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KOROVKIN THEORY IN LIMINAL JB-ALGEBRAS

GREGOR DIECKMANN

Abstract.

In this paper the author studies the Korovkin closures in liminal JB-algebras. The construction
of a net (P;),.; of positive linear contractions for a subalgebra B of a dual JB-algebra A such
that P, maps A4 into B and converges strongly on B to the identity on B makes it possible to
compute the universal Korovkin closures in dual JB-algebras. As a consequence we obtain an
equivalent condition for a dual JB-algebra to contain a finite universal Korovkin system.

1. Introduction.

A JB-algebra is a real Jordan Banach algebra for which the norm satisfies
l@® — B?|| < max(||a?||, ||6*|), ||la®|| = ||a||*. Let A be a JB-algebra and T C 4
be a non-empty test set. The Korovkin closure Kor4(7) of the test set T with
respect to A is by definition the set of all x € 4 that satisfy the following
condition:

If (P;),c; is a net of positive linear contractions P; : 4 — A4 such that

im||Pi(y) =yl =0 VyeT,
then also
lim |[Pi(x) — x| = 0.

One of the main problems in Korovkin theory is to characterize various
kinds of Korovkin closures and with the aid of such characterizations to give
necessary and sufficient conditions such that a space has a finite Korovkin
system, i.e. there is a finite test set T with Kor4(7T) = A. This has success-
fully been done for spaces of continuous functions using the so called un-
iqueness closures of a test set, cf. the recent monograph by F. Altomare and
M. Campiti: [1].

The Korovkin theory of C*—algebras has been studied for example in the
papers [3,4,5], [11],[13], [15]. To compute the Korovkin closure Kor4(T') for
non-commutative C*—algebras one needs new methods, [3,4,5]. The motiva-
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tion to study Korovkin theory for JB-algebras was the following result: Let
A be a C*—algebra and T C A be a test set, then

J(T) CKory(TU{r*ot:teT}).

Here J*(T) denotes the J*-subalgebra of 4 generated by 7. A J*-subalgebra
of A is a *-closed and norm-closed subspace of 4 which is also closed with
respect to the special Jordan product ao b :=1(ab + ba). See [4, Theorem
1.2] for a more general result. The main tool to prove the above result is the
Kadison-Schwarz inequality for positive linear contractions on C*-algebras;
this inequality is also true for JB-algebras, cf. section 2.

The main results of this paper are as follows: Let 4 be a dual JB-algebra
and B be a JB-subalgebra. Then there exists a net of positive linear contrac-
tions P; : A — B, such that lim;e; || P;(x) — x|| = 0 holds for every x € B, in
particular we have Kor4(B) = B.

For a general JB-algebra A4 let & be the system of finite intersections of
the primitive ideals of 4 and define for a subset B of 4

F(B):= ((B+]1).
IeF

Then for a liminal JB-algebra we prove:
J(T) CKor%(TU{f:teT}) C FJ(T))

where T is a test set and Kor%(T U {2 :¢€ T}) is the so called universal
Korovkin closure (to be defined below). For C*-algebras the above men-
tioned results have been proved by F. Beckhoff in [3].

2. Existence of positive projections.

In this paragraph we fix notation and recall some folk theorems about the
existence of positive projections on JBW-algebras.

For the general theory of JB and JBW-algebras the reader is referred to
the book [9] by Hanche-Olsen and Stgrmer. We use the same notation as
there.

Let 4 be a JB-algebra and T C A a test set. The universal Korovkin clo-
sure Kor%y(T') of T in A is the set of all x € A that satisfy the following con-
dition:

If Bis a JB-algebra, S : 4 — B is a Jordan homomorphism and (P;);; is
a net of positive linear contractions P; : A — B such that

lim|P.(y) - SO)| =0 VyeT,
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then also
lim [1P1(x) — S(x)]| =0.
Obviously one has the inclusions:
T C Kor%(T) C Kory(T).

If A is a non-unital JB-algebra then let A be the JB-algebra with the ad-
joint unit. Recall that a positive linear map P : 4 — B between JB-algebras
A,B is automatically continuous (with the same proof as in C*-algebras) and
that in the unital case ||P|| = ||P1|| holds. Further, the extension P:4- B,

P(x+ Al) := P(x) + Aul for a fixed p > ||P||, x € 4, X € R is a positive lin-
ear extension of P with ||P|| = u > ||P||. A.G. Robertson and M.G. Young-
son proved that the Kadison-Schwarz inequality is still valid in unital JB-
algebras.

2.1. THEOREM. Let A, B be JB-algebras and P : A — B a positive linear
map such that ||P|| < 1. Then for every a € A: P(a®) > (P(a))*.

Proor. Adjoin identities to 4 and B and extend P to a unital map
P : A4 — B as above. Then apply [14], Theorem 1.2.

Now an application of Lemma 1, Satz 1 and Bemerkung 3 in Kap. 3 of [3]
yields the following

2.2. PROPOSITION. Let T be a test set in a JB-algebra A. Then
J(T) CKort%(TU{f:teT}) CKorg(TU{:t€T})
where J(T) denotes the JB-algebra generated by T.

Now let 4 be a unital JB-algebra and ¢ a state, i.e. a positive linear func-
tional on A4 such that ||¢|| = 1. If in addition for every symmetry s € 4 (i.e.
s£=1)

¢(Us(a)) = p(a) Vae A
holds, then ¢ is called a tracial state, cf [12] for a number of equivalent
conditions. Here U,(y) = {xyx} = 2x0(xoy) — x*oy for x,y € 4.

2.3. PROPOSITION. Let M be a JBW-algebra with a faithful normal tracial
state T. Let N be a JBW-subalgebra of M containing the identity of M. Then
there exists a normal positive linear projection Q : M — N with the following
properties:

(1) For x > 0 we have: Q(x) =0 x=0.

@) e < lixll (x € M).
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(ili) Q(x)oa=Q(xoa)forxe M,acN.
(i) Q(x)* < Q(?) (xe M).

In von Neumann algebras this result was proved by H. Umegaki, [18],
compare [16], Proposition 4.4.12, too. The proof in Sakai’s book even works
in JBW-algebras. The main tool is Sakai’s linear Radon-Nikodym theorem
for normal positive linear functionals on von Neumann algebras. But also
the latter result holds true in JBW-algebras with the same proof, cf. [16],
Prop. 1.24.4.

We need a sufficient condition for the existence of a faithful normal tracial
state 7 on a JBW-algebra. In finite von Neumann algebras there always ex-
ists a faithful family of normal tracial states, compare [19] for a beautiful
proof. In modular JBW-algebras, [9, 5.1.2], we have the

2.4. THEOREM. Let M be a modular JBW-algebra and ¢ € M}, the positive
part of the pre-dual of M, a linear positive normal functional on M. Then there
exists a positive normal linear tracial state 7, on M such that 7,7 = @ where Z
denotes the center of M.

Again, Yeadon’s proof works in the case of modular JBW-algebras be-
cause modular JBW-algebras behave in the same way as finite von Neumann
algebras. Recall that by definition two projections p,q in M are equivalent,
p ~ q, if there exists a finite family of symmetries sy,...,s, € M such that
Ui, ... Us,p = q. Therefore the general dimension theory in JBW-algebras is
different from the dimension theory in von Neumann algebras. For example,
in general JBW-algebras the following property does not hold:

(*) If (pi);; and (g;);c; are families of projections in M with p; L p;, g; L g;
for i # j and p; ~ g, for i € I then p := sup;; p; ~ sup;e; ¢i =: q.

i.e. equivalence is in general not completely additive. One needs the addi-
tional assumption p L ¢, cf. [9], Lemma 5.2.9 and [17], Theorem 9, p. 19. But
in von Neumann algebras equivalence is completely additive, and this is used
in the proof of Lemma 1 in [19]. That (*) is true in modular JBW-algebras
seems to be a folk theorem, for I could not find a reference. In the special
case of JW-algebras it can be deduced from results of Topping’s memoir
[17].

The proof of (*) in modular JBW-algebras depends heavily on lattice the-
ory. Let L be the projection lattice of M. Recall that two projections
D,q € M are perspective iff there exists a common complement e € M, i.e. e
is a projection in L such that

phe=0=gNhe and pVe=1=gqgVe.

In [20] it is shown that in general JBW-algebras equivalence and perspectiv-
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ity coincide. But by [10], §13 Theorem 14, perspectivity is completely ad-
ditive in a complete orthocomplemented modular lattice. This shows that (*)
holds in modular JBW-algebras.

Finally notice that Akemann’s criterion for relatively weak compactness
of a set K in the pre-dual of a von Neumann algebra that is needed in the
proof of Lemma 2 in [19] is also true in the pre-dual of a JBW-algebra. This
completes the proof of Theorem 2.4

Summing up, we have the following result: In a modular countably de-
composable JBW-algebra there always exists a faithful normal tracial state.
This is (as usual) easily seen by considering a maximal family (7)., of tra-
cial states with pairwise orthogonal (central) support projections e;. Such a
family has by the countable decomposability at most countable non-zero
elements. Then build a suitable weighted sum.

3. Dual JB-algebras.

3.1. For the theory of dual JB-algebras the reader is referred to the article
[6]. Let us recall some facts about dual JB-algebras.
Let S be a subset of a JB-algebra A4; then define

S°:={a€Ad:aoS={0}}.

A JB-algebra is called dual, if for every norm-closed quadratic ideal I in 4
we have (I°)° = I. A subspace I of A is called a quadratic ideal in 4 if, for
each element a € I and b € A4, the element U,(b) lies in I.

Now let (4,) be a family of JB-algebras. By (3 4,), we denote the JB-
algebra of all functions /' : A — |J, 4, such that f(\) € 4, and f vanishes at
infinity, i.e. for every € > 0 there is a finite index set A C A such that
(M) < € for all X € A\ A.. With the norm ||f|| := sup, ||f(A)|| the algebra
(32, 4)) is a JB-algebra. If the algebras A, are dual for every A € A, then
(3°A4,), is dual by [6, Lemma 1.5]. Any JB-subalgebra B of a dual JB-alge-
bra A4 is dual, [6, Cor.2.6].

Every dual JB-algebra 4 is Jordan isomorphic to a dual JB-algebra of the
form (3} A4,), where the algebras A, are simple dual JB-algebras in A.
Therefore Ay is (isomorphic to) H3(0), the Hermitean 3 x 3 matrices over
the Cayley numbers O, A4 is a spin factor or A4, is a (reversible) JC-algebra
contained in C(H,),,, the self-adjoint part of the compact operators on
some complex Hilbert space H), cf. [6, Theorem 3.3] and the proof of [6,
Corollary 1.4].

Now we come to the main result of the paper.

3.2. THEOREM. Let A be a dual JB-algebra and B be a JB-subalgebra of A.
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Then there exists a net (P;),; of positive linear contractions P; : A — B such
that

lim || P;(b) - b]| = 0
for every b € B.

PrOOF. By 3.1 we can assume that 4 = (3 4,),, where the A, are simple
Jordan ideals in 4. A, is exactly one of the following types:

(i) A4, is a (reversible) JC-algebra of compact self-adjoint operators.

(ii) A, is a spin factor.

Consider B** as a subalgebra of 4** and define 2 to be exactly the set of
projections p € B** such that p is a finite supremum of minimal projections
in B**. As a subalgebra of a dual algebra B is dual, therefore the minimal
projections of B** are contained in B, [6, Prop. 2.1,Th. 3.3]. The idea for the
proof is to apply the results of §2 to the reduced algebras U,(4) 2 U,(B) for
p € 2. We divide the proof into several steps.

Step 1. Definitions.

Let p € 2 be a minimal projection, p = (p,). By definition of 4 = (3~ 4,),
for only finitely many X we have py # 0. For p € B** define

Ap={A€A:py#0} , p=(p\), pr€A}.
A, is called the support of p.

Claim: Let p € 2. Then 4, is a finite subset of A.

This is clear, since p = VI_,p; for minimal projections p; in B**, and 4, is
finite. By definition of p as the range projection of Y ., p; it is easy to see
that 4, = U7, 4.

Step 2. For p € # we prove that U,(4) and U,(B) are JBW-algebras.
Moreover p € B& p € A.

To see this, let p € 2 have the support A, = {A(,..., M}, p=(p»). The
projections py € A3' C A™,i=1,...,k are pairwise orthogonal and we have
p= Z;‘:] Dy, Therefore

k k
(1) Upld) = U () =3 _Up, (4) = 3_ Uy, (42)
=1 i=1 i=1
and this is a direct sum since {p)4py} = {0} for i #j (4} is an ideal in
A*). As p is a finite supremum of minimal projections of B, the A-compo-
nents of p are finite suprema of projections of 4. Now consider the three
cases mentioned above:
(i) A, is a JC-algebra of compact self-adjoint operators. p), is a finite su-
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premum of compact projections, i.e. it has a finite dimensional range in the
complex Hilbert space H), A4y C C(H)),,. We conclude that
Uy, (B) C Up, (A) are finite-dimensional JB-algebras, in fact they are JBW-
algebras.

(ii) A4, is a spin factor, whence 4, = A}". Any projection ¢ in a spin fac-
tor different from 0, 1 is minimal and maximal in 4. Summing up, we have

Up, (Ax) ={0} or 4, or Rp,,

in any case the JB-subalgebra U, (B) of Uy, (4) is strongly closed (in a spin
factor the norm-topology and the strong topology coincide, [9, Prop. 6.1.7]),
i.e. Up, (B) C Up, (A4) are JBW-algebras.

(i) A, = H3(0) is finite-dimensional. The proof is then completed as in
).

Further, U,(B) = @/, Uy, (B) so that Uy(4) and U,(B) are JBW-alge-
bras, since the direct summands are JBW-algebras.

Now let p be in B C A. Then U,(B) C U,(A4) and both U,(B) and U,(4)
are unital with unit p. If p¢ B, then by Hahn-Banach:

o(B**,B*)

ANB* =A4NB U _ A

=ANB B =B.

Since p is in B**, we have p¢A.

Step 3. For p € 2 the algebra U,(4) is modular and countably decom-
posable.

Since minimal projections are modular, p is modular as a finite supremum
of modular projections in B** C 4**, [9, Theorem 7.6.4]. Therefore the JBW-
algebra U,(A4) C U,(A4**) is modular. Now choose a family (g,) of pairwise
orthogonal projections g, # 0 in U,(4). For (ga) = ( f\a)) , we have:

Ga<p and ¢ =0 for M4,

Let p), be a compact projection in a JC-algebra of compact operators (case
(i)), then p), > q&"’) is true only for finitely many projections q(;f). This is also
true in case (iii) where p), is in H3(0). Finally, let p), be a projection in a
spin factor (case(ii)), then p), = 0,1 or p,, is minimal. In this case p) can
dominate only two orthogonal projections. Summing up, (g,) is a finite fa-
mily of orthogonal projections, in particular U,(4) is countably decom-
posable.

Step 4. Let p be in 2 but p¢B (therefore p¢A). Then consider the JBW-
algebras U,(B) ® p C U,(4) @ p with the unit p adjoined. U,(4) ® p is mod-
ular and countably decomposable.

The JB-algebras U,(B) ®p C U,(4) ®p are as subalgebras of 4™ ob-
viously o(A4**, A*)-closed, i.e. they are JBW-algebras by step 3. Further,
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Upy(A) ® p C Up(A**), therefore U,(A) @ p is modular as a JBW-subalgebra
of a modular JBW-algebra. Finally, let x + Ap, x € U,(4), X € R be a pro-
jection in U,(4) @ p, then A = 0 and x is a projection in U,(4) or A =1 and
x* = —x. Since two projections of the second kind can not be orthogonal,
U,(A) @ p is countably decomposable by 3.

Step 5. Now we construct positive linear maps P, : 4 — B such that
1P, < 1 for p € 2.

For p € 2 define:

Uy(A) for peB, U,(B) for peB,
M, = N, = .
Uy,(A)®p for p¢ B, Uy(B)@p for p¢B.

Then M, is a modular countably decomposable JBW-algebra and N, is a
JBW-subalgebra on M, with the unit element of M,. By the results of §2
there exists a positive projection 0, : M, — N, such that ||Q,|| < 1. Define
0, := Q, if p € B. Now let p¢B; denote by g the unit element of the JBW-
algebra U,(B). Then define Q,:= U0 Q, : U,(4) — U,(B) (U,(B) is an
ideal in U,(B) @ p). Recall that B as a dual JB-algebra is an ideal in B**, i.e.
the multiplier algebra M(B) of B is equal to B**, [6, Th. 3.3]. Since
p € B = M(B) it follows U,(B) C B, [8]. Finally define

P,: 4— B, P,:=0Q,0U,.

U, and U, are positive contractions, therefore P, is a positive contraction.
Since 2 is a directed set (Pp),c, is a net of positive linear contractions.
Step 6. To complete the proof we show:

lim [P, (5) = b =0 Vb€ B.

Let p € 2 and b € B. Then
Py(b) = @p(Up(b)) = Up(b),

since Q, contains U,(B) in its range.

Since B is dual, we may assume B = (D _,; B;),. Here B; is a simple ideal in
B and as above we have the following three cases:

(i) B;is a JC-algebra, B; C C(H,),,.

(ii) B; is a spin factor.

(iii) B; = H3(0).

Now let € > 0 be given. Choose a finite index set Iy C I such that

€
(2) sup ||&i| < 3 where b = (bi);-
iel\l

Let i € Iy. In case (ii) define p; = 1; where 1; is the unit element of the spin
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factor B;. In case (iii) B; = H3(O) define p; = 1;. Then in both cases p; is a
finite supremum of minimal projections in B (recall that by [6, Cor. 2.2, Cor.
2.6] every projection g € B** is a supremum of orthogonal minimal projec-
tions, in the above case this supremum is finite). Finally assume
B; C C(H;),, . Then b; is a compact operator, in particular b; is of the fol-
lowing form (by spectral theory):

(3) b= Ml eden Nl =1,

n=1

where the series converges in the operator norm and e, are pairwise ortho-
gonal vectors in H;. (A\y),cy is a sequence converging to zero. Let er,...,en
span the range spaces of the compact spectral projections pgi), e, pf,') that
correspond to pairwise different eigenvalues # 0 of b;. We may assume

1
(4) sup || < -e
n>N+1 4

Now define p; = S8, p}(i).

Summing up, we defined for i € Iy projections p; € B}*, such that every p;
is a finite supremum of minimal projections of B. Put p := (pi),;» pi := 0 for
i eI\ I, thenp € 2.

Now let g € 2, g = (q:), p < q. It follows

(5) sup [[(b = Py(b)),l| = sup ll6i = Uy (Bi)1)

iel\Ip

)]
< sup 2||bi|| < e
iEl\Io

Let i € Iy; then in the cases (ii) and (iii) we have 1; > ¢; > p; > 1, 1.e. ¢; = 1;
and it follows

(6) l16i — Uy, (Bi) | = [Ibi — Un,(bi)[| = 0.

Finally assume i € Iy and B; C C(H;),, (i.e. case (i)). Then a computation in
C(H,),, yields:

() 16: — Uq, (bi)Il = 1Ib: — gibigi
< |lbi = bigill + 1bigi — qibigill
< |Ibi = bagil] + 116: — qibill llgill)
< 2||bi — bigil

since b;,q; are self-adjoint and [|b; — ¢;bi|| = ||(b: — q:b:)*||. For & € H; we
have:
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|1b:€ — bigi€||*

= Z)\n £ en)en An(gi€, en)en

=1 n=1

S

2
= Z )\n E q1£7 en n (since qi ZP:)
n>N+1
= |An(€ — qi€, en)|
n>N+1

2
< ( sup Al € - q,fn)
n>N+1

2
< ( sup w) 2 el
n>N+1

This inequality implies:

(8) 16: — bigill <2 sup |A.
n>N+1
so that
(7),(8) 4)
9) b = Ug (bi)ll < 4 sup |\ < e
n>N+1

The equations (5),(6) and (9) yield for every projection g € 2 such that ¢ > p
the inequality:

16— Py(b)|| = 16— Up(B)| = sup ll6: = Uy, (B)]| < e.

This completes the proof.

3.3. PROPOSITION. Let A be a dual IJB-algebra, B be a IJB-subalgebra of A
and T C A be a test set. Then

B = Kor!y(B) = Kor4(B)
and
J(T) =Koty (TU{f*:t€ T}) =Kory(TU{f :t € T}).

Proor. The inclusions B C Kor%(B) C Kor4(B) are always true. Assume
x € Kor,(B). With Theorem 3.2 choose a net (P;),.; of positive linear con-
tractions P; : A — B such that
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llié?llP,(b) —-b|=0 VbeB.
Since x € Kor,4(B) it follows
lim ||P;(x) — x|| = 0
and P;(x) € B implies x € B. This proves the first equality. Finally
Korg(TU{*: t € T}) C Kory(J(T)) = J(T)

by the first part of the proof. Since

J(T) CKory(TU{f:t€ T}) CKorg(TU{:teT})
the proof is complete.

The above proposition shows that a dual JB-algebra A4 has a finite uni-
versal Korovkin system 7T iff J(T) is equal to 4, i.e. T generates 4 as a JB-
algebra.

4. Korovkin closures in liminal JB-algebras.

In this paragraph we give an estimation of the universal Korovkin closure
from above for liminal JB-algebras. Here the development follows closely
that of [3] where the corresponding C*-algebra versions of the following re-
sults were established. In some cases the proofs in [3] have to be modified to
obtain the corresponding JB-versions. Only in these cases a proof will be gi-
ven.

4.1. Let 4 be a JB-algebra. Recall that a Type I factor representation of A4
is a Jordan homomorphism 7 : 4 — M such that M is a Type I JBW-factor
and w(A) is weak* dense in M. A primitive ideal I of A is by definition the
kernel of a Type I factor representation. A JB-algebra has a faithful family
of Type 1 factor representations: Let ¢ be a pure state of A, then
o+ A — c(p) o A™, m,(x) := ¢(p) o x where ¢(p) is the central support of
v, is a Type I factor representation, [2, Prop. 5.6, Prop. 8.7]. 4 liminal JB-
algebra is a JB-algebra such that all quotients A/I with respect to primitive
ideals I are dual JB-algebras.

Now denote by & the system of all finite intersections of primitive ideals;
for a subset B of A4 define

F(B):=((B+1I).
IeF

In [3, Kap. X, Satz 1] F. Beckhoff proved that % (-) is a closure operation,
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i.e. the map B — % (B) defines the closed sets of a topology on A. His proof
carries over to JB-algebras, but we will not use this fact.

4.2. LEMMA. Let I C A be a norm-closed Jordan ideal in the JB-algebra A.
Further, let T C A be a test set and w; : A — A/I be the canonical homo-
morphism. Then

(1) J(m(T)) = m(J(T)).
Moreover
2) 1 (Kory (T)) € Kory,(mi(T)).

The proof is easy: To prove (1) use the fact that the image of the JB-alge-
bra J(T) under a Jordan homomorphism is a JB-algebra (i.e. m;(J(T)) is
norm-closed). The inclusion in (2) can be checked by using only the defini-
tion of the respective Korovkin closures.

ProrosSITION. Let A be a liminal JB-algebra and T C A be a test set. Then
J(T) CKor¥(TU{f:teT}) C FJ(T)).

ProOOF. Because of Proposition 2.2 only the second inclusion has to be
proved. Let I =(Y_,I; be a finite intersection of primitive Jordan ideals
I := kerm; where 7; : A — ¢(p;j) o A** are Type I factor representations cor-
responding to pure states ;. Since A is liminal, the algebras A4/I; are dual.
Define

R éwj(A) , o x e (m(x),. .., ma(x)).
j=1

Then 7 is a Jordan homomorphism and obviously I = kerw. By [6, Lemma
1.5] the algebra @)]_, m;(4) ~ @)_, 4/; is dual as a finite direct sum of the
dual JB-algebras 4/I;. Moreover A/kerm ~ n(A4) is a JB-subalgebra of the
dual JB-algebra @;‘Zl mj(A), i.e. A/kerr is dual, [6, Cor. 2.6]. With Lemma
4.2 (2), Proposition 3.3 and Lemma 4.2 (1) we obtain the following chain of
inclusions:
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m(J(T)) € mr(Kory(T U {t2 1teTY))
4.2(2)
- Korz/,(‘rrI(TU{t2 :teT}))
= Kor,(n/(T) U {mi(t)* : te T})
2 J(my(T))
- W](J(T))

Since for a subset B in A we have

F(B) = () m7'ms(B),
JeF

it follows
Kor%(TU{ :t € T}) C ;' m(J(T)),
but I € & was arbitrary thus
Kor(TU{*:t€ T}) C F(J(T)).
This completes the proof.

4.4. REMARK. Consider the situation of Proposition 4.3; as a test set let
T := B be a JB-subalgebra of the liminal JB-algebra A. Since =;(B) for
I €  is a JB-algebra in A/I, n;'m;(B) = B+ 1 is a JB-algebra in 4. Thus
F(B) =()jes(B+1I) is a JB-algebra that contains B as a subalgebra:
B C #(B).

Claim: B separates P(Z (B)) U {0} where P(% (B)) is the set of pure states
of #(B).

To see this, consider pure states ¢, of #(B) and choose pure state ex-
tensions @, of ©,9 to A respectively. Define I := ker m; Nker m; where
7,7, are the corresponding Type I factor representations. Using the defini-
tion of the central supports of ¢, respectively, it is easy to see that
ker m, C ker ¢ and  ker m; C ker ¢. Assume v =1 Then for
x€F(B)CB+Iwehavex=y+i,ye B, iecland

p(x) = @) + @(i) = Y(») = D) + P(i) = Y(x).

Thus ¢ = 9. Similarly, B separates a pure state ¢ on & (B) and the zero lin-
ear functional. This completes the proof of the claim.

In the C*-algebra case for a liminal C*-algebra 4 one could now apply the
Stone-Weierstrass theorem for Type I C*-algebras to obtain the equality
B = #(B) since then & (B) would be a liminal, hence Type I C*-algebra, cf.
[7, 11.1.8, 4.2.4].
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PrOBLEM. Are there versions of the Stone-Weierstrass theorem for liminal
(or more general, Type I) JB-algebras ?

If the answer is positive, then for liminal JB-algebras one would have
J(T) = #(J(T)) and therefore

Kor(TU{:te T}) = J(T).

In particular a liminal JB-algebra would have a finite universal Korovkin
system iff A4 is finitely generated as a JB-algebra.
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