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WEIERSTRASS REPRESENTATIONS FOR HARMONIC
MORPHISMS ON EUCLIDEAN SPACES AND SPHERES

P. BAIRD and J. C. WOOD’

Abstract.

We construct large families of harmonic morphisms which are holomorphic with respect to
Hermitian structures by finding heierarchies of Weierstrass-type representations. This enables us
to find new examples of complex-valued harmonic morphisms from Euclidean spaces and
spheres.

1. Introduction.

Let ¢ : U — N be a smooth mapping between Riemannian manifolds. Then
¢ is called a harmonic morphism if, for every real valued function harmonic
on an open set W C N with ¢~!(W) non-empty, the pull-back f o ¢ is har-
monic on ¢~ (W) in M. Equivalently, ¢ is a harmonic morphism if and only
if ¢ is both horizontally weakly conformal and harmonic [5, 9]. In the case
when U is a domain in R” with its standard Euclidean structure and N is the
complex plane C, the equations for horizontal weak conformality and har-
monicity are, respectively,

(1 (%) <0,

i=1

no§
2) A(ﬁE;ﬁ:O

In fact, provided (1) is satisfied, (2) is equivalent to the minimality of the fi-
bres at regular points [1].
An important example of a harmonic morphism is the following. Let U be

* Partially supported by EG grant CHRX-CT92-0050.
Received November 17, 1995.
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a domain of R¥" = C™ and suppose that ¢ is holomorphic with respect to a
Kihler structure on R*", then ¢ is a harmonic morphism [5]. In a more
general setting, but restricting the dimension of the domain to be 4, the sec-
ond author showed that, if U is a domain of a 4-dimensional Einstein
manifold, then any submersive harmonic morphism ¢ is holomorphic with
respect to an integrable Hermitian structure J on U. Furthermore, the fibres
of ¢ are superminimal with repect to J [11]. Thus there is a strong relation-
ship between holomorphic maps and harmonic morphisms.

In [4], we studied those harmonic morphisms defined on domains U of
R? (m € N), which are holomorphic with respect to an integrable Hermi-
tian structure on U, finding full global examples in the case m > 3, which are
neither holomorphic with respect to a K&hler structure nor have super-
minimal fibres, as well as such examples which factor to a domain of R*"!.
In this paper we concentrate on the case of superminimal fibres and study
reduction to odd-dimensional Euclidean spaces and to spheres, constructing
large classes of examples in terms of holomorphic data.

More generally, we refer to a parametrization of solutions to Equations
(1) and (2) in terms of holomorphic data as a “Weierstrass representation”,
after the local representation of Weierstrass for minimal surfaces in R>. We
have observed an interesting duality between the theory of minimal surfaces
and harmonic morphisms [2].

In [2], Weierstrass representations for harmonic morphisms defined on
Euclidean spaces and spheres were obtained in the case when the fibres are
totally geodesic. More precisely, if (£;,...,£&,) is an n-tuple of meromorphic
functions of z such that }_ & = 0, then:

(i) the inhomogeneous equation

(3) X'+ 46X =1

locally determines all (submersive complex-valued) harmonic morphisms
z = z(x) on domains of R"” with totally geodesic fibres;
(ii) the homogeneous equation

(4) ax' +... 4+6x"=0

locally determines all (submersive complex-valued) harmonic morphisms
z=z(x) on domains of S"~! with totally geodesic fibres. A similar re-
presentation for harmonic morphisms from real hyperbolic spaces H"~! with
totally geodesic fibres has been obtained by S. Gudmundsson [8].
Here we develop a far richer description of harmonic morphisms in terms of
holomorphic data, obtaining a heierarchy of Weierstrass representations on
domains of R” such that:

(i) on R the Weierstrass representation locally gives all (submersive
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complex-valued) harmonic morphisms which are holomorphic with respect
to a Hermitian structure with superminimal fibres;

(ii) reduction R" — R"~! commutes with the Weierstrass representation;

(ili) on R* and R*, the Weierstrass representation describes al/l (submersive
complex-valued) harmonic morphisms.

Finally we show how to construct harmonic morphisms from spheres
using our Weierstrass representations by choosing the appropriate holo-
morphic function to be homogeneous. We refer the reader to the work of
Gudmundsson for other constructions of harmonic morphisms on complex
projective spaces and Kihler manifolds [6,7].

The authors would like to thank the referee for helpful comments on this
work.

2. Holomorphic harmonic morphisms and reduction.

By a Hermitian structure on an open subset U of R*" we mean the smooth
choice of an almost Hermitian structure on U which is integrable (cf. [4]). By
a holomorphic harmonic morphism on U we mean a complex-valued har-
monic morphism which is holomorphic with respect to some Hermitian
structure on U. We briefly summarize the characterization of holomorphic
harmonic morphisms given in [4] and describe how to reduce to other mani-
folds.

Let (x',...,x*") be standard coordinates for R*" and introduce complex
coordinates ¢! = x! + ix?, ¢> = x3 + ix* etc. If J is a positive integrable Her-
mitian structure defined on an open subset U C R*", then locally J is char-
acterised by m(m — 1)/2 functions pi,. .., tm(m-1)/2 holomorphic in m com-
plex parameters (z',...,z™) as follows:

Given p = (u1,- .., bmm-1)2), let M = (Mj’(u)) be the skew symmetric
matrix

0 M 2 ceo Mme

—H 0 Pm e Mom-3

(5) ( ;(u)) = —H2 —Hm 0 cee M3m-6
—Mm-1 —Hom-3 —HIm-6 --- 0

As in [4] this matrix determines a positive almost Hermitian structure at any
point of R?", namely that with (1,0)-cotangent space given by
span{ée’ = dq' — Mj’dq’ :i=1,...,m}.! Now suppose that the p; = y;(z) are
holomorphic functions on a domain ¥ of C” and let 4!(z),...,h"(z) be fur-

! We use the double summation convention throughout.
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ther holomorphic functions on V. Consider the following system of equa-
tions:

(6) Fi(q,z)=¢ - Mi(z)g —H(z) =0, (i=1,...,m).
where we write M (z) for M(u(z)). The system (6) has the form
(7) F(q,z) =0

where F : R? x ¥V — C™. Provided the determinant of the Jacobian matrix

K = (8;F') where §; = 9

07
is non-zero, we can locally solve (7) for z = z(g). Then, on suitable open sets,
z(q) = (z'(q), ..., 2™(q)) form complex coordinates for the complex manifold

(U,J) where J = J(M) is given at g € U by J, = J(M(z(g))). Note that all
complex coordinates with respect to any Hermitian structure are given lo-
cally this way. Indeed, if q#——»MJ-f(q) defines a Hermitian structure, then

(8) W=q-Mi@)d (i=1...,m)
give complex coordinates (see, for example [4]). Any other complex co-
ordinates z = (z!,...,z™) are related by equations w' = hi(z) for some holo-

morphic functions 4, whence, writing Mj‘(q) = Mj—f(z(q)), we see that z = z(q)
satisfies (6).

More precisely, only those Hermitian structures with values at each point
in a large cell of the space SO(2m)/U(m) of all positive almost Hermitian
structures are parametrized as above. However, by acting on R*" by an iso-
metry, we may always assume, at least locally, that J satisfies this condition.
In the general case, we must allow the y;’s to become infinite.

Let J be a Hermitian structure on U C R*" characterized by Equation (6)
above. Then any holomorphic map ¢ : (U,J) — C is a holomorphic function
of the complex coordinates (z,...,z™"). Now, in a neighbourhood of a reg-
ular point of ¢, it is no loss of generality to suppose that ¢ = z'. Then the
Laplacian of the function z! = z!(g) is calculated to be [4]:

BZMJ' BgMj-‘.' 6mMj€'
4 | BFR &FR . §,Fk
9 Ad= (G Vi I . . .
det K 15;19: : : . :
OyFkm2  GFkm2 ., Fhne
where (ki,...,km-2) = (1,...,7,...,7,...,m). Since z! is holomorphic it is

horizontally weakly conformal, and so, if Az' =0 then z! : U — C is a har-
monic morphism.
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A particular class of solutions is given by the case when each y;(z) de-
pends on z! only, for then all the partial derivatives 3, M-, ..., 8, M! vanish.
In this case the Hermitian structure J is constant along the fibres of z!,
equivalently the fibres of z! are superminimal. Conversely, by the above re-
marks, any (submersive complex-valued) harmonic morphism defined on an
open subset of R*", holomorphic with respect to a Hermitian structure and
with superminimal fibres, may be described this way locally.

Our method of reducing holomorphic harmonic morphisms defined on
domains in R*" to other manifolds follows from the fundamental property
that the composition of two harmonic morphisms is a harmonic morphism
[5] and a converse to this [6]. In particular, we shall be concerned with the
following projections which are all harmonic morphisms:

(i) Orthogonal projection 7 :R" — R"' given by the formula
(X)) = (62X,

(ii) Radial projection ' :R"\{0} — S"! given by the formula
ﬂ.n(xl, cHxT) = (x 1 x")/x].

(iii) Radial prOJectzon followed by the Hopf map w3 :R™\{0}=
C™\{0} — CP™"! given by the formula 72"(q',...,q™) = lq',...,q™).

So, for example, a harmonic morphism on a domain in S"‘l is equivalent
to a harmonic morphism on a domain in R"\{0} invariant under radial
projection. Precisely, if ¢ : W C $"~! — C is a harmonic morphism, then the
composition $ = ¢ o 7| ey () is a harmonic morphism on (7)™ (W) such
that &&/0r = 0, where r = |x| denotes the radial coordinate. Conversely, if
&: U C R" - C is a harmonic morphism on an open set U with U N S""!
non-empty and such that 86/8r = 0, then it follows that the restriction
¢ =®|yagr1 : UNS"! - C is a harmonic morphism on the domain
UNS"™ ! c §*1. We formulate the invariance in a more general setting:

Let J be a Hermitian structure defined on a domain U ¢ R*" with asso-
ciated complex coordinates (z,...,2z") given locally by Equation (6). Let
v = (x)(8/0x') be a vector field on U. If ¢ : (U,J) — C is a holomorphic
function, then ¢ is invariant under v if and only if the directional derivative
d¢(v) vanishes. As remarked above, in a neighbourhood of a regular point of
¢ we may assume without loss of generality that ¢ is the holomorphic func-

tion z!.

PROPOSITION 2.1. Let ¢ = z' : (U,J) — C be a holomorphic function, where
z=(z'(q),...,2"(q)) is a solution to (6). Then @ is invariant under v = @ (x) %
if and only if
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w'(a,z(q)) O F' ... OnF!
z 2 .. O,F?

(10) Wz(a,: (9)) 32:F . a:F o
Wh(a,2(g) OF™ ... OnF™

for all q € U, where o = o/ % is the complex vector field assoczated to v ob-
tained by setting o =a¥"' +ia¥ (j=1,...,m), and w(q,z) =q' — M‘(z)q’
(thus w'(q, z) is the part of F' which is homogeneous of degree 1 in q).

ProOOF. The function z! is invariant under v if and only if

oz!
ol
— =0
aq’
where we sum over I = 1,...,m,1,...,/m. But
0z! OF®? 1 .,0F
of - _ VDY | b
dq! o (K™)s aq! det K Ko aq’

where K? is the (b, a)-th entry in the matrix of cofactors of K. But since the

expression wi(a,z) = o/ — M-’f(z)o:7 is homogeneous of degree one in
b
SO _ owb — W (a,2)
o' " oq"

and the result follows.

Special cases of the above proposition are as follows:
(i) Orthogonal projection w%"' :R?™ — R¥! given by the formula
mm(xl, X2, ., x2m) = (x3,...,x*™). Putting a = (1,0,...,0), we see that z'

reduces to R?"~! if and only if
1 &HF' ... 9,F!
OF? ... OnF?
(1) Mo .
Hm—1 asz BmF’"

(ii) Radial projection " :R*\{0} — S?"~! given by the formula
o2 (xl LX) = (6 x) /x| Put a= (x,...,x*™) so that &/ =¢. In
partlcular af ZF wh(q,z) = hb(2), so that z' reduces to S¥"~! if and only if

W BF' ... 0,F!
(12) S

hm G F™ ... OnF™
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(iii) Projection 7' :R>\{0} — CP"! given by =2(¢',...,¢")—
[g",...,q"]. The fibres of this map are spanned by the vector fields oy = ¢ 2
and ap = iq"é% - iq7£f so that z' reduces to CP”! if and only if (12) above
holds and

ql BQFI 3,,,Fl
2 F* ... 9,F?

(13) G Y
q" OF" ... O,F™

Finally, we wish to know when examples are genuinely new examples and
not simply obtained by the composition with an orthogonal projection. We
therefore make the definition:

DEerFINITION 2.2. [4] Call a map ¢ : U — C from an open subset of R" full
if we cannot write it as ¢ = v o 74 for some orthogonal projection 74 onto a
subspace 4 of R" and map ¢ : m4(U) — C.

A test for fullness is given by Proposition 4.2 of [4].

3. Heierarchies of Weierstrass representations.

Let J be a Hermitian structure defined on a domain U of R*" and suppose
that ¢ : (U,J) — C is holomorphic. As in Section 2, in a neighbourhood of a
regular point we may assume that ¢ = z! where z = (z',...,z™) is a solution
z(q) to Equation (6):

F(q,2)=q—M(z)§—h(z) =0

for some holomorphic functions p;(z),(i=1,...m(m—1)/2), Hk(z),
(i=1,...,m). Throughout this section we assume that z! has superminimal
fibres (and so, in particular, is harmonic). Then M(z) depends on z! only and
the Jacobian matrix takes the form

OF' k' ... Onh! ‘
OF* Ok ... 0O,k
OF™ W ... Oph™
By assumption, the determinant of XK is non-zero on U, so that, at least
one of the cofactors K}, K?,...,K}" is non-zero, say the cofactor K{ obtained
by omitting row a and column 1 from K. Then, by the Implicit Function
Theorem, we can locally solve the equations F!=0,...,F* ! =0,

Fetl =0,...,F" =0 for z2,...,2™ as holomorphic functions of z', on sub-
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stituting these functions into the remaining equation F = 0, this takes the
form (14) in the following proposition (cf. [4, Proposition 3.12]):

PROPOSITION 3.1. Let pi(z'),. .., tm(m-1)/2(z") be given holomorphic func-

tions of one variable and U, (W', ..., w™t1) a given holomorphic function of
m + 1 variables. Consider the equation:
(14) Uom(g,2(q" — M} (2)g, ¢ - ME(2')g, ...

- MPE) ) =0
Suppose that, at a point (q,z") satisfying Wam(g,2') =0,
O
B 70

Then the local solution z' = z'(q) to Equation (14) through that point is a ho-
lomorphic harmonic morphism with superminimal fibres. All submersive holo-
morphic harmonic morphisms with superminimal fibres are given this way lo-
cally.

We refer to Equation (14) as the Weierstrass representation for holo-
morphic harmonic morphisms with superminimal fibres on R™™.

ExampLE 3.2. If m = 2, then Equation (14) has the form
Ta(q' — m (g, ¢ + m(z)g',2") =0,

which is precisely the equation obtained in [11] describing all (submersive
complex-valued) harmonic morphisms z' = z!(g) on domains of R*.

ExaMPLE 3.3. Let oy,as,...,a, be m holomorphic functions of z' and
consider the particular form of ¥,,, given by

oW, ..., w2 = aw! +ow? + - o™ — 1.
Then Equation (14) can be written
(a1 — MEag)x! +i(ay + MEay)® + -+ + (am — Mgou) '+
i(am + M,';,ak)xz'” =1.

Note that the sum of the squares of the coefficients of x!,...,x*" equals
-4% 1\1}-’.‘(1,-01;c , which vanishes since M¥ is antisymmetric in k and j. We thus
obtain the local characterization (3) of those (submersive complex-valued)
harmonic morphisms with totally geodesic fibres, on even-dimensional Eu-
clidean spaces.
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ExamMpPLE 3.4. (see also [4], Example 4.9) Let m=3 and set

Te(w', w2 w3, z!) = w'w? —w, uy = pp = z', 43 = 0. Then (14) becomes the
quadratic equation

s 15 - -
@ 4 @+ )+ @) + @+ ) - 1a' 1+ (& —q'd) =0.
Any local solution is a full harmonic morphisms with superminimal fibres. It
is easy to see that z! is not holomorphic with respect to any Ki#hler structure.
More generally, for arbitrary m, we can set Wy,(w',...,w" z!) =
wlw? ... .w"=1 — w" to obtain generalizations to arbitrary even dimensions.

Now suppose that z' factors through the projection 73" : R?m — R2m-1,
That is, from Equation (11),

1 &H ... Ok
PR Y R W
) . . |=0.
ot OHT .. Ok

After elementary row operations this becomes the (m —1) x (m —1) de-
terminant:

(W —mh') ... Om(K — h")
(1) B(n - pizh') O (K ._Mh‘) _
B~ i H) . O~ pm1B)
We consider the special solution of (15) given by
(16) Om(h* — k') = Bp(h® — pah") = ... = Op(h™ — pm1h') =0,
that is
P —mh = o,z

an n —.uzh‘ = e CAN L)

W= bl = am(E,.. .2
are all holomorphic functions independent of z™. Consider the matrix

A= @Y

j=2,...,d,...,m

Then amongst the minors 4% = det(0;c/ ), 2 'm_1 atleast one is not identi-
cally zero otherwise det K would vanish. So amongst the m — 1 equations
(17), there are m — 2 for which we can eliminate 22,..., 2"\, Substituting
h=qg — Mj—%z')q7 into the remaining equation gives the functional relation:
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Oan-1 (7 - IMAE) - () (@' - M) (), ..

o €= M) = () (¢ - M (), 2') =0,

where ®y,_1 = Pyp_1(u1,...,un) is a holomorphic function of m complex
variables.

If now this equation is satisfied, the restriction of z' to any level hy-
persurface x! = constant is a harmonic morphism by Section 2. For con-
venience we take x! = 0, and then, setting ¢' = ix?, we obtain the following
characterization:

1

PROPOSITION 3.5. Let pi(z'),... ,um(m_l)/z(z‘) be given holomorphic func-
tions of one variable and ®yy,_1 = ®ym_1(u', ..., u™) a holomorphic function of
m variables. Consider the equation

j>2

Bom-1(4,2") = Py (q2 ~2im ()2 - (M) - (M) ),

j>2

ey @ = i (21X — Z(}Wj—’”(zl) - pm_l(zl)l\ll—.l(zl))qi,z'> =0.

_ Suppose  that, at a point (q,2') = (x*¢*...q",2") satisfying
Pom-1(g,2") =0,

652m— 1
oz!

Then the local solution z' = z'(q) to Equation (18) through that point is a
harmonic morphism ¢ : U C R¥! — C whose lift & = $om™ to R is a
holomorphic harmonic morphism which has superminimal fibres and satisfies
the simplifying assumption (16). All such submersive harmonic morphisms on
domains of R*™ ! are given this way locally.

£0

ExaMpPLE 3.6. If m =2, then the assumption (16) is automatic and (18)
takes the form:

By(* — 2 (') — (i (2)) ¢, 2") = 0

which is the local representation of all (submersive complex-valued) har-
monic morphisms z! = z!(x2, ¢%) on domains of R® [2].

REMARK. By [2, Lemma 4.3] and [3, Theorem 2.19], any harmonic
morphism from a domain of R? is locally a submersive complex-valued har-
monic morphism followed by a weakly conformal map. In higher dimen-
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sions, little is known about the behaviour of a harmonic morphism near a
critical point: for some partial results in 4 dimensions, see [11].

ExAMPLE 3.7. Let oy, s,...,0m_1 be m — 1 holomorphic functions of z!
and consider the particular form of &,,,_; given by
452m_1(w1,...,w/"_‘,z') =aw + w4+ ap W = 1.
Then Equation (18) becomes

m—1
<— ZZiajuj) X+ (al - Zak (M% - ukM%))XB
= 3

Jj=2

+i(a1 +Zak(M§ — ukM%)>x4 +...
k
o+ (am_l - Zak(M,'; - pkM,'ﬁ)>x2’"“l
k

+ i(a; +Zak(M,’§, - pkM,l;,)>x2"’ =1.
k

As in Example 14, the sum of the squares of the coefficients vanishes and we
retrieve the local characterization (3) of those (submersive complex-valued)
harmonic morphisms with totally geodesic fibres, now defined on odd-di-
mensional Euclidean spaces.

ExaMPLE 3.8. Let m=3 and set &s(w!,w?z!)=wlw? — 1, =y =
z!, u3 = 0. Then (18) becomes the quartic equation:

NP+ ) - 4GP+ )
+ (@@ + ) (@ + ) -2 (@ + ) + (¢ - 1) =0.

U= z1(x?,4% ¢°) is a full harmonic morphism defined on

Any local solution z
a domain of R’.
Suppose that we now reduce once more by the vector field 9/0x*. Then

Condition (10) becomes:

-1 &h ... Ouh!
(19) iR Ol
Y I W
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and (11) and (19) are satisfied if and only if (11) holds and

LY R W,
B o

(20) 82. ) Tl =0.
S ... Oh

We consider the special case of (20) given by
(21) Onh* = Ouh® = ... 0ph" =0.

Note, in particular, that (21) implies (16) and so such maps are a subset of
those satisfying (18). Then

o= p,..., 2"
h3 = 183(217 "’Zm_l)
T R

are all independent of z”. By eliminating z2,...,z""! we now obtain a re-

presentation of z! in the form

Uan-2(* = MA)E, 4 = M3, q" = MP()g ') = 0

where Wy, _2(w?,...,w"*?) is a holomorphic function of m complex vari-
ables. But this is precisely (14) with m replaced by m — 1.

To sum up, we define data for the Weierstrass representation:

Data For each m=2,3,..., let p(z"),..., ttmm-1)2(z") be given holo-
morphic functions of one variable and let M = M(z!) be the matrix given by
(5). Suppose that either:

(i) ¥, is a holomorphic function of m + 1 complex variables, or

(ii) @ym_; is a holomorphic function of m complex variables.

THEOREM 3.9. Suppose that we are given the data above.
(a) The equation

Un(q' = M} (g, ¢~ M})g, ..., q" — MP'(2)d,2') =0

locally determines all submersive holomorphic harmonic morphisms with su-
perminimal fibres defined on domains of R*" .
(b) The equation
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- (q2 ~2ip ()2 = 3 (M) - M) )

j>2

oy @ = i1 (2% — Z(MJ—’”(Z') - um_l(zl)Mj—,l(z‘))qi,zl) =0

j>2

locally determines all submersive harmonic morphisms on domains of R¥"!
which are the reduction of holomorphic harmonic morphisms on domains of
R2™ with superminimal fibres satisfying the simplifying assumption (16).
Amongst the solutions are the lifts of all submersive holomorphic harmonic
morphisms with superminimal fibres defined on domains of R*"~2.

(c) The equations &3 =0 and W4 = 0 locally describe all submersive har-
monic morphisms on domains of R® and R*, respectively.

Schematically we represent the above heierarchy of representations by the
inclusions:

"'D{!p2m=0}3{¢2m_]=0}D{Wzm_2=0}D'-'D{g’4=0}3{¢3=0}.

4, Reduction to Euclidean spheres.

Let U be an open subset of R?™ on which is defined a Hermitian structure J
and let ¢ = z! : U — C be a harmonic morphism holomorphic with respect
to J and with superminimal fibres. In particular by Proposition 3.1 we can
suppose that z! is determined by (14):

w(w,w ... w2 =0

where w' = ¢' — Milq] and M; = Mj-f(z'). Then z! is invariant under radial
projection if and only if

1
q16i=0

o
where, as usual, we sumover I =1,...,m,1,...,m.

LEMMA 4.1. With the data above, the equation

10z _
q 6q1 -
is satisfied if and only if the condition

0,
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(22) W = 0 whenever ¥ =0

is satisfied.
Proor. Differentiating (14) with respect to ¢© yields
ow ow' oW 07!

owiogk T o ag =

and, differentiating w',

1

ok~ Tk 0:T ogF
Also differentiating (14) and w' with respect to q" yields

ow' p OM; p;!

owow ovos _
i aqk 7! 6ql_c -

and

o'

61‘4} oz!
of = M atag
Combining the first and third equations gives

i

W xOW O g0z
owi? agk To1Y Gk T

x Ow' oW

1
so that qk% =0 if and only if ¢ 9q% owi

= 0. But substituting the ex-
Wi

61(

ow' v 6M ! 7!
K=" 77 _ i K
T 54K owi ( - My k"k) owi ( x4 Bw‘) agk >

and the result follows.

pressions for — above gives

We therefore have

THEOREM 4.3. Let ¢ = z' : U — C be a harmonic morphism from a domain
of R¥™ determined by (14). Then ¢ reduces to S*~ if and only if the condition
(22):
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= 0 whenever ¥ =0

oo
ow'!

is satisfied.

Clearly Condition (22) is satisfied if ¥ is homogeneous in (w',...,w"). In
fact a partial converse holds:

PROPOSITION 4.3. Let ¥ be an irreducible polynomial in m complex vari-
ables w',...,w". Then Condition (22) implies that W is homogeneous in
wh .o W,

The proof follows by combining the following two lemmas:

LEMMA 4.4 Let ¥ be an irreducible polynomial in m complex variables
wl ..., w". Then Condition (22) implies that
S
ow

(23) kw

for some k € C.

ProOF. Since ¥ is irreducible, by the Nullstellensatz (see, e.g. [10]), Con-
dition (22) implies that

ia!p_

Y owi

for some polynomial a. But if ¥ has degree k; in w/, (j = 1,...,m), then so

a¥

. oW .
does w' Ew and therefore « is constant.

LEMMA 4.5. Let V¥ be an irreducible analytic function in m complex variables
wl, ..., w". Then

w"—(?—ql—.zklp for some k € C

ow'

if and only if ¥ is homogeneous.
Proor. For fixed (w),...,w]), set ¥, = W(twy,..., (") =¥(w',...,w")

where w = tw{). Then by the chain rule,

av,_oviv _, o

dt  ow di V0w
so that

av, 00
t-zt__waw"“k!p"
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Hence

av, _ ks

v, t
Integrating from t = 1 to ¢t = T gives:

In¥,—In¥;, =klnT
so that ¥, = ¥, T i.e.
T(twh, ..., W) = o (ew!, .. W™,

showing that ¥ is homogeneous of degree k.

REMARK. Lemma 4.4 and the Proposition are false for ¥ an irreducible
analytic function. For example ¥ = "' w! is irreducible (since e isa unit)
and

ov
WIW: (l +wl)LT/,

so that Condition (22) is satisfied but not (23), and ¥ is not homogeneous.

The above results give a method for constructing examples on odd-di-
mensional spheres:

ExaMPLE 4.6. Consider the homogeneous analogue of Example 3.3, thus,
as in that example, choose m holomorphic functions «i,...,a, and set
Tw', ..., w2y =aw!' +--- +a,w". Then ¥ =0 determines locally all
(submersive complex-valued) harmonic morphisms on $?"~! with totally
geodesic fibres.

If we now choose ¥ to be an irreducible polynomial of degree > 2, we
obtain new examples of harmonic morphisms on odd-dimensional spheres:

ExaMPLE 4.7. Let @(w! w? w3 z!) = (w')? — (2")2(w?)* + (w*)?). Then
the corresponding harmonic morphism z!' = z!(g) defined on a suitable do-
main of $° is given implicitly by the equation

(¢ — mg® — mg’)* = (Zl)?'((q2 + g - m@®) + (@ + g + usqz)z)

where p1, u2, 3 are arbitrary holomorphic functions of z!. The generic reg-
ular fibre of z! extends to a compact minimal submanifold of S°, which, after
the change of coordinates X = ¢' — u1q” — 12q®, Y =z'(¢* + q' — pu3¢®),
Z =z'(¢* + paq' + p3q?) , is the level set F =0 of the polynomial function
F:C*—C, F(X,Y,Z) = X* - Y? - Z2, holomorphic with respect to a
Kihler structure on R®. However, this K#hler structure varies from fibre to
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fibre and the minimal submanifolds are not the level sets of a function ho-
lomorphic with respect to a fixed Kahler structure. In particular we obtain
a foliation of an open set of S$° by minimal codimension 2 submanifolds.

In a similar vein, we can construct examples on even-dimensional spheres
by choosing the function ¢ in the Weierstrass representation (18) to be
homogeneous in the first m — 1 variables. Firstly, choosing & to be linear we
have

EXAMPLE 4.8. Let o,..., a1 be m — 1 holomorphic functions of z! and
let @ be given by &(w',... . w" ! z1) = ayw! + - + @p_w""'. Then & =0
determines locally all (submersive complex-valued) harmonic morphisms on
S2m=2 with totally geodesic fibres.

Secondly, if we choose @ to be an irreducible polynomial of degree > 2,
we obtain new examples of harmonic morphisms on even-dimensional
spheres, for example:

EXAMPLE 4.9. Let m =4 and set pu; = pp = p3 = z', g = ps = pe = (z')%.
Let & be given by

d(w', w2 w2 = (W) + whn?.
Then the corresponding harmonic morphism z! = z!(g) defined on a suitable
domain of S° is given implicitly by the quartic equation
(@) + 24 + )24 +24° +4%) + (')} (~4ix’q” - 6ix’® - 2ix’q")
+(@)(-8() + 28 + 24  + ¢ 4 + ¢) + °(24° + ¢))
+2i2' P24 - ¢ — ") + (@) + £°¢* = 0.
Finally, to find examples with non-superminimal fibres which reduce to

S$?m-1 seems much harder; we have no general theory but give one family of
examples:

EXAMPLE 4.10. Let m = 4 and let u; = pu1(z',z%) be an arbitrary holo-
morphic function of two variables. Set u; =z',u3 = pg =0, us = ('),
pe = (214,13 = (2!) 2%, h* = z? with 0,4h* = 0 and 94h' # 0, for integers p,q,r
not yet specified. Then Az! = 0, det K is not identically zero and Condition
(12) for reduction to §7 is satisfied. Note that the fibres of z' are super-
minimal if and only if du; = 0.

The map z! is defined by the 3rd and 4th equations of the system (6):

{c13+uzqT — taq® — peqg* =B =0
q* + paq' + psq + peg® —h* =0
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that is,
(24) (@)1 + @Y+ () g+ (@) -2 = 0.

The test for fullness (that z! does not factor through any orthogonal projec-
tion -- cf. [4, Proposition 4.2]) requires that the equation in the complex
vector o € C*:

(zl)'+"043 + (2)*Pa? + (MY a* + (")t - 2'a® =0

has only the trivial solution a = (a!,a?,a3,a*) = 0. In general p,q,r can be

chosen so that this is the case, e.g. r = 1,p > 1,q > p + 2 will suffice, giving a
family of full harmonic morphisms on domains of the sphere S7. The fibres
are totally geodesic and (29) is of the form (4) of the Introduction. Similar
constructions are possible for m = 5,6, ... .
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