transformation from a
functor � to 	 is a sequence of functors �i and 	i, for i � 0; 1; . . . ; k, to-
gether with a family of natural transformations �i ! 	i and a family of
natural equivalences �i ! 	iÿ1 for i > 0, where �0 � � and 	k � 	. A
homotopy natural transformation induces a homotopy class of maps on
homotopy colimits and homotopy limits.
If we have a diagram

Y  f X !g Z

in ss, its homotopy pushout will be the double mapping cylinder
Y
`
X � I

`
Z= �, where �x; 0� � f �x� and �x; 1� � g�x�. Note that this is

the homotopy colimit of the diagram. We say a commutative diagram of
simplicial sets

X ! Y
# #
Z ! W

is homotopy co-Cartesian if the natural map Y [X Z !W is a weak
equivalence. Similarly, given a diagram

Y s!W  t Z
in k we de¢ne the homotopy pullback of the diagram as the subspace of
Y �WI � Z of points �y; �; z� so that ��0� � y and ��1� � Z. WI here de-
notes the function complex of maps from the simplicial unit interval to W .
This pullback is denoted by Y �W Z. We say a commutative diagram
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X ! Y
# #
Z ! W

is homotopy Cartesian if the natural map X ! Y �W Z is an equivalence.
Traditionally a homology theory was de¢ned [1] to be a functor h��X�

from CW-complexes to graded abelian groups satisfying the Eilenberg
Steenrod axioms except for the dimension axiom. Using Brown's represent-
ability theorem [1] a homology theory has a representing spectrum S. This
means that a homology theory can be written as ���X� ^ S� for a suitable
spectrum S or ���X ^ S� for the corresponding reduced theory h��X ; x0;S�
on pointed spaces. The functor X ! X ^ S from ¢nite CW-spaces to spectra
is homotopy invariant and sends co¢brations of spaces to co¢brations of
spectra and the one-point space to a contractible spectrum. The functor
X ! 
1�1�X ^ S� from spaces to spaces sending X to the 0-th space of the
in¢nite loop spectrum corresponding to X ^ S is homotopy invariant and
sends co¢brations to ¢brations. On the other hand if f is a homotopy in-
variant functor sending co¢brations to ¢brations and a point to a con-
tractible space, it follows that ���f �X�� is a homology theory in the classical
sense. It is easy to see that 
f ��X�� is homotopy equivalent to f �X�, so f �X�
is the 0-th space of an in¢nite loop spectrum. This spectrum is the re-
presenting spectrum of the homology theory ���f �X�� as is shown in [19].
We may thus think of a homology theory in various equivalent ways. Since
we shall need the results of [3] on homotopy limits and colimits it is practical
to work simplicially rather than with spaces. We shall use the following de-
¢nition:

Definition 2.1. A functor T : ss!k is said to be a homology theory if
a) The induced map T�X � 0� ! T�X � �0; 1�� is an equivalence for all sim-
plicial sets X .

b)T��� is contractible.
c) For any homotopy co-Cartesian diagram

X ! Y
# #
Z ! W

the induced diagram

c̄ech homology and the novikov conjectures for ... 9
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TX ! TY
# #

TZ ! TW
is homotopy Cartesian.
It follows that if we have an inclusion i:X ,!Y , we obtain a sequence

TX ! TY ! T�Y [X CX�
which is a ¢bration ``up to homotopy'' in the sense that the natural map
from TX to the homotopy ¢ber of the map TY ! T�Y [X CX� is an
equivalence.

Remark 2.2. Given a (simplicial) spectrum s we get a homology theory
in this sense, by defining T�X� to be the zero'th space of 
1S1�X ^s fol-
lowed by a functor turning a simplicial set into a weakly equivalent Kan
simplicial set.

We will also need standard information concerning the construction of
spectra from category theoretic data. The following theorem covers what we
will need. For more detail on the terminology in the statements, see [18].

Theorem 2.3. There is a functor from the category of symmetric monoidal
categories and lax symmetric monoidal functors to the category of spectra sa-
tisfying the following conditions.

1. If f :C ! D is a lax symmetric monoidal functor and N. �f �, the induced
map on the nerve, is a weak equivalence of simplicial sets, then Spt�f � is a
weak equivalence of spectra.

2. For any symmetric monoidal category C, let Spt0�C� denote the zeroth space
of the spectrum Spt�C�. There is a natural map N.C ! Spt0�C�, which in-
duces an isomorphism

��0N.C�ÿ1H��N.C��H��Spt0�C��

3. Let f :C ! D be a unital symmetric monoidal functor between unital sym-
metric monoidal categories C and D, and suppose �0�C� contains a co¢nal
submonoid M so that �0�f ��M� is also a co¢nal submonoid of �0�D�. Sup-
pose further that for every object x 2 D lying in an equivalence class belong-
ing to �0�f ��M�, x # f ( or f # x) has a weakly contractible nerve. Then
�i��f �� is an isomorphism for i > 0.

4. If �:A� B! C is a symmetric monoidal pairing, then there is an induced
pairing of spectra

Spt���: Spt�A� ^ Spt�B� ! Spt�C�
so that the composite
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N.A�N.B ! Spt0�A� ^ Spt0�B� ! �Spt�A� ^ Spt�B��0 ! Spt0�C�
is equal to the composite

N.A�N.B ÿÿ!N.�
N.C ! Spt0�C�

Proof. The first 2 points are [18, Lemma 2.3] and [18, Condition 2.2], and
3. and 4. are proved in [4, Theorem I.6].
We also recall the notation h�X ; x0;s for the homology of the based space

�X ; x0� ``with coe¤cients in the spectrum s'', or the smash product of the
space X with the spectrum s.
We will be using homotopy inverse limits over certain categories of cov-

erings of topological spaces in our de¢nition of Cï ech homology. These cate-
gories have certain properties which make them convenient to work with,
and we discuss these now. Recall from [9] that a category C is said to be left
¢ltering if (i.) for every pair of objects c; c0 in C, there exists an object c00 to-
gether with maps c ÿc00 ! c0, and (ii.) for every pair of maps f ; g: c0 ! c,
there exists a morphism h: c00 ! c0 so that f � h and g � h are equal. If the
category C happens to be a partially ordered set, i.e. there is at most one
morphism between any pair of objects, then this reduces to the requirement
that for any pair of objects c; c0 of C, there is a c00 so that there are morph-
isms c00 ! c and c00 ! c0. We will adopt the convention that a partially or-
dered set in the usual sense is made into a category by declaring that there is
a morphism from x to y if and only if x � y. If this category is left ¢ltering
we shall say the partially ordered set is left directed. Note that it follows as
in [16] that the nerve of any left ¢ltering category is weakly contractible, and
hence the nerve of any left directed partially ordered set is weakly con-
tractible.

Proposition 2.4. Let C and D be two left directed partially ordered sets,
and suppose we have an order preserving map f :C ! D. Further, suppose that
� is a functor from D to the category of Kan simplicial sets, and that for every
element z 2 D there is an element x 2 C so that f �x� � z. Then the pullback
map

holim
D

�! holim
C

� � f

is a weak equivalence.

Proof. From [3], it will suffice to show that the category f # z has con-
tractible nerve for each z 2 D. But it is clear that each category f # z is itself
a left directed partially ordered set, and the hypothesis of the proposition
shows that it is non-empty. Therefore, its nerve is contractible.
We also have the following standard fact(see [3]).

c̄ech homology and the novikov conjectures for ... 11
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Proposition 2.5. Let C be a category, and suppose that we have functors
F ;G;H and K from C to the category of based Kan complexes, and that we
have a commutative diagram of natural transformations as follows.

F ! G
# #
H ! K

Suppose further that for each c 2 C, the diagram is homotopy Cartesian, i.e.
that the natural map from F�c� to the homotopy pullback of the diagram
H�c� ! K�c� ÿG�c� is an equivalence. Then the diagram

holim F ! holim G
C C

# #
holim H ! holim K

C C

is also homotopy Cartesian.

We will also need some conditions which assure that a natural transfor-
mation between functors from a left directed partially ordered set to the ca-
tegory of Kan complexes induces a weak equivalence on homotopy inverse
limits.

Proposition 2.6. Let C denote a left partially ordered set, and suppose that
we are given a natural transformation �:F ! G of functors from C to k.
Suppose further that for every c 2 C, there is a c0 � c so that ��c0� is an
equivalence. Then the map holim CF ! holim CG induced by � is an equiva-
lence.

Proof. This is a straightforward consequence of [3].

We must also understand the behavior of restriction maps on inverse lim-
its. Preparing for this we state

Lemma 2.7. Let f : E ! C be an order preserving map of partially ordered
sets, and T : E !
Lemma k a functor. For every y 2 C let Ey be the full subcategory of E

consisting of y0 so that y � f �y0� then
holim T' holim holim T jEy

E C Ey

Proof. Let Z denote the partially ordered set consisting of pairs �c; e�
with c � f �e�. Then the iterated homotopy limit may be identified with the
homotopy limit over Z of the functor T 0 : Z !k sending �c; e� to T�e�.

12 gunnar carlsson and erik kj��r pedersen
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Moreover there is a forgetful functor i : Z ! E sending �c; e� to e, and
T 0 � T � i . It is readily checked that i satisfied the hypothesis of [3, Theorem
XI.9.2]. Hence i induces an equivalence on homotopy inverse limits.

Lemma 2.8. Let C � D be an inclusion of left directed partially ordered
sets. Let F be a functor from D to the category of Kan complexes. Suppose
that for every x 2 D, there exists x0 2 D and a y0 2 C, with x0 � x and x0 � y0

and with F�x0� ! F�y0� a weak equivalence. Then the restriction map
holimDF ! holimCF is a weak equivalence.

Proof. Let E be the partially ordered set whose objects are pairs �x; y�,
with x 2 D, y 2 C, and x � y. We have functors r:E ! D and i:C ! E, with
r�x; y� � x and i�y� � �y; y�. Note that r � i is equal to the inclusion C,!D.
Let Ê � E be the full subcategory on all �x; y� so that F�x � y� is a weak
equivalence. Of course, i�C� � Ê. The hypothesis shows that the restriction
of r to Ê satisfies the hypotheses of 4, so the natural map

holim F! holim F �r
D Ê

is an equivalence. It now su¤ces to show that the restriction map

holim F �r! holim F �r�i
Ê C

is an equivalence. Let T denote the functor from Ê to Kan complexes given
by T�x;y��F �y�. There is an evident natural equivalence of functors on Ê
from F �r to T , given by F �x�y� so when restricted to i�C� it gives the
identity equivalence. Hence

holim F �r' holim T
Ê Ê

Note that T�C�F �r�i. Consequently, it su¤ces to show that the restriction
map holimÊT!holimCT�i is a weak equivalence. To prove this, given any
y2C, we let Êy denote the full subcategory on those �x;y0� for which y�y0.
We use Lemma 2.7 to express holimÊT as an iterated homotopy limit

holim T' holim holim T jÊy
Ê y2C Êy

it is easy to see that the diagram

holimT ! holim holim T jÊy
Ê y2C Êy

# #
holimT�i � holim T�y�

C y2C

c̄ech homology and the novikov conjectures for ... 13
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is commutative. The right hand vertical map is given by restriction along the
inclusion f�y; y�g � Êy. In view of 2.6, it thus su¤ces to check that
holimÊy

T jÊy ! T�y� is an equivalence. Now, by 2.4, it is clear that if
E�y � Êy is the subset on objects of the form �x; y�, then the restriction func-
tor holimÊy

T ! holimE�y T is an equivalence. Consequently, it su¤ces to
check that the map holimE�y T ! T�y� is an equivalence. But T is constant on
E�y with value T�y�, so the homotopy limit over E�y can be identi¢ed with the
function complex F�N.E�y ;T�y��, and the restriction map is simply restric-
tion along the inclusion of nerves of the one object category �y; y� into N.E�y .
But N.E�y is weakly contractible since it has a ¢nal object �y; y�.

3. Lemmas on Coverings.

By a covering of a topological space X , we mean a parameterized family
u � fU�g�2A of open subsets of X , where A is a set, so that X � S�2A U�. A
map of coverings from fU�g�2A to fV�g�2B is a set map f :A! B so that
U� � Vf ��� for all � 2 A.
By a simplicial complex � we mean, as usual, a vertex set V� and a family

of ¢nite subsets p� , so that if U 2 p� and U 0 � U then U 0 2 p� . Simplicial
maps are de¢ned in the usual way. Two simplicial maps f ; g: �1 ! �2 are
said to be s-homotopic if for every U 2 �1, f �U� [ g�U� 2 �2. The join of
two simplicial complexes � and t, � �t, has V�

`
VT as its vertex set,

and a subset of V��t is in p��t if and only if it is the union of an element of
V� with an element of Vt.
For any set X , let f�X� denote the partially ordered set of nonempty ¢-

nite subsets of X and inclusions. As usual we may view af�X� as a category
, which by our conventions is the opposite category of the category of non-
empty subsets and inclusions. The functor X ! N.f�X� gives a covariant
functor from Sets to ss. Given a simplicial complex � , let the realization of
� , R. � , be the nerve of the full subcategory of f�V�� with objects the
subsets belonging to p� . This is the simplicial version of the barycentric
subdivision of the usual realization. The functor R. preserves pushouts and
carries s-homotopic maps to simplicially homotopic maps.
For any covering u � fU�g�2A of a topological space, let �u be the sim-

plicial complex whose vertex set is A, and where f�1; . . . ; �kg is a simplex of
�u if and only if U�1 \ . . . \U�k 6� ;. By the nerve of the covering, N.u, we
will mean R. �u.

Lemma 3.1. If u and v are any coverings of X, and f ; g:u!v are any
maps of coverings, then N. f and N. g are simplicially homotopic.

Proof. This result follows directly from the above discussion of s-homo-
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topies, since if f and g are both maps of coverings from u to v, and
f�1; . . . ; �kg 2 �u, then

ff ��1�; . . . ; f ��k�; g��1�; . . . ; g��k�g 2 �v

since

U�1 \ . . . \U�k � Uf ��1� \ . . . \Uf ��k� \Ug��1� \ . . . \Ug��k�

Thus, f and g are s-homotopic.

Corollary 3.2. Let f :u!v be any map of coverings. Suppose further
that there is a map of coverings fromv to u. Then N. f is a weak equivalence.

We will also de¢ne certain other simplicial sets associated to u. Suppose
B � A.

Definition 3.3. By N.Bu we mean the realization of the simplicial com-
plex �B

u, whose simplices are the subsets f�1; . . . ; �kg � B so that
U�1 \ . . . \U�k 6� ;. We define e.Bu to be the realization of the simplicial
complex tB

u, whose vertex set is B, and so that any finite subset
f�1; . . . ; �kg � B is a simplex.
Of course, e.Bu is weakly contractible. All these simplicial sets are viewed

as subsimplicial sets of e.u � e.Au.

Lemma 3.4. Let u � fU�g�2A be a covering of a space X, and let
B0 � B � A be subsets of A. Suppose further that for each � 2 B, there is a
�0 2 B0 so that U� � U�0 . Then the evident inclusion N.B

0
u! N.Bu is an

equivalence.

Proof. Let f :B ! B0 be any function so that U� � Uf ���, and f jB0 � idB0 .
f induces a map of nerves N. f , and it is clear that the composite

N.B
0
u! N.Bu! N.B

0
u

is equal to the identity. On the other hand, the composite

N.Bu! N.B
0
u! N.Bu

is simplicially homotopic to the identity in view of the fact that

U�1 \ . . . \U�k 6� ; ) U�1 \ . . . \U�k \Uf ��1� \ . . . \Uf ��k� 6� ;
This gives the result.

Consider also the following situation. Let u � fU�g�2A be a covering of a
space X , and let B � A be a subset. Let Wu�B� � X be the set

S
�2B U�. Let

�B�u� � fW�g�2A be the covering of X given by W� � U� if � =2 B, and

c̄ech homology and the novikov conjectures for ... 15
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W� �Wu�B� if � 2 B. Let P�B� � Pu�B� � A be the set of all � 2 A so that
U� \W�B� 6� ;. We may view ��B�u� as a subcomplex of tu, and as such it
is contained in the subcomplex �u [�

P�B�
u
tP�B�
u . This is true since it is clear

from the de¢nitions that a simplex f�1; . . . ; �kg of ��B�u� either contains a
vertex in B, in which case �i 2 P�B� for all i, or it does not, in which case it
is in �u. Also it is clear that

�u [�B
u
tB
u � ��B�u�

Lemma 3.5. Let u;A, and B be as above. Suppose that for any
f�1; . . . ; �kg � Pu�B�,

U�1 \ . . . \U�k 6� ; ) U�1 \ . . . \U�k \Wu�B� 6� ;
Then the inclusion

��B�u�,!�u [�
P�B�
u
tP�B�
u

induces an equivalence on nerves.

Proof. We first note that ��B�u� is the union of �u with �
P�B�
�B�u�; the

overlap is �
P�B�
u . Consequently, we have a map of pushout diagrams

�u ÿ�
P�B�
u ! �

P�B�
�B�u�

# # #
�u ÿ�

P�B�
u !tP�B�

u

of simplicial complexes. Since the realization and nerve constructions pre-
serve pushouts, it will su¤ce to show that �

P�B�
�B�u� !t

P�B�
u induces a weak

equivalence on nerves. Since N.tP�B�
u is contractible, it will su¤ce to show

that N. �
Pu�B�
�B�u� is contractible. Write Pu�B� � B

`
Q�B�. A typical simplex in

�
Pu�B�
�B�u� is of the form f�1; . . . ; �s; q1; . . . ; qtg, with �i 2 B and qi 2 Q�B�.

Clearly f�1; . . . ; �s; q1; . . . ; qtg is a simplex of �
Pu�B�
�B�u� if and only if

fq1; . . . ; qtg is a simplex in �
Q�B�
u . Consequently �

Pu�B�
�B�u� is the join of �

Q�B�
�B�u�

with �B
�B�u�. Since �B

�B�u� �tB
u, whose nerve is contractible, the result fol-

lows.

We wish to consider subspaces also. A relative covering of a subspace
Y � X is a parameterized family u � fU�g�2A of open subsets U� of X so
that Y � S�2A U�. �u and N.u are de¢ned precisely as before, i.e. the
simplices of �u are ¢nite subsets f�1; . . . ; �kg so that U�1 \ . . . \U�k 6� ;.
For any relative covering u of Y � X , we have the covering �u of Y , where
�u � fU� \ Yg�2A. There is an evident map ��u ! �u given by
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f�1; . . . ; �kg ! f�1; . . . ; �kg, and hence a map of simplicial sets
N. �u! N.u.

Lemma 3.6. Suppose X is a compact Hausdorff space and Y is a closed
subspace. Let u � fU�g�2A be a finite open covering of Y. Suppose further
that for each �, we are given a closed set W� � U� and that fW�g�2A is also a
covering of Y. Then there is a relative covering of Y in X, fV�g�2A , so that
W� � Y \ V� \U�, and so that for every subset f�1; . . . ; �kg � A,

V�1 \ . . . \ V�k � ; ,W�1 \ . . . \W�k � ;

Proof. This is a straightforward generalization of the fact that in a com-
pact Hausdorff space, any two disjoint closed subspaces are contained in
disjoint open sets. We leave the proof to the reader.

4. Rigid Coverings and C̄ech Homology.

In our construction of Cï ech homology, it will be important that the category
of coverings used as parameter category for certain homotopy inverse limits
is a left directed partially ordered set. We will use an analogue to the ``rigid
coverings'' used by Friedlander [9] in his construction of the `�̀etale topolo-
gical type '' associated to a scheme.

Definition 4.1. Let X be a topological space. A rigid covering of X is a
function � from the underlying set of X to the collection of open subsets of
X satisfying the following three conditions.

a) x 2 ��x�
b) For any open set U � X , �ÿ1U � U
c) Only ¢nitely many distinct open sets occur among the sets ��x�. That is,
the image of � is a ¢nite collection of the collection of open subsets of X .

Let RC�X� denote the set of all rigid coverings of X . If �1; �2 2 RC�X�, we
say �1 re¢nes �2 and write �1 � �2 if and only if �1�x� � �2�x� for all X ,
RC�X� now becomes a partially ordered set, and hence can be viewed as a
category. We also de¢ne a relative version, where Y � X is a subspace. A
relative rigid covering of Y in X is a function � from the underlying set of Y
into the open subsets of X , which satis¢es properties a)^ c) above. We simi-
larly obtain a category RC�X ;Y�.
Thus, a rigid covering is an open covering of X , with parameter set X , so

that only ¢nitely many distinct subsets occur. It turns out that X ! RC�X�
de¢nes a contravariant functor from the category of pointed topological
spaces to the category of pointed small categories.

c̄ech homology and the novikov conjectures for ... 17
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Proposition 4.2. For any map of topological spaces f :X ! Y, and
� 2 RC�Y �, we define a function f !� from the underlying set of X into the
collection of open subsets of X by the formula f !��x� � f ÿ1��f �x��. Then f !� is
a rigid covering of X, and the formulae X ! RC�X� and f ! f ! make RC�ÿ�
into a contravariant functor.

Proof. All conditions defining RC�X� are clear except b). To check b), let
U be an open subset occurring in the image of �, i.e. U � ��y�. Then
f !ÿ1�f ÿ1U� is equal to the union of the inverse images under f of all the sets
�ÿ1V , as V ranges over all the sets in the image of � for which
f ÿ1V � f ÿ1U . Note that this is clearly a finite union, and the closure of each
set f ÿ1V is contained in f ÿ1U . Since for a finite union,

V1 [ . . . [ Vk � V1 [ . . . [ Vk

condition b) follows.

We will also need a kind of product of rigid coverings.

Proposition 3. Let �1 and �2 denote rigid coverings of a space X. We de-
fine a new function �1 �X �2 from the set X into the collection of open subsets
of X by the formula �1 �X �2�x� � �1�x� \ �2�x�. Then �1 �X �2 is a rigid
covering of X. Furthermore, it refines both �1 and �2.

Proof. As in the preceding proposition, all is clear except the fact that
�1 �X �2 satisfies condition b) in the definition of rigid coverings. To check
this condition, we construct first the function �1 � �2 from X � X into the
collection of open subsets of X � X by the formula

��1 � �2��x1; x2� � �1�x1� � �2�x2�
�1 � �2 is evidently a rigid covering of X � X . Now, if we let �:X ! X � X
denote the diagonal map, then

�1 �X �2 � �!�1 � �2
and the result follows directly from 2.

It thus follows that RC�X� is a left directed partially ordered set. Given an
arbitrary covering u � fU�g�2A, the reader may wonder if there is a rigid
covering � of X , so that for all x 2 X , ��x� � U��x� for some ��x�. Indeed,
this question is important for us for technical reasons. The following lemma
will be useful.

Lemma 4. Given any covering u � fU�g�2A of a compact Hausdorff space,
there is a rigid covering � of X so that for each x 2 X, there is an ��x� 2 A so
that ��x� � U��x�.
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Proof. Since X is compact, we may assume that A is finite. Since X is
compact Hausdorff, there is a covering fV�g�2A, with V� � U� for all �. Let
�:X ! A be such that x 2 V��x� for all x. Then define � by ��x� � U��x�.
This gives the required rigid covering.

Lemma 4.5. For every � 2 RC�X� and closed subset Y, there is an open set
U, with Y � U, and a refinement �� 2 RC�X�, �� � �, so that for every
x 2 U, ���x� � ��y� for some y 2 Y.

Proof. Consider �jY 2 RC�X ;Y�. We first construct an open set V and
~� 2 RC�X� so that ~�jY � �jY , and so that for all x 2 V , ~��x� � ~��y� for
some y. Let U � Sy2Y ��y�. This is an open set containing Y . Since X is
compact Hausdorff, there is an open set V , with Y � V � V � U . Consider
the open covering consisting of all the sets ��y� together with X ÿ V . Again
since X is compact Hausdorff, we may select an open covering
fZygy2Y [ fWg so that Zy � ��y� and W � X ÿ V . For every x 2 X ÿ Y ,
choose ~��x� to be either (i.) ��y�, where y is such that x 2 Zy, or (ii.) X ÿ V
if x 2W . (Note that both possibilities can occur simultaneously, so the
construction of �� involves choices.) If x 2 Y , set ~��x� � ��x�. With this
choice of V and ~�, we clearly have that if x 2 V , ~��x� � ��y� for some
y 2 Y . Now set �� � ~� �X �. With the same choice of V , this clearly has the
required properties.

Lemma 4.6. Let X be a compact Hausdorff space, and Y � X a closed
subspace. Let � 2 RC�X ;Y�. Then there is a rigid covering �̂ 2 RC�X� so that
�̂jY � �.
Proof. Let Z denote the open set

S
y2Y ��y� � X . Of course, Y � Z.

Since X is compact Hausdorff and Y is closed, we may choose an open set
V , so that V � X ÿ Z, and so that V \ Y � ;. Let fU�g�2A be an indexing
of the sets which occur in the image of �, together with V , so A is finite.
Since X is compact Hausdorff and Y is closed, there is a family of open sets
fW�g�2A with W� � U� and W� � �ÿ1�U�� for all � 2 A, and so that
fW�g�2A is a covering of X . For each y 2 Y , set �̂�y� � ��y�. For each
x 2 X ÿ Y , find an � 2 A so that x 2 U�, and set �̂�x� � U�. This construc-
tion gives the required rigid covering.

Lemma 4.7. Let X be a compact Hausdorff space, and let Y � X be a
closed subspace. Let � be any rigid covering. Then there is a rigid covering
�� � �, so that

���x1� \ . . . \ ���xk� � ; ) ���x1� \ . . . \ ���xk� � ;
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for all fx1; . . . ; xkg. Further, �� can be chosen so that
���x1� \ . . . \ ���xk� \ Y � ; ) ���x1� \ . . . \ ���xk� \ Y � ;

Proof. Let fU�g�2A be a finite listing of all the subsets of the form ��x�
for some x 2 X . Let V� � U� be �ÿ1�U�� � U�. Since X is compact Haus-
dorff, we can choose open sets W�, so that V� �W� �W� � U�, and define
a new rigid covering ��1� by ��1��x� �W� if and only if ��x� � U�. Note that

��x1� \ . . . \ ��xk� \ Y � ; ) ��1��x1� \ . . . \ ��1��xk� \ Y � ;
Note also thatw � fW�g�2A is now a finite covering, and the identity map
on A produces an inclusion of finite simplicial complexes �w,!�u. Repeat-
ing this process gives a descending chain of finite simplicial complexes on the
same vertex set A, which must eventually stabilize. This means that we have
open sets W 0

� and W�, with

V� �W 0
� �W 0

� �W� �W� � U�

so that

W 0
�1
\ . . . \W 0

�k
� ; )W�1 \ . . . \W�k � ;

which implies that W 0
�1
\ . . . \W 0

�k
� ;. Define �� by ���x� �W 0

� if and
only if ��x� � U�.

Definition 4.8. Let �X ; x0� be a topological space, and let �X be the
functor from RC�X� to ss given by � ! N.�. For any homology theory
T : ss!k from based simplicial sets to based Kan complexes, we define
the Cï ech homology of X with ``coefficients in T '' , �h�X ; x0;T�, to be

holim
RC�X�

T ��X

This de¢nes �h on objects. If f :X ! Y is a map of topological spaces, we
de¢ne �h�f ;T� to be the composite

holim T ��X! holim T��X �RC �f �! holim T ��Y
RC�X� RC�Y� RC�Y �

where the left arrow is pullback of homotopy inverse limits along the functor
RC�f � and where the right hand arrow is induced by the evident natural
transformation �X � RC �f � ! �Y .

Notice that the basepoint x0 2 X determines a basepoint in �h�X ; x0;T�, so
�h�ÿ;T� can be viewed as a functor from the category of based spaces tok.
We will occasionally suppress the basepoint when no confusion will result.

20 gunnar carlsson and erik kj��r pedersen



{orders}ms/98424/carlsson.3d -17.11.00 - 10:03

5. Excision.

Throughout this section, let X denote a compact Hausdor¡ space and let
Y � X denote a closed subspace. Let T denote a functor from the category
of based simplicial sets to the category of based Kan complexes which is a
homology theory in the sense of De¢nition 2.1. Let X be any compact
Hausdor¡ space, and let Y � X be a closed subspace. In this section, we will
prove ``strong excision '' for the functor �h�ÿ;T�, i.e. that the sequence of
maps

�h�Y ; y0;T� ! �h�X ; x0;T� ! �h�X=Y ; �y0�;T�
is a ¢bration up to homotopy in the sense that the evident map from
�h�Y ; y0;T� to the homotopy ¢ber of the map �h�X ; x0;T� ! �h�X=Y ; �y0�;T� is
an equivalence of Kan complexes.
We ¢rst observe that for any based pair of spaces �X ;Y �, we have a com-

mutative diagram

�h�Y ; y0;T� ! �h��; �;T�
# #

�h�X ; x0;T� ! h�X=Y ; �;T�

Theorem 5.1. Let X be a compact Hausdorff space, and Y � X a closed
subspace. Then the above diagram is homotopy Cartesian.

Proof. The strategy will be to find a weakly equivalent diagram which is
induced by a diagram of functors over RC�X�, and to apply 2.5 suitably. Let
i:Y ,!X and j : �,!X=Y denote the inclusions and let p:X ! X=Y and
q : Y ! denote the projections onto the quotient space. The above diagram
may be written as follows.

holim T ��Y! holim T���
RC�Y� RC���

# #
holim T��X!holim T ��X=Y
RC�X� RC�X=Y�

It follows from Lemma 4.6 that the conditions of Proposition 2.4 are sa-
tis¢ed, so this diagram is weakly equivalent to the new diagram
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holim T ��Y �RC�i�! holim T ����RC�j��A�
RC�X� RC�XY�

# #
holim T��X!holim T ��X=Y
RC�X� RC�X=Y�

where the vertical arrows are induced by natural transformations
�Y � RC�i� ! �X and �� � RC�j� ! �X=Y . The horizontal arrows are pull-
back maps along RC�p� composed with maps induced by the natural trans-
formation from �Y � RC�i� � RC �p� � �Y � RC �q� � RC�j� ! �� � RC �j�
and �X � RC �p� ! �X=Y . Exhibiting only the natural transformations we
get the diagram of functors and natural transformations

�Y � RC �p � i� ! �� � RC �j�
# #

�X � RC�p� ! �X=Y

Denoting the functor RC�Z� ! ss sending � to R.t� by CZ for any space
Z, and the constant functor with value the one point simplicial set by e, this
diagram of natural transformations factors as described in the following
diagram.

�Y � RC �p � i� ÿÿÿÿÿÿÿÿÿ! CY � RC�p � i� ÿÿÿÿÿÿÿÿÿ! �� � RC�j�
# # #

�X � RC�p� ÿÿ! �X � RC�p� [
�Y �RC �p�i� CY � RC�p � i� ÿÿ! �X=Y

and consequently we have a map of diagrams from the diagram �B� below to
diagram �A�.

holim �Y �RC�i� ÿÿÿÿÿÿÿ! holim CY �RC�i��B�
RC�X� RC�X�

# #
holim �X !ÿÿÿÿ! holim �X [�Y�RC �i� CY � RC�i�
RC�X� RC�X=Y �

The maps on the left hand part of the diagram are identity maps, and the
map in the upper right hand corner is an equivalence since both entries are
contractible. Further, the last diagram is homotopy Cartesian in view of
Proposition 2.5. Consequently, it su¤ces to show that the map

holim T � ��X [�Y �RC �i� CY � RC �i�� ! holim T � �X=Y

RC�X� RC�X=Y �

is an equivalence. The proof of this result is in two stages, since this map is
actually a composite of two maps, one
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holim T��X��� [�Y �RC�i���� CY � RC �i����� !
�2RC�X�

holim T��X � RC �p���� [�Y �RC�p�i���� CY � RC �p � i�����
�2RC�X=Y �

and the other

holim T��X � RC�p���� [�Y �RC �p�i���� CY � RC�p � i����� ! holim �X=Y :
�2RC�X=Y � RC�X=Y�

The ¢rst is restriction along the inclusion RC�p�, and the second is induced
by a natural transformation.
We analyze the restriction map ¢rst. For any � 2 RC�X�, let �0 be the

rigid covering of Y given by �0�y� � ��y� \ Y . Thus, �Y � RC �i���� � �0 .
We have a natural inclusion of simplicial complexes ��0 ,!�Y

� . We will show
¢rst that for every � 2 RC�X�, there is a � � � so that the natural inclusion
N. �

0 ! N.� is an equivalence. To construct �, let fU�g�2A be a listing, with
¢nite index set, of the distinct subsets occurring in the image of �0jY , and let
W� � U� be the closed sets ��0�ÿ1�U��. According to 3.6, there exist open
sets V� in X so that W� � V� \ Y � U�, and so that

V�1 \ . . . \ V�k 6� ; )W�1 \ . . . \W�k 6� ;
Let ~� 2 RC�X ;Y� be de¢ned by ~��y� � V� if and only if �0�y� � U�. Then
by 4.6, it is possible to ¢nd a rigid covering �̂ of X , with �̂jY � ~�. � will now
be taken to be � �X �̂. � �X �̂jY � ~�, and from the construction of ~�, it is
clear that the map �

�
0 ! �Y

�
is an isomorphism of simplicial complexes.

This is the required result. From the de¢nition of homotopy pushouts, it
follows that the natural map

holim T�R. �� [R.��0 R.t�Y � ! holim T�R. �� [R.�Y
�

R.tY
� �

�2RC�X� �2RC�X�

is an equivalence. Further, it is clear that if � 2 RC�X=Y�, ��0 � �Y
� , and it

will therefore su¤ce to show that the restriction map

holim T�R. �� [R.�Y
�
� R.tY

� � ! holim T�R. �� [R.�Y
�

R.tY
� �

�2RC�X� �2RC�X=Y �

is an equivalence. We will show this via a series of equivalences. We have a
commutative diagram

holim T�R. �� [R.�Y
�

R.tY
� � ÿÿÿ! holim T�R. �� [�

W �Y �
�

R.tW �Y �
� �

�2RC�X� �2RC�X�# #
holim T�R. �� [R.�Y

�
R.tY

� � ! holim T�R. �� [�
W �Y �
�

R.tW �Y �
� �

�2RC�X=Y � �2RC�X=Y �

where the horizontal arrows are induced by natural inclusions of simplicial
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complexes, and where the vertical arrows are restriction maps. We will show
that the horizontal arrows are equivalences. It will then follow that if the
right hand vertical arrow is an equivalence, then so is the left hand arrow,
and we will then proceed to show that the right hand vertical arrow is an
equivalence.
To show that the upper horizontal arrow is an equivalence, it will su¤ce,

in view of the fact that T is a homology theory and that R.tY
� and

R.tW�Y�
� are contractible, to show that

holim T�R. �Y
� � ! holim T�R. �

W �Y �
� �

�2RC�X� �2RC�X�

is an equivalence. In view of 4.5, for any � 2 RC�X�, there is a �� � �, so
that for any x 2W�Y�, there is a y 2 Y so that ���x� � ���y�. From 3.4,
it follows that the inclusion �Y

� ! �
W �Y �
� induces a weak equivalence

on nerves, and the result now follows from 2.6. To see that the lower
horizontal arrow is an equivalence, it similarly su¤ces to show that
holim�2RC�X=Y�T�R. �Y

� � ! holim�2RC�X=Y�T�R. �
W �Y �
� � is an equivalence.

This follows as above with the additional observation that we may take �� to
lie in RC�X=Y�.
In order to prove that the restriction map

holim T�R. �� [�
W �Y �
�

tW �Y �
� � ! holim T�R. �� [�

W �Y �
�

tW �Y �
� �

�2RC�X� �2RC�X=Y�

is an equivalence, consider the following commutative diagram.

v2

holim T���W �Y �����

holim T��� [�
W �Y �
�

tW �Y �
� � ! holim T��� [�

PW �Y �
�

tPW �Y �
� �

holim T���W �Y �����

holim T��� [�
W �Y �
�

tW �Y �
� � !h

l

holim T��� [�
PW �Y �
�

tPW �Y �
� �

The triangles at either end of the ``prism'' are induced by natural inclusions
of simplicial complexes, as described in section 5. The vertical arrows are all

f u

f l

v1 v1

gu

gi

24 gunnar carlsson and erik kj��r pedersen

�2RC�X�

�2RC�X�

�2RC�X=Y �

�2RC�X�

�2RC�X=Y � �2RC�X=Y �



{orders}ms/98424/carlsson.3d -17.11.00 - 10:05

restriction maps. We wish to show that v1 is an equivalence; for this it will
su¤ce to show that f u; f l , and v2 are equivalences. We ¢rst deal with f u.
From the diagram, it will clearly su¤ce to show that hu and gu are equiv-
alences. To show that hu is an equivalence, we observe that in view of the
fact that T is a homology theory and the contractibility of tW �Y�

� and
tPW�Y�

� it will su¤ce to show that the inclusion

holim T�R. �
W �Y �
� � ! holim T�R. �

PW �Y �
� �

�2RC�X� �2RC�X�

is an equivalence. Since T is a homology theory, it will su¤ce to show that

holim T�R. �
PW �Y �
� =R. �

W �Y �
� �

�2RC�X�

is contractible. For this, it will su¤ce by 2.6 to show that for every
� 2 RC�X�, there is a �� 2 RC�X�, with �� � �, so that the map

R. �
PW �Y �
�� =R. �

W �Y �
�� ! R. �

PW �Y �
� =R. �

W �Y �
�

is simplicially homotopic to a constant map. We ¢rst choose �0 � �, so that
for every x 2 X with �0�x� \ Y 6� ;, there is a y 2 Y with �0�x� � ��y�. Now,
let U be an open set, with Y � U � Sfxj�0�x�\Y 6�;g �0�x�. Also, choose V
open, with Y � V � V � U . These choices are possible since X is compact
Hausdor¡. Consider the open covering fU ;W ÿ V ;X ÿUg. Let 
 be a rigid
covering of X so that for each x 2 X , 
�x� is one of these sets, the existence
of which is guaranteed by 4.4, and consider �� � �0 �X 
. We have
�� � �0 � �, and furthermore it is clear from the de¢nitions that if we let
W � � fxj���x� \ Y 6� ;g and Ŵ � fxj���x� \W � 6� ;g, then Ŵ �W . From
this it follows that we may de¢ne a function � from P�W�Y ; ���� to Y so
that ���x� � ����y��. We may also insist that ��y� � y for all y 2W�Y ; ���,
since �� re¢nes �. Since maps of coverings induce maps of the associated
simplicial complexes, we obtain a map of simplicial complexes
�

PW �Y �
�� ! �

W �Y �
� , so that the composite

�
PW �Y �
�� ! �

W �Y �
� ! �

PW �Y �
�

induces a map on realizations which is simplicially homotopic, rel
R. �

W �Y ;���
�� to the map R. �

PW �Y �
�� ! R. �

PW �Y �
� induced by the identity map

on X . This clearly gives the result, so the map hu is an equivalence. That

hl : holim T�R. �
W �Y �
� � ! holimT �R. �

PW �Y �
� �

�2RC�X=Y � �2RC�X=Y �

is an equivalence follows from the same argument, again by observing that
�� may be taken to lie in RC�X=Y�.
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We must now deal with gu. According to 2.6 and 3.5, it will su¤ce to
construct, for every � 2 RC�X�, a �0 � �, so that for any fx1; . . . ; xkg � X ,
with �0�xi� \W�Y ; �0� 6� ; for all i,

�0�x1� \ . . . \ �0�xk� 6� ; ) �0�x1� \ . . . \ �0�xk� \W�Y ; �0� 6� ;
To construct �0, ¢rst construct �̂ � � so that

�̂�x1� \ . . . \ �̂�xk� 6� ; ) �̂�x1� \ . . . �̂�xk� 6� ;
For each fx1; . . . ; xkg such that �̂�xi� \W��̂;Y� 6� ; for all i, and such that
�̂�x1� \ . . . �̂�xk� \W��̂;Y � 6� ;, we have the closed set �̂�x1� \ . . . \ �̂�xk�.
Since

�̂�x1� \ . . . \ �̂�xk� 6� ; ) �̂�x1� \ . . . \ �̂�xk� � ;
we see that �̂�x1� \ . . . \ �̂�xk� is disjoint from W��̂;Y�. Let S be the family
of all subsets fx1; . . . ; xkg, such that �̂�xi� \W��̂;Y� 6� ; for all i, and so
that �̂�x1� \ . . . \ �̂�xk� � ;. Then

Z �
[

fx1;...;xkg2S
�̂�x1� \ . . . \ �̂�xk�

is a closed set disjoint from W��̂;Y �. Let V � X ÿ Z, so V is an open set
containing W��̂;Y �. Choose an open set Z1 so that

W��̂;Y� � Z1 � Z1 � V

and let U � X ÿ Z1. Then fU ;Vg is an open covering of X , and we let 
 be
a rigid covering so that 
�x� � U or V for all X . Let �0 � �̂ �X 
. �0 now
clearly has the required properties, so gu is an equivalence. As usual, gl fol-
lows by the identical argument, with the observation that �̂ and 
 may be
taken to be in RC�X=Y�. The conclusion is that f u and f l are equivalences.
Thus, for our purposes, it will su¤ce to show that v2 is an equivalence. But
this follows directly from 2.8, since it is easily checked that �W �Y �� is an
object of RC�X=Y� for all �. The point is that for any x so that
��W �Y ����x� \ Y 6� ;, Y � ��W �Y ����x�, so if we let �r be the rigid covering
of X=Y given by �r��x�� � p���W �Y ����x��, then �W �Y �� � RC �p���r�.
Finally, then, we must show that the natural transformation

�X � RC �p� [�Y �RC�p�i� CY � RC �p � i� ! �X=Y

is a weak equivalence of functors. To see this, we note that the inclusion

�X � RC �p� ! �X � RC �p� [�Y �RC�p�i� CY � RC �p � i�
is a weak equivalence of functors, since �Y � RC�p � i���� is evidently con-
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tractible for each � 2 RC�X=Y �. We claim �X � RC �p� ! �X=Y is a weak
equivalence of functors. But this is clear from 3.2, since �X � RC �p���� is the
covering obtained from �X=Y ��� by repeating the set ���y0�� once for every
y 2 Y , and the natural map is the map of coverings sending each of these
copies to ���y0��.

6. Homotopy Invariance of C̄ech Homology.

We wish to demonstrate that the inclusion i:X � 0,!X � �0; 1� induces an
equivalence �h�X ;T� ! �h�X � �0; 1�;T� for any homology theory T . Lemma
4.6 shows that the conditions of Proposition 2.4 are satis¢ed for the functor
RC�i� : RC�X � I� ! RC�X � 0�, hence

holim T � �X�0 ! holim T � �X�0 � RC �i�
RC�X�0� RC�X�I�

is a homotopy equivalence, so showing �h�X ;T� ! �h�X � �0; 1�;T� is a
homotopy equivalence is equivalent to the assertion that the natural trans-
formation �X�0 � RC �i� ! �X��0;1� induces a homotopy equivalence

holim T � �X�0 � RC �i� ! holim T � �X��0;1�:
RC�X�I� RC�X�I�

Notice that since T is homotopy invariant T applied to a weak homotopy
equivalence will be a homotopy equivalence.
We will ¢rst establish some preliminaries.

Proposition 6.1. Let u � fU�g�2A andv � fV�g�2B be open coverings of
spaces X and Y, respectively, and let u�v be the open covering
fU� � V�g��;��2A�B of X � Y. Then N. �u�v� is naturally equivalent to
N.u�N.v.

Also, for any n and � > 0, with � < 1
2n�1, let vn;� denote the open covering

of �0; 1� given by f� k2n ÿ �; k�12n � ��gk�0;1;...;2nÿ1. Of course, �ÿ�; 12n � �� and
�1ÿ 1

2n ÿ �; 1� �� are to be interpreted as �0; 12n � �� and �1ÿ 1
2n ÿ �; 1�, re-

spectively. Note that N.vn;� is weakly contractible.

Proposition 6.2. Let � be any rigid covering of X � �0; 1� whose underlying
covering is of the form u�vn;�, for some open covering u of X. Then
�X�0 � RC�i���� ! �X��0;1���� is a weak equivalence.

Proof. Clear from the preceding proposition and the contractibility of
N.vn;�
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Lemma 6.3. Let � be any rigid covering of a compact Hausdorff space X,
and let x 2 X. Then there is an open set V containing x so that for all v 2 V,
V � ��v�.
Proof. Let fU�g�2A be a non-redundant listing of all the open sets ap-

pearing as ��x� for some x 2 X , so A is finite. Let S�x� � A,
S�x� � f� 2 Ajx 2 �ÿ1U�g. Choose V to be any open set contained inside\

�2S�x�
U� \

\
�2AÿS�x�

�X ÿ �ÿ1�U���

V clearly satisfies the requirements of the lemma.

Corollary 6.4. Let X be a compact Hausdorff space, and let Y � �0; 1�.
Let � be a rigid covering of X � Y. Then there is a rigid covering �� � � so
that the underlying covering �� is of the form u�v, and so that N.v is
contractible.

Proof. First, it is clear from 6.3 that there is a finite open covering
u � fU�g�2A so that for every u 2 U�, U� � �u. Further, it is standard that
there are open coverings w � fW�g�2A and v � fV�g�2B of X and Y re-
spectively, so thatw�v refines u, and that v �vn;� for some n and �. It
is clear that we may assume that the coverings w and v admit no proper
subcovers. Since X and Y are compact Hausdorff spaces, we can choose
open subsets W 0

� �W� and V 0� � V� so that W 0
� �W� and V 0� � V�, and so

thatw0 � fW 0
�g�2A and v0 � fV 0�g�2B are also open coverings of X and Y ,

respectively. We may take v to be vn;� for some n and �. For each point
�x; y� 2 X � Y , choose some sets W 0

� and V 0� so that x 2W 0
� and y 2 V 0�, and

set ���x; y� �W� � V�. It follows directly from the construction that �� re-
fines �, and sincew0 and v0 admit no proper subcovers, it is clear that the
underlying open covering of �� isw�v, and N.v is weakly contractible.

Theorem 6.5. The inclusion

holim T � �X�0 � RC �i� ! holim T � �X��0;1�
RC�X�I� RC�X�I�

is a homotopy equivalence. Consequently, Cï ech homology has the homotopy
invariance property for compact Hausdor¡ spaces.

Proof. By the preceding corollary, it suffices to check the result on rigid
coverings whose underlying open coverings are of the form w�v, with
N.v weakly contractible. The result now follows from Proposition 6.1 and
Proposition 6.2.
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7. The ``Strong Wedge'' Property.

Let fXig1i�1 be a countable family of based topological spaces. The
``strong wedge'' of the X 0i s, which we by abuse of notation shall denoteW1

i�1Xi, is the subspace of
Q1

i�1 Xi consisting of points which have at most
one coordinate away from the basepoint. There are projection maps
�h�W1i�1Xi;T� ! �h�Xi;T�, and hence a map

�: �h�
_1
i�1

Xi;T� !
Y1
i�1

�h�Xi;T�

We wish to show that if each of the Xi's is a compact Hausdor¡ space, then
� is an equivalence.
We record a preliminary result.

Proposition 7.1. Let

C1 � C2 � . . . � Cn � . . .

be an increasing sequence of categories, with C1 �
S

n Cn. Let F be a functor
from C1 to Kan complexes. Then holimC1F is naturally equivalent to
holimnCnF jCn. Here, n! holimCnF jCn is a contravariant functor from the
partially ordered set N of positive integers to Kan complexes.

Proof. Let � be the covariant functor from N to small categories, given
by ��n� � Cn. Then we have the ``Grothendieck construction'' [17]
n � N o �, and an evident functor s:n! C1. It is readily checked that
this functor satisfies the hypotheses of [3, Theorem XI.9.2], and hence the
pullback map holimC1F ! holimnF � s is an equivalence. However,
holimnF � s is easily identified with holimn2N��n�F j��n�, which is the re-
quired result.

Theorem 7.2. Let fXig1i�0 be a family of based compact Hausdorff spaces.
Then the natural map

�: �h�
_1
i�1
Xi;T� !

Y1
i�1

�h�Xi;T�

is an equivalence.

Proof. Let Z � W1i�1 Xi, and let Zj be the subspace
W1

i�j Xi. We have the
projection pj:Z ! Z=Zj �

Wj
i�1 Xi. Let RCj�Z� � RC�Z� denote the image

of the functor RC�pj�, and let RC1�Z� �
S1

j�1 RCj�Z� � RC�Z�. We claim
that the restriction map

�h�Z;T� � holim T � �Z ! holim T � �Z
RC�Z� RC1�Z�
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is a weak equivalence. By 2.8, it will su¤ce to show that for every
� 2 RC�Z�, there is a �0 2 RC�Z� and a �00 2 RC1�Z�, so that �0 � �,
�0 � �00, and so that �Z ��0 � �00� is a weak equivalence of simplicial sets. Let
� denote the basepoint in Z. Then ���� is an open set containing �. By the
de¢nition of the strong wedge, there is a j so that Zj � ����. Choose an open
set V with Zj � V � V � ����; this is possible since Z is compact Hausdor¡.
fZ ÿ V ; ����g is now an open covering of Z. By 4.4, we may choose

 2 RC�Z� so that 
�z� is equal to Z ÿ V or ���� for all z 2 Z. Note that for
z 2 Zj, 
�z� � ����. Let �0 � � �X 
. It is clear that if �0�z� \ Zj 6� ;, then
�0�z� � ���� � �0���. Let �00 be de¢ned by �00�z� � �0�z� if �0�z� \ Zj � ;, and
�00�z� � ���� if �0�z� \ Zj 6� ;. De¢ne a function � from Z to itself by letting
��z� � � if �0�z� \ Zj 6� ; and ��z� � z otherwise. It is clear that
�00�z� � �0���z��, and so � is in fact a map of coverings (indexed by Z).
It therefore induces a map R. ��00 ! R. ��0 . In view of 3.2, this is a weak
equivalence of simplicial sets. This shows that the map holimRC�Z�T�
�Z ! holimRC1�Z�T � �Z is an equivalence. But 7.1 now shows that
holimRC1�Z�T � �Z is canonically equivalent to holimjRCj�Z�T � �Z . But it
is easy to check that T � �Z jRC j�Z� is weakly equivalent to T � �Z=Zj

, and
hence that holimRCj�Z�T � �Z ' �h�Z=Zj;T�. On the other hand, the excision
theorem 5.1 shows that �h�Z=Zj;T� '

Qjÿ1
i�1 �h�Zi;T�. It follows that

holim T � �Z ' holim
Yjÿ1
i�1

�h�Zi;T� '
Y1
i�1

�h�Zi;T�
RC1�Z� j

which is the required result.

8. Bornologies, Compacti¢cations, and Group Actions.

A ``space'' will mean a locally compact Hausdor¡ space. If X is a set, and B1

and B2 are subsets of X � X , we write B1 � B2 � f�x1; x2� 2 X � X j9x0 2 X ,
with �x; x0� 2 B1 and �x0; x2� 2 B2g. Also, let Bop

1 � f�x1; x2�j�x2; x1� 2 B1g.
Definition 8.1. A bornology on a space X is a family b of subsets of

X � X , satisfying the following four conditions.

1. B 2 b) � � b, where � denotes the diagonal in X � X .
2. B 2 b and � � B0 � B) B0 2 b.
3. B1;B2 2 b) B1 � B2 2 b.
4. B 2 b) Bop 2 b.
A space equipped with a bornology will be referred to as a bornological
space.

To get a category we need to specify the maps.

30 gunnar carlsson and erik kj��r pedersen



{orders}ms/98424/carlsson.3d -17.11.00 - 10:07

Definition 8.2. Let �X1;b1� and �X2;b2� be bornological spaces, and let
f : X1 ! X2 be a (perhaps non-continuous) map. We say f is bornological if
it satisfies the following conditions:
1 For every B 2 b1; f � f �B� 2 b2.
2 For every compact subset K � X2, f ÿ1�K� is compact.

The associated category of bornological spaces will be denoted by Born.

Example 8.3. The metric bornology: An important example of a borno-
logical space occurs when X is a metric space. If X is a metric space with
metric d, we define a bornology b�d� on X to consist of all sets B � X � X ,
containing �, and so that there is a real number R so that d�x1; x2� � R for
all �x1; x2� 2 B.
Definition 8.4. Let (X ;b) be a bornological space. If A � X and B 2 b,

we define B�A� � fx0 2 X j9x 2 A : �x; x0� 2 Bg. We shall write B�x� for
B�fxg�.
Example 8.5. The continuously controlled bornology: Let X be a space and

let i : X ! X be an inclusion into a compact space. i is assumed to be a
homeomorphism onto its image. Let @X � X ÿ X . We define the con-
tinuously controlled bornology b�X ; @X� on X as follows:
B 2 b�X ; @X� if and only if the following holds: For every y 2 @X and for

every open neighborhood U of y in X there exists an open neighborhood V of y
in X so that B�x� � U for all x 2 V \ X.
Definition 8.6. Let X be a space with two bornologies b1 and b2. We

shall say that b1 is finer than b2 or equivalently b2 is coarser than b1 if
b1 � b2 i. e. if the identity map from �X ;b1� to �X ;b2� is a bornological map.
Definition 8.7. If X be is a bornological space imbedded as above, X

thus has an abstract bornology b and a continuously controlled bornology
coming from the embedding. We say b is ``small at 1'' (relative to i) if b is
finer than b�X ; @X� i.e. if for each B 2 b, z 2 @X , and open set U of X
containing z, there is an open set V of X , with z 2 V � U , so that for every
x 2 V \ X , B�x� � U .

Remark 8.8. There are many important examples of metric bornologies
with compactifications that are small at infinity

1. When X is a simply connected smooth manifold equipped with a complete
Riemannian metric d of nonpositive sectional curvature, then X can be
compacti¢ed by rays, and the bornology b�d� is small at 1.

2. If X � G=K , where G is a Lie group and K its maximal compact sub-
group, then G=K is di¡eomorphic to RN for N � dim�G=K�, and can be
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compacti¢ed by adding an SNÿ1 at 1 so that any left G- invariant Rie-
mannian metric is small at 1.

3. If X is the universal cover of a ¢nite simplicial graph, then X can be com-
pacti¢ed by adding a Cantor set at 1, and the bornology associated to
the simplicial metric on X is small at 1.

4. When ÿ is a torsion free word hyperbolic group in the sense of Gromov
(see [11]), ÿ acts freely on a ¢nite dimensional polyhedron Pd�ÿ� which
can be compacti¢ed by adding its ``hyperbolic boundary'', as in [11]. The
polyhedron is equipped with a metric, whose bornology is small at 1.

Suppose now that X is a space, equipped with a properly discontinuous
left action by a group ÿ, and suppose further that the action is ``co-
compact'', i.e. X=ÿ is a compact Hausdor¡ space. ÿ also acts on X � X via
the formula 
 � �x; x0� � �
x; 
x0�. We say a subset Z � X � X is ÿ-compact
if Z=ÿ � X � X=ÿ is a compact set; note that �X � X � X is ÿ-compact,
since X=ÿ is compact. We now de¢ne a family bÿ of subsets of X � X by
declaring B � X � X is an element of bÿ if �X � B and B is contained in a
ÿ-compact subset of X � X .

Proposition 8.9. Suppose ÿ acts freely on X. Then bÿ is a bornology on
X.

Proof. Only condition 3 requires verification. Let �1; �2 : X � X=ÿ !X=ÿ

be given by �1��x; x0�� � �x� and �2��x; x0�� � �x0�, respectively. Let
Z � �X � X=ÿ� � �X � X=ÿ� be given by Z � f��; ��j�2� � �1�g. There is a
continuousmap � : Z ! X � X=ÿ given by ���x; x0�; �x00; x000�� � �x; 
x000�, where

 is the unique element of ÿ so that 
x00 � x0. Let B1;B2 2 b,and let B1 and B2

be ÿ-invariant elements ofbÿ, so that Bi=ÿ � X � X=ÿ is compact for each i,
and so that Bi � Bi for each i. It is easy to see that such Bi's exist. Now,
p�B1 � B2� � p�B1 � B2� � ��Z \ �pB1 � pB2��, andZ \ �pB1 � pB2� is a closed
subset of the compact set pB1 � pB2, and so ��Z \ �pB1 � pB2�� is compact.
Consequently, B1 � B2 is contained in a ÿ-compact set, which is the result.

Definition 8.10. If in this situation X is compactified to X , we say that
the group action is small at infinity if bÿ is small at infinity

Definition 8.11. If �X ;bX � and �Y ;bY � are bornological spaces we de-
fine the product bornology bX�Y on X � Y to consist of those subsets of

�X � Y� � �X � Y� � �X � X� � �Y � Y�
which contain the diagonal and are contained in subsets of the form
B1 � B2 � X � X � Y � Y � �X � Y� � �X � Y �; where B1 2 bX and
B2 2 bY .
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Definition 8.12. If Y is a bornological space with bornology b and
f : X ! Y we define the pullback bornology on X to be

f ��b� � f�f � f �ÿ1�B�jB 2 bg:
In the following let �X ; @X� be a pair of Hausdor¡ spaces, @X closed in X

and X ÿ @X dense in X . Let U be a subset of @X . We de¢ne the bornology
bU of control with respect to U as follows:

Definition 8.13. B 2 bU if and only if for every closed subset Z of X
with Z \ @X � U we have B�Z� \ @X � U .
Said with words bU has to satisfy that if a closed set intersecting @X in-

side U is expanded by an element B 2 bU then the closure of the expansion
also intersects @X inside U .

Definition 8.14. If A � fU�g is a collection of subsets of @X then we
define

bA � \U2AbU :

Remark 8.15. It is easy to see that continuous control is control with re-
spect to the collection of all open subsets of @X . Hence the continuously
controlled bornology is finer than the bornology defined by any collection of
open sets.

Definition 8.16. Assume X is a bornological space compactified to X . A
subset Z of @X is bornologically saturated with respect to a given bornology
if the bornology is finer than bZ. In case X is a metric space we say the set is
boundedly saturated. In this case a closed subset of X with closure meeting
@X inside Z still meets @X inside Z after being expanded a bounded amount.

Remark 17. Given a collection of boundedly saturated sets A � fU�g we
clearly get a map from the metric bornology to bA. This will be used in the
final section where we prove assembly map splittings.

9. Bounded K-theory and K-theory with Continuous Control at 1.

Let �X ;b� be a bornological space, and let R be a ring. By an X -labeled R-
module, we mean a based free R-module �F ;��, embedded as a submodule
of the free R-module with basis X �N. We get a corresponding ``labeling
function'' � : � ! X , and require that for every compact subset K � X ,
�ÿ1�K� is ¢nite. If �F1;�1; �1� and �F2;�2 ; �2� are X -labeled R-modules, then
a linear transformation f : F1 ! F2 is said to be bounded with respect to b if
there is an element B 2 b so that for any � 2 �1, f ��� 2 ��ÿ12 �B��1x���. As in
[15], the category of X -labeledR-modules and bounded linear transforma-
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tions is symmetric monoidal, being an additive category. We shall denote
this category by c�X ;b;R�. The subcategory of isomorphisms is also sym-
metric monoidal and has an associated spectrum ��c�X ;b;R��� will be de-
noted by K�X ;b;R�. Note that if b is the bornology associated to a metric,
then c�X ;b;R� coincides with the bounded category c�X ;R� of [15] applied
to the metric space X . If b�X ; @X� is the continuously controlled bornology
associated to a compacti¢cation X of X then c�X ;b�X ; @X�;R� is the con-
tinuously controlled category b�X ; @X ;R� of [2] and [5]. For brevity we shall
continue to use the notation b�X ; @X ;R� for c�X ;b�X ; @X�;R�.
Let bE denote the bornology associated to the standard Euclidean metric

on E. Let bEn denote the n-fold product bornology bE�...�E , described
above. Then as in [4] or [5], we obtain a directed system

K�X ;bX ;R� ! 
K�X � E;bX�E ;R� ! � � �
� � � ! 
nK�X � En;bX�En ;R� ! � � �

of spectra, and K�X � En;bX�En ;R� is a component of

K�X � En�1;bX�En�1 ;R�, so increasing n introduces new negative homo-
topy groups, but keeps the homotopy groups in positive degrees. The
homotopy colimit of this system will be written Kÿ1�X ;b;R�,
We brie£y examine the functoriality properties of this construction. Con-

sider a map �X1;b1� !f �X2;b2� of bornological spaces.
Proposition 9.1. The constructions K�X ;b;R� and Kÿ1�X ;b;R� are

functorial for maps of bornological spaces.

Proof. Clear from the definitions.
We now examine the functoriality of these constructions, when a bornol-

ogy is small at in¢nity.

Definition 9.2. Let �X ; @X� and �X 0; @X 0� be pairs of locally compact
Hausdorff spaces. X � X ÿ @X and X 0 � X 0 ÿ @X 0. A set map
f : �X ; @X� ! �X 0; @X 0� is eventually continuous if the following conditions
hold.
1. f �X� � f �X 0�.
2. If K is a compact subset of X 0, then the closure of f ÿ1�K� in X is compact.
3. f is continuous at points of @X .
We denote the category with objects compact Hausdor¡ pairs and morph-
isms eventually continuous maps by cE

Now suppose that we are given a bornological space �X ;b�, and an in-
clusion i : X ! X , where X is compact. @X will denote X ÿ X , and i is as-
sumed to be a homeomorphism onto its image. Then it is clear that the ob-
ject sets of c�X ;b;R� and c�X ;b�X ; @X ;R�� � b�X ; @X ;R� are identical.
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If we further assume that the bornology b is small at 1, then it is also clear
from the de¢nitions that if a linear transformation of X -labeled R-modules is
bounded with respect to b, then that same linear transformation is con-
trolled at all points of @X . The conclusion is that we have a symmetric
monoidal functor c�X ;b;R� ! b�X ; @X ;R�, and hence maps of spectra
K�X ;b;R� ! K�X ; @X ;R� and Kÿ1�X ;Y ;R� ! Kÿ1�X ; @X ;R�. This map
turns out to be a natural transformation of functors on an appropriate ca-
tegory, which we now describe. The objects are triples �X ; @X ;b�, where X
is a compact space, @X � X is a closed subspace, and b is a bornology on
X � X ÿ @X , which is small at 1 relative to the inclusion X ! X . A
morphism in the category from �X ; @X ;b� to �X 0; @X 0;b0� is a set map (of
pairs) �X ; @X�f �X 0; @X 0� which is eventually continuous and so that f jX is
bornological. We call this category s. We say an object �X ; @X ;b� of s is
¢nite if @X � ; and b consists of all subsets of X � X .

Proposition 9.3. The maps of spectra

K�X ;b;R� ! K�X ; @X ;R�
and

Kÿ1�X ;b;R� ! Kÿ1�X ; @X ;R�
form natural transformations of functors on s. We refer to the natural trans-
formation as �. ��X ; @X ;b� is a weak equivalence of spectra when �X ; @X ;b�
is finite.

Proof. The naturality is evident. When �X ; @X ;b� is finite, both functors
clearly take the value K�R� and Kÿ1�R� respectively and the map � is clearly
an equivalence.

10. K-theory with Continuous Control at In¢nity.

We shall examine the excision properties of the continuously controlled
construction.
As usual, let �X ; @X� be a pair of spaces, with X compact Hausdor¡ and

@X closed. For any set Z � X , let the accumulation set of Z, a�Z�, be the
set of all points x 2 X so that every open neighborhood of x contains in-
¢nitely many points of Z. Note that if Z has the property that every compact
subset of X contains only ¢nitely many points of Z, then a�Z� is contained
in @X . As in [5], for any subset U � @X , let b�X ; @X ;R�U denote the full
subcategory on b�X ; @X ;R� on the objects �F ;B; �� for which
a���B�� � U . We denote the corresponding K-theory spectrum by
K�X ; @X ;R�U , and also construct, the spectrum Kÿ1�X ; @X ;R�U by giving

c̄ech homology and the novikov conjectures for ... 35



{orders}ms/98424/carlsson.3d -17.11.00 - 10:09

X � En the product bornology and consider objects with accumulation
points in @X � En contained in U � En. If V � U , we also de¢ne
b�X ; @X ;R�VU to be the category whose objects are the same as those of
b�X ; @X ;R�U , but where two morphisms f and g from �F1;B1; �1� to
�F2;B2; �2� in b�X ; @X ;R�U are identi¢ed if there is a neighborhood W of V
so that f �b� � g�b� for all b 2 B1 such that ��b� 2W . We get corresponding
K-theory spectra K�X ; @X ;R�VU and Kÿ1�X ; @X ;R�VU . The key result is now
as follows.

Proposition 10.1. Let C � D be closed subsets of @X. Then there is a se-
quence of maps of spectra

Kÿ1�X ; @X ;R�C ! Kÿ1�X ; @X ;R�D ! Kÿ1�X ; @X ;R�DÿCD

which is a ¢bration up to homotopy.

Proof. For the case D � @X , this is [5, Corollary 1.30]. The proof for a
general D is identical.

Remark 10.2. This is the key excision result. In L-theory a result of this
type is proved in [5, Lemma 5.2]. In A-theory this is proved in [7, Proposi-
tion 2.12], and in topological K-theory this is proved in [12, Proposition 9.2].
Given an excision result of this type it is formal to generalize the rest of the
methods in this paper to these other theories.

Definition 10.3. Let C1 and C2 be two closed subsets of @X . We say the
pair �C1;C2� is excisive if we can find an open set V in X so that C2 ÿ C1 � V
and V \ C1 � C2. For two arbitrary subsets U1 and U2 of @X we say the pair
�U1;U2� is excisive if every compact subset C of U1 [U2 is contained in
C1 [ C2 where �C1;C2� is an excisive pair of closed subsets with Ci � Ui.

Recall a set C � X is called functionally closed if there is a continuous
function f : X ! �0; 1� with C � f ÿ1�0�.
Lemma 10.4. Assume Ci � @X � X and Ci are functionally closed in X.

Then �C1;C2� is an excisive pair.
Proof. Choose functions fi so that Ci � f ÿ1i �0�. Put V � fxjf2�x� < f1�x�g
Proposition 10.5. Let X be a compact Hausdorff space, and let @X � X

be closed. Then any pair of open subsets U1;U2 � @X is excisive.

Proof. Let C � U1 [U2. Consider the closed subset C ÿU2 \ C of @X .
C ÿU2 \ C � U1, and it is a standard fact from point set topology that there
is an open subset V1 of @X , with C ÿU2 \ C � V1 and V1 � U1. Note that
C � V1 [U2. Now consider the closed subset C ÿ V1 \ C of @X . As before,
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we choose an open subset V2 of X , with C ÿ V1 \ C � V2, and so that
V2 � U2. Now let Ci � C \ Vi. These Ci may not form an excisive pair, but
using the Tietze extension theorem they may be enlarged to functionally
closed sets hence satisfying the conditions.

Lemma 10.6. If Ci � @X are closed subsets and �C1;C2� is an excisive pair,
then

Kÿ1�X ; @X ;R�C2ÿC1\C2
C2

! Kÿ1�X ; @X ;R�C1[C2ÿC1
C1[C2

is an equivalence of spectra.

Proof. It will suffice to show that the map

K�X ; @X ;R�C2ÿC1\C2
C2

! K�X ; @X ;R�C1[C2ÿC1
C1[C2

is an equivalence, and pass to direct limits over the directed system defining
Kÿ1 by crossing everything with En. But by 2.3, it will suffice to show that
the map

N.b�X ; @X ;R�C2ÿC1\C2
C2

! N.b�X ; @X ;R�C1[C2ÿC1
C1[C2

induced by the evident inclusion functor is an equivalence. Since all morph-
isms in both categories are isomorphisms, it will suffice to show that every
object in b�X ; @X ;R�C1[C2ÿC1

C1[C2
is isomorphic to an object of

b�X ; @X ;R�C2ÿC1\C2
C2

. Choose V � X an open set so that

C2 ÿ C1 � V and V \ C1 � C2

We now write �F ;B; �� as a direct sum �F1;B1; �1� � �F2;B2; �2�, where
B1 � �ÿ1�X ÿ V� and B2 � �ÿ1�V�. The inclusion �F2;B2; �2�,!�F ;B; �� is
an isomorphism in the category b�X ; @X ;R�C1[C2ÿC1

C1[C2
with inverse the pro-

jection since the composite only differs from the identity on a submodule
with support at infinity contained in C1. But, �F2;B2; �2� is clearly an object
in b�X ; @X ;R�C1\C2

C2
, since the support of �F2;B2; �2� is contained in V , and

a��2�B2�� � V \ �C1 [ C2� � C1 . To finish off the proof we need to verify
the existence of such an open set V . Let fi : X ! �0; 1� be a continuous
functions so that f ÿ1i �0� � Ci. We may then put V � fyjf2�y� < f1�y�g.
Theorem 10.7. If �U1;U2� is excisive, then there is a pushout diagram of

spectra

Kÿ1�X ; @X ;R�U1\U2
! Kÿ1�X ; @X ;R�U2

# #
Kÿ1�X ; @X ;R�U1

! Kÿ1�X ; @X ;R�U1[U2
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Proof. The category b�X ; @X ;R�U is always the direct limit of the cate-
gories b�X ; @X ;R�C , where C runs over the compact subsets of U , since the
set a���B�� is always a closed, hence compact, subset of @X . Given
C � U1 [U2, we can find Ci so C � C1 \ C2 with �C1;C2� an excisive pair.
From 10.1 we get a diagram of fibrations

Kÿ1�X ; @X ;R�C1\C2
! Kÿ1�X ; @X ;R�C2

! Kÿ1�X ; @X ;R�C2ÿC1\C2
C2

# # #
Kÿ1�X ; @X ;R�C1

! Kÿ1�X ; @X ;R�C1[C2
! Kÿ1�X ; @X ;R�C1[C2ÿC1

C1[C2

The right hand vertical arrow is an equivalence of spectra by Lemma 10.6.
This will give the result by taking a limit over compact Ci � Ui, using the
excisiveness assumption.

Suppose fU�g�2A is any open covering of @X . Let f�A� denote
the collection of nonempty subsets of A. This is a partially ordered
set under inclusion. We think of f�A� as a category in the usual
fashion, so there is a unique map from S ! T if T � S. Let
�f�1; . . . ; �sg � U�1 \ . . . \U�s � @X . Then S ! K�X ; @X ;R���S� and
S ! Kÿ1�X ; @X ;R���S� de¢ne functors T and t from f�A� to the category
of spectra. Further, if we let E and e denote the constant functors with va-
lues K�X ; @X ;R� and Kÿ1�X ; @X ;R� respectively, we have natural trans-
formations T ! E and t! e, giving maps

hocolim T ! hocolim E
f�A� f�A�

and

hocolim t! hocolim e:
f�A� f�A�

Since f�A� is a left ¢ltering category , N.f�A� is clearly weakly con-
tractible as in [16]. The natural maps from homotopy colimits to colimits
now give maps

hocolim E ! K�X ; @X ;R�
f�A�

and

hocolim e! Kÿ1�X ; @X ;R�
f�A�

and hence by composition maps

hocolim T ! K�X ; @X ;R�
f�A�

and
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hocolim t! Kÿ1�X ; @X ;R�:
f�A�

We wish to prove that the map

hocolim t! Kÿ1�X ; @X ;R�
f�A�

is a weak equivalence of spectra.

Theorem 10.8. Let A � f1; 2g, and suppose we have an open covering
fU1;U2g of @X. Then the map

hocolim t! Kÿ1�X ; @X ;R�
f�A�

is an equivalence of spectra.

Proof. In this case, the homotopy colimit hocolimf�A�t is just the
homotopy pushout of the diagram

Kÿ1�X ; @X ;R�U1\U2
! Kÿ1�X ; @X ;R�U2

#
Kÿ1�X ; @X ;R�U1

The result now follows from Theorem 10.7 and Proposition 10.5.

Corollary 10.9. Let A be any finite set, and suppose we have an open
covering fU�g�2A of @X. Then the natural map

hocolim t! Kÿ1�X ; @X ;R�
f�A�

is an equivalence.

Proof. This follows in a straightforward fashion by repeated use of 10.8.

Corollary 10.10. Suppose A is any set, and fU�g�2A is an open covering
so that only finitely many distinct sets occur among the U�'s. Then the map

hocolim t! Kÿ1�X ; @X ;R�
f�A�

is an equivalence of spectra.

Proof. Let A0 � A be any finite subset of A so that for any � 2 A, there
is an �0 2 A0 so that U� � U�0 . Then we have a commutative diagram

hocolim t
f�A0�

Kÿ1�X ; @X ;R�

hocolim t
f�A�

ÿÿÿÿÿ!

ÿÿÿÿÿÿ!

ÿÿÿÿÿÿ
!
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of spectra, and the diagonal arrow is an equivalence by 10.9. On the other
hand, it follows directly from 3.1 that the vertical arrow is an equivalence.
This gives the result.

Corollary 10.11. Let � 2 RC�@X�. The natural map
hocolim Kÿ1�X ; @X ;R���S� ! Kÿ1�X ; @X ;R�
S2f�@X�

is an equivalence of spectra.

This does not actually need the rigidity of the coverings, but we shall only
apply it in that case.
We now wish to construct a homotopy natural transformation from

Kÿ1�X ; @X ;R� ! � �h�@X; R�;
as functors on cE (see de¢nition 9.2). To do this, we will need to compare
various constructions on the category cE. A convenient framework for dis-
cussing these is given by the following de¢nition.

Definition 10.12. We shall use m to denote the category whose objects
are quadruples �X ; @X ; �;S�, where �X ; @X� is a compact Hausdorff pair,
where � 2 RC�@X�, and where S is a finite subset of @X . A morphism from
�X1; @X1; �1;S1� to �X2; @X2; �2;S2� is determined by a morphism
f : �X1; @X1� ! �X2; @X2� in m so that �1 refines RC�f j@X1���2�, and so that
f �S1� � S2. Any functor F :m! spectra determines a functor
�F :cE ! spectra on objects via the formula

�F�X ; @X� � holim hocolim F �X ; @X ; �;S�
�2RC�@X� S2f�@X�

and on morphisms via evident pullback and pushforward maps of homotopy
limits and colimits, respectively. Natural transformations of functors on m
determine natural transformations of functors on cE, and weak equiv-
alences determine weak equivalences.

Let e,t,c,d, and d0 be de¢ned by the following formulae.

e�X ; @X ; �;S� � Kÿ1�X ; @X ;R�

t�X ; @X ; �;S� � Kÿ1�X ; @X ;R����S�

c�X ; @X ; �;S� � Kÿ1�R� if ���S� � ;
� if ���S� 6� ;
�
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d�X ; @X ; �;S� � � if ���S� � ;
Kÿ1�R� if ���S� 6� ;
�

d0�X ; @X ; �;S� � Kÿ1�R�
The e¡ect on morphisms is de¢ned in the evident way.

Proposition 10.13. The inclusions of spectra

Kÿ1�X ; @X ;R����S� � Kÿ1�X ; @X ;R�
induce an equivalence of functors �t! �e, and �e is weakly equivalent to the
functor

�X ; @X� ! Kÿ1�X ; @X ;R�
on cE.

Proof. Follows directly from 10.11.

Proposition 10.14. �d is naturally equivalent to the functor

�X ; @X� ! �h�@X�;Kÿ1�R��
on cE. Similarly, �d0 is weakly equivalent to the constant functor with value
Kÿ1�R�.
Proof. If ���S� � ; then the value of d�X ; @X ; �;T� is � on any T to the

left of S, hence we do not change the homotopy colimit by restricting to the
subcategory of f�@X� with ���S� 6� ;. Now use the standard fact that for a
constant spectrum valued functor � with value s on a category C,
hocolimC� � N. �C�� ^s. In our first case, s � Kÿ1�R� and C is the full
subcategory of f�@X� consisting of S so that ���S� 6� ;, hence N.C is pre-
cisely the nerve of the covering �. In the second case, C is the whole category
f�@X�.
Corollary 10.15. �c is naturally weakly equivalent to � �h�@X ;Kÿ1�R��.
Proof. We have a cofibration sequence of spectrum valued functors

d! d0 ! c
onm. This gives a cofibration sequence

�d! �d0 ! �c

on cE, which is the required result.

Finally, we de¢ne a natural transformation �:t! c by letting
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��X ; @X ; �;S�:Kÿ1�X ; @X ;R����S� ! Kÿ1�R�
be induced by the forgetful functor when ���S� � ;, and letting

��X ; @X ; �;S�:Kÿ1�X ; @X ;R����S� ! �
be the constant map when ���S� 6� ;. (Note that for any object
�F ;B; �� 2 b�X ; @X ;R�;, F is ¢nitely generated. Indeed, the forgetful func-
tor which takes �F ;B; �� to F induces an equivalence of spectra. )

Theorem 10.16. The diagram of functors

�e ÿ �t! �c ÿ� �h�ÿ;Kÿ1�R��
exhibits a homotopy natural transformation from the functor

�X ; @X� ! Kÿ1�X ; @X ;R�
to the functor

�X ; @X� ! � �h�@X ;Kÿ1�R��;
which we also refer to as �. The homotopy natural transformation � is a weak
equivalence for pairs of the form �X ; @X�, of compact metric spaces.
Proof. We need to show that � induces an isomorphism on homotopy

groups for �X ; @X� a compact metrizable pair. It was shown in [5, Corollary
1.24] that Kÿ1�X ; @X ;R� only depends on @X when X is metrizable, and
satisfies the Steenrod axioms [5, Theorem 1.36]. Since we have shown 10.11
and 5.1 that � �h�@X; Kÿ1�R�� satisfies the Steenrod axioms, and we clearly
have an equivalence when @X � ;, the result follows from [14].

11. Variant CechCï ech constructions.

We occasionally need to consider Cï ech constructions where we do not allow
coverings by all open sets. Given a family of open coverings f of a topolo-
gical space X which is closed under intersections in the sense that if fU�g
and fV�g belong to f then fU� \ V�g does also belong to f. We can then
consider the subcategory of the category of regular coverings of X consisting
of regular coverings with image belonging to f. This will be a partially or-
dered subset RCf�X� of the partially ordered set of rigid coverings. We
shall de¢ne �h�X ;f;T� by taking the holim over RCf�X� rather than the
full category of regular coverings. The functorial properties of �h�X ;f;T�
are complicated to state, but if we have a group acting on X and f is in-
variant under the group action, we do get an induced action on �h�X ;f;T�.
In case X is a bornological space with bornology b compacti¢ed to X by
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adding @X we de¢ne �h�@X ;b;T� by using the family of ¢nite coverings by
bornologically saturated open subsets of @X . The excision results above
generalize to produce a homotopy natural transformation

Kÿ1�X ;b� ! �h�@X�;b;Kÿ1�:
We do not state the functorial properties of this construction but once again
we do get induced actions if the bornology is invariant under a group action.

Remark 11.1. Throughout the paper we have considered coverings by
open sets. Many of the results will hold for more general kinds of coverings.
The key point in constructing a homotopy natural transformation from a
controlled theory to a Cï ech theory is excision, so as long as any pair of in-
tersections of the sets in the covering is excisive we do get a homotopy nat-
ural transformation of spectra as above.

12. Splitting assembly maps.

The purpose of this section is to show the main theorem and variations. First
we remove the metrizability condition of [5]. We do not know whether this
adds any groups to the list of groups for which assembly maps split, but it is
the easiest example to demonstrate our techniques. The following is a
slightly more general statement than Theorem A

Theorem 12.1. Assume ÿ is a group with a finite Bÿ and that Eÿ has an
equivariant compact Hausdorff compactification Eÿ such that the Cï ech
homology is trivial when using coe¤cients in the relevant spectrum Kÿ1�R� or
Lÿ1�R� and such that the action is small at in¢nity. Then
a) If R is any ring then the assembly map

Bÿ� ^Kÿ1�R� ! Kÿ1�Rÿ�

is equivalent to an inclusion of a direct summand of spectra.
b) If R is a ring with involution such that Kÿi�R� � 0 for i su¤ciently large then
the assembly map

Bÿ� ^ Lÿ1�R� ! Lÿ1�Rÿ�

is equivalent to an inclusion of a direct summand of spectra.

Proof. We shall continue to discuss only the algebraic K-theory case, the
other case being obvious modifications of these arguments. The reason the
methods of [5] do not cover this case is that when �Eÿ; @Eÿ� is not metriz-
able, we do not know how to compute the continuously controlled K-theory
of �Eÿ ; @Eÿ�. As far as Cï ech homology is concerned there are no such re-
strictions. Consider the following bornologies on Eÿ � �0; 1�
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1) The continuously controlled bornology of �Eÿ � �0; 1�;Eÿ � 1�
2) The pullback of the continuously controlled bornology on ��0; 1�; 0 [ 1� via
the projection map Eÿ � �0; 1� ! �0; 1�.

3) The pullback of the continuously controlled bornology on �Eÿ; @Eÿ� via
the projection map Eÿ � �0; 1� ! Eÿ .

We shall denote the intersection of all three bornologies by b�CEÿ�. We
denote the intersection of the last two mentioned bornologies by b��Eÿ�.
Finally we have the continuously controlled bornology b�C�Eÿ��;Eÿ��.
Consider

b�C�Eÿ��;Eÿ�� a b�CEÿ�!b b��Eÿ�:
Without repeating the arguments of [5] it may help the understanding to
think of these bornologies in terms of three di¡erent compacti¢cations of
Eÿ � �0; 1�. The ¢rst compacti¢cation is CEÿ, and the bornology b�CEÿ�
expresses that we have continuous control at the bottom of the cone and at
the cone point, and along @Eÿ � �0; 1� we only require control in the @Eÿ-
direction. The e¡ect is that if B is in this bornology and ��e; s�; �f ; t�� 2 B,
then if s is close to 0, t has to be close to s, if e is close to a boundary point,
then f has to be close to e, and if t is close to 1, then e has to be close to f
and s must be close to t. The second compacti¢cation is induced by the ¢rst
by collapsing Eÿ to a point, so it is �Eÿ. This bornology ensures that the
ends stay apart, we still have no restrictions in the suspension coordinate. It
is easy to see that this bornology is a deloop of the continuously controlled
bornology b��Eÿ�; @Eÿ� in the sense that it is a deloop after applying Kÿ1.
Finally the third bornology, the continuously controlled bornology
b�C�Eÿ��;Eÿ�� is obtained by collapsing C�@Eÿ�. It was proved in [5,
Corollary 2.10] that


Kÿ1�Eÿ � �0; 1�;b�CEÿ��ÿ ' Bÿ� ^Kÿ1�R�
as spectra and [5, Lemma 2.3]


Kÿ1�Eÿ � �0; 1�;b��Eÿ��ÿ ' Kÿ1�Rÿ�
and the map induced by b is the assembly map [5, Section 3]. One element in
the proof was to show that

b�Eÿ � �0; 1�;b�CEÿ�ÿ�� ! b�Eÿ � �0; 1�;b�C�Eÿ��;Eÿ��ÿ��
is an equivalence of categories. This is the point where it is used that the
action is small at in¢nity. The ¢xed set consist of the equivariant maps, and
the smallness then ensures that the control conditions are automatically sa-
tis¢ed along @Eÿ � �0; 1� .
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Lemma 12.2. The pullback maps

�h��@Eÿ ;Kÿ1� ! �h��@Eÿ ;b��Eÿ�; Kÿ1�
and

�h�C�@Eÿ� [ Eÿ; Kÿ1� ! �h�C �@Eÿ� [ Eÿ;b�CEÿ�; Kÿ1�
are homotopy equivalences of spectra

Proof. The bornologies b�CEÿ� and b��Eÿ� are not small at infinity
when we compactify Eÿ � �0; 1� by C@Eÿ [ Eÿ � 1 and ��@Eÿ� respec-
tively. An open subset U is bornologically saturated if and only if
�x; t� 2 @Eÿ � �0; 1� belongs to U implies x� �0; 1� � U . The smallest bor-
nologically saturated open set containing the cone point will thus be
C@Eÿ ÿ Eÿ . The smallest bornologically saturated open set containing a
suspension point is the whole space minus the other suspension point. Except
for the trivial covering where one of the open sets is the whole space we thus
get that the nerve of a bornologically saturated open covering of �@Eÿ is
precisely the suspension of the nerve of a covering @Eÿ

Consider the diagram where we denote Eÿ � �0; 1� by X and omit the ring
R from the notation.

Kÿ1�X ;b�~CEÿ�;Eÿ���  ÿa Kÿ1�X ;b�CEÿ�� ÿ!b Kÿ1�X ;b��Eÿ��
c

�h�Eÿ�; Kÿ1�  ÿk �h�C@Eÿ [ Eÿb�CEÿ��; Kÿ1� ÿ!l �h��@Eÿ;b�Eÿ; Kÿ1

d
e f

�h�C@Eÿ [ Eÿ; Kÿ1� ÿ!g �h��@Eÿ; Kÿ1

All the maps are equivariant maps. The map bÿ on ¢xed sets is the assembly
map , and the map aÿ is a homotopy equivalence as discussed above. By
de¢nition Kÿ1�X ;b�~CEÿ�;Eÿ��� is the same as Kÿ1�~CEÿ�;Eÿ��, and we
proved in [5, Theorem 2.11] that

Kÿ1�~CEÿ�;Eÿ��ÿ ! Kÿ1� ~CEÿ�;Eÿ��hÿ ;

the map from the ¢xed set to the homotopy ¢xed set is a homotopy equiva-
lence. Since equivariant maps that are homotopy equivalences induce
homotopy equivalences on homotopy ¢xed sets we will be ¢nished once we
prove that c, k and l are homotopy equivalences. The map c is a homotopy
equivalence since Eÿ� is metrizable by Theorem 10.16. We have argued
above that e and f are homotopy equivalences. The maps d and g are in-

 ÿ
ÿÿÿ
ÿ

 ÿ
ÿÿÿ
ÿ

 ÿ
ÿÿÿ
ÿ

 ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

 ÿÿÿÿÿ

 ÿÿÿÿÿ
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duced by collapsing a contractible subset so by excision and homotopy in-
variance they induce homotopy equivalence and we are done.
Finally we state a more useful theorem where the proof is a slight varia-

tion of the proof above.

Theorem 12.3. Assume ÿ is a group with a finite Bÿ and that Eÿ has an
equivariant compact Hausdorff compactification which is Cï ech contractible
and such that there exists a family of coverings f of @Eÿ by sets which are
saturated with respect to the bornology bÿ on Eÿ (e. g. boundedly saturated)
which is invariant under the group action and satis¢es
�h�@Eÿ; T� ! �h�@Eÿ ;f; T� is a homotopy equivalence, where T is the re-
levant spectrum Kÿ1�R� or Lÿ1�R� . Then
a) If R is any ring then the assembly map

Bÿ� ^Kÿ1�R� ! Kÿ1�Rÿ�

is equivalent to an inclusion of a direct summand of spectra.
b) If R is a ring with involution such that Kÿi�R� � 0 for i su¤ciently large then
the assembly map

Bÿ� ^ Lÿ1�R� ! Lÿ1�Rÿ�

is equivalent to an inclusion of a direct summand of spectra.

Proof. The proof is a slight variation of the proof above using the bor-
nology on Eÿ induced by the given collection of subsets of @Eÿ occurring in
the family f instead of the continuously controlled bornology in point (2)
above. Our condition ensure that equivariant maps are automatically con-
trolled with respect to this bornology even though the action may not be
small at infinity.

Remark 12.4. The theorem above may be generalized in various ways.
We do not necessarily have to work with open sets. As long as the coverings
satisfy that any pair of intersections is an excisive pair, these kind of meth-
ods can be used. We shall not try to formulate the most general theorem that
can be formulated along these lines.
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