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SEPARABLE MAXIMAL PLURISUBHARMONIC
FUNCTIONS IN TWO COMPLEX VARIABLES

ULF BACKLUND and LEIF PERSSON

Abstract.

We use separation of variables applied to the complex Monge-Ampére equation in C? to con-
struct explicit formulas for some maximal plurisubharmonic functions.

1. Introduction and results.

Plurisubharmonic functions play a role in pluripotential theory analogous to
that of subharmonic functions in classical potential theory. The pluri-
subharmonic functions are precisely those subharmonic functions which are
invariant under biholomorphic mappings and they are of importance in
multidimensional complex analysis.

A natural counterpart of the class of harmonic functions in classical po-
tential theory is the class of maximal plurisubharmonic functions in pluri-
potential theory. For instance, the real part of any holomorphic function is
pluriharmonic and hence a maximal plurisubharmonic function. We mention
that, for example, Lundin’s formula [7] and results of Siciak [9] for the re-
lative extremal function give further explicit examples but, despite the fact
that maximal plurisubharmonic functions have been studied for quite some
time, very few explicit formulas are known. In this paper we use separation
of variables to construct explicit formulas for some separable maximal
plurisubharmonic functions, i.e. functions of the form

u(z,w) = f(2)g(w)

In contrast to the classical case we do not assume any smoothness. We use
the characterization of maximal plurisubharmonic functions as generalized
solutions to the homogeneous complex Monge-Ampére equation.

In this section we state our results and in the next section we briefly state
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some general properties of maximal plurisubharmonic functions. The third
section contains the proofs of our theorems.
The first result is a system of equations for f and g.

THEOREM 1.1. Let 2 be a domain in C*. Assume that u(z,w) is a bounded
maximal plurisubharmonic function of the form

u(z,w) = f(z)g(w)
in 2. Then one of the following two cases holds:
(i) There is a real constant o # 0 such that
(1) df ANd°f =afddf, dgnd‘g=(1/a)gdd’g, and ofg <0 in 2

and each of the functions f,g are either sub- or superharmonic.
(i1) One of the functions is constant and the other one is a bounded sub- or
superharmonic function on 2.

Conversely, every pair of bounded sub- or superharmonic functions f,g sa-
tisfying equation (1) gives a maximal plurisubharmonic function

u(z,w) = f(2)g(w).

REMARK 1. Observe that if one of the functions f and g is harmonic, then
we have case (ii).

REMARK 2. Note that if f is smooth, then the equation for f can be writ-
ten
VfI* = of Af

In the next theorem we determine all separable solutions of the system (1),
i.e., solutions of the form f(x + iy) = p(x)q(y).

THEOREM 1.2. Assume that f is a bounded sub- or superharmonic function of
the form

f(x+iy) = p(x)q(»)

in a domain U in C such that

fdd*f = (1/x = 1)df Nd“f

where A # 0 is a real number.
Then there is a real constant v and a point z° = x° + iy° € C such that

() if \v >0, then U is contained in the strip {x +iy € C: |x — x| < %}
or
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(ii) if \v < 0, then U is contained in the strip {x + iy € C: [y —)°| < %}
and f can be extended to the strip where it is given by the formula
2

1(@) =12 (cos(VAw(x = x)/A) cos(v=Dw(y = 3)/))

COROLLARY 1.1. If u(z,w) is a bounded maximal plurisubharmonic function
of the form

u(x1 + iy1, x2 + iy2) = pi(x1)q1(11)p2(x2)g2(»2)
in a domain $2 in C?, then there are constants v\,v, and \¢{0,1} and a point
O + iy, x3 + iy9) € C? such that

u(xy + iy1, x3 + iy) =

= u(2%) (cos(\/)\wl (x1 = x3)/ A1) cos(v/ =M1 (y1 — y?)ﬁ\l)),\l
(cos(v/Raralra — x)/Xo) cos(y/“Raray 39/ 3)

where \; + X\ = 1.

REeEMARK 3. The functions are analogues of the maximal subharmonic (i.e.
harmonic) functions

u(z) = u(z°) cos(vVAv(x — x°)/A) cos(vV=Av(y — »°)/A) in C.

2. Maximal plurisubharmonic functions.

In this section we state some properties of maximal plurisubharmonic func-
tions. If {2 is an open subset of C", let PSH({2) denote the class of pluri-
subharmonic functions on {2 and let My x(2) denote the space of (k, k)-forms
on {2 with Borel measure coefficients. Furthermore let d =9+ 0 and
d° = i(0 — 9). Then dd® = 2i30 and the complex Monge-Ampére operator
(dd)" : PSH(2) N L§2.(2) — M, ,(£2) is defined as follows: dd“u is defined in
the sense of distributions and, for 2 < k < n, (ddu)* is inductively defined as

a positive (k, k)-current by an integration by parts formula

/ (dd°u)* A § = / u(ddu)*" A dd°6

7] 0

where 6 is an arbitrary (n — k,n — k)-form with compactly supported smooth
coefficients, see [2].

DEFINITION 2.1. A plurisubharmonic function u: {2 — R is said to be
maximal if for every relatively compact open subset G of 2, and for each
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upper semicontinuous function v on G such that v € PSH(G) and v < u on
0G, we have v < u in G.

By MPSH({2) we denote the class of maximal plurisubharmonic functions
on {2. In the complex plane, as a direct consequence of the definition, we
have that MPSH((2) is equal to the class of harmonic functions on 2. This is
no longer true in higher dimension. The class PSH({2) is then a proper sub-
class of the class of subharmonic functions on {2 and there is no inclusion
between MPSH(2) and the class of harmonic functions on 2. Notice that in
the one-dimensional case the maximal plurisubharmonic functions are C*
functions (even real analytic). This is in contrast to the case when n > 2 since
one can easily see that there exist discontinuous maximal plurisubharmonic
functions. For example, take any discontinuous subharmonic function
w: C — R and define the function u: C" — R by u(zy,...,z,) = w(z,). The
function u is clearly plurisubharmonic and, for each a € C, the function
(z1, .y Zn—1) — u(z1, ..., Zn—1,a) is constant and hence harmonic. This implies
that u is a maximal plurisubharmonic function on C".

We mention two approximation theorems.

THEOREM 2.1. (Lelong [6]). Let 2 be a pseudoconvex domain in C", n > 2.
Then every locally bounded plurisubharmonic function on {2 can be approxi-
mated by continuous maximal plurisubharmonic functions in the L} -topology.

THEOREM 2.2. (Sadullaev [8]). Let {2 be an open set in C" and let u be a
maximal plurisubharmonic function on 2. If D is a strictly pseudoconvex do-
main such that D C §2, then u|D is the limit of a decreasing sequence of con-
tinuous maximal plurisubharmonic functions on D.

The class MPSH((?) is in the one-dimensional case characterized by a lin-
ear operator since the harmonic functions are precisely the solutions to the

Laplace equation. In general we have the following characterization theorem
for MPSH(2):

THEOREM 2.3. Let §2 be an open subset of C" and let u be a locally bounded
plurisubharmonic function on §2. Then u is maximal if and only if it satisfies the
homogeneous complex Monge-Ampére equation (dd‘u)” = 0.

Thus locally bounded maximal plurisubharmonic functions in higher di-
mension are characterized by a nonlinear operator. The proof of the ’only
if’-part can be found in Bremermann [3] when u is a C? function. Sadullaev
proved the theorem for continuous maximal plurisubharmonic functions in
[8]. The ‘if’-part follows from Sadullaev’s theorem [8] above, from the fact
that the complex Monge-Ampeére operator is continuous on decreasing se-
quences and from the solution to the generalized Dirichlet problem for



264 ULF BACKLUND AND LEIF PERSSON

(dd°)" obtained by Bedford and Taylor in [1]. The comparison theorem of
Bedford and Taylor [2] gives the ‘only if’-part in the general case.

We conclude this section by giving some examples of maximal plur-
isubharmonic functions. The function log|z| belongs to MPSH(C”" \ {0}).
This can be seen from the fact that for any point w € C" \ {0}, the one vari-
able function ¢ — log |tw| is harmonic in C" \ {0}. Furthermore, if 2 is an
open subset of C”, n > 2, and if v is a pluriharmonic function on 2, then the
function max{0, v} belongs to MPSH({2).

Let 2 be an open subset of C". If E is a subset of {2, then the relative ex-
tremal function for E in §2 is defined by

ugn =sup{v(z) : ve PSH(?),vV|E< -1,v<0}, zef
and

ug o(2) = lir?supuE,g(C), ze 2
—Z
is the upper semicontinuous regularization. If {2 is hyperconvex and E is re-
latively compact in {2, then uj , belongs to MPSH({2). For proofs of the
above-mentioned examples, see e.g. [5].
If 2 is a domain in C" and if a is a point in {2, then the pluricomplex
Green function of 2 with pole at a is defined by

gn(z,a) = sup{v(z) : v € PSH(£2),v < 0,v(z) — log|z — a| < O(1) as z — a}

for z € (2. In [4] it was proved that if {2 is bounded, then gn(z,a) belongs to
MPSH(02\ {a}).

3. Separation of variables in the complex Monge-Ampére equation.

This section contains the proofs of our theorems.

Let {2 be an open set in C" and let u,v € PSH(£2) N L2 (£2). The product
uv can then locally be written as a difference between two positive functions
in PSH($2) N L{%.($2) and dduv and (dduv)? are well-defined as closed cur-
rents of order zero by bilinearity. In fact, given a relatively compact open
subset {2 of {2, we can find a constant Ky > 0 such that u + Ky and v + Ky

are positive on 2’ and uv = ¢y — 1y where
Yoy = %(u +v+ 2K_Q')2

and

Yy = % ((u + K_Q')2 +(v+ Kﬂ)z) + Kgu+ Kgyv + K_le
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are plurisubharmonic and bounded on 2. Now we define (dd°uv)? on 2 by
bilinearity:

2) (dd°wv)® = (ddpg ) + (dd“$y)* = 2dd oy N dd Yy

and we have to show that this gives a well-defined measure on 2, in-
dependent of the choice of 2. Let 2’ be another relatively compact open
subset of (2, and let

n=2Ky - Ky)u+v+ Ky +Kgy)

Then 7 is locally bounded on {2 and either plurisub- or plurisuperharmonic.
We can assume that 7 is plurisubharmonic. Then it is easy to see that

b — ey =n=vy — Yy

on 2N and if we replace py and ¥y by gy =¢y+n and
Yo = Py +n respectively in the right-hand side of (2), we get the same
measure on 2 N (2", Thus the definitions of (dd°uv)® coincide on 2 N 2"
This shows that (dd°uv)’ is well-defined as a measure on 2. Furthermore,
du A d‘u is defined by

du A du =1ddw* — udd°u

Note that dd°uv and (dd°uv)? are not positive in general. However du A d°u is
always positive.

REMARK 4. Let {2 be an open set in C" and 1 <k <n. If u; and v,
1 <j <k, are locally bounded plurisubharmonic functions on {2, then we
can with the same method define dduivy A ... Addu,vi as a closed (k,k)-
current of order zero on f2.

PrOOF OF THEOREM 1.1.

The currents dd°f and ddg are defined, since f and g are bounded plur-
isub- or plurisuperharmonic as functions of (z, w).

Letw=w(f,g) =d(f +g) Nd°(f +g) —df Nd°f —dg Nd‘g. If f and g are
smooth functions, then

(3) w=df Nd°g +dg Nd°f
and
(4) wAw==2(df Nd°f) \ (dg Nd°g)

By definition, w and w A w can be written in terms of dd° which means that
they are continuous on decreasing sequences. Therefore, by regularization in
(3) and (4), we see that
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w(u,v) = wdz N dw + ppdz A dw

for some signed measures p; and uy, and that equation (4) is valid for all f
and g.
We have

dd’fg = }dd*(f +g)* — }dd*f? - }dd°g® = d(f + §) Ad"(f +g)

+ (f+8)dd(f +g) —df Nd°f — fdd°f —dg Nd‘g — gdd‘g
= w+ fdd‘g + gdd°f
and since
fdd’g = pzdw A dw
gdd’f = psdz Ndz
for some measures u3 and g4, we get
0 = (ddfg)* = w A w+ 2dd’f Ndd‘g = 2fgdd“f N dd‘g — 2df Nd°f Ndg Ad°g

By the Lebesgue-Radon-Nikodym theorem there are unique decomposi-
tions in absolute continuous and singular parts:

(5) fdd’f = hdf Nd°f + o
and

(6) gdd‘g =kdgNd‘g+
$0

df Nd°f Ndg Nd°g = hdf Nd°f N kdg A d°g + singular part

By the uniqueness of the Lebesgue-Radon-Nikodym decomposition the sin-
gular part must be zero, and from this it follows that o and u are zero. Thus
h(z)k(w) =1 on (supp df A d°f) x (supp dg Ad°g) so h = constant = o and
k=1/a.

Assume now that supp df Ad’f Adg Ad°g # (. Take a connected compo-
nent A, X B, of supp df Ad°f Adg A d°g. The equations (5) and (6) are then
fulfilled, for some constant o # 0, on A4, x B,. The separability of u gives
that f fulfills (5) on 2N (4, x C) and that g fulfills (6) on 2N (C x B,,). By
exhausting {2 in the same manner we see that f and g fulfill (5) and (6) re-
spectively on {2. Hence we get the same constant « in {2. On the other hand,
if suppdf Adf NdgAd‘g=0, then either suppdf Adf=0 or
supp dg A d°g = 0. This means that one of the functions f and g is constant.



SEPARABLE MAXIMAL PLURISUBHARMONIC FUNCTIONS ... 267

It follows from the definition of maximality that the other function can be
any bounded sub- or superharmonic function.
The converse is obvious by the formulas above. This proves the theorem.

PROOF OF THEOREM 1.2.
Put oo = (1 — 1/)). Then we get the equation

90’ Ta(p) (%) + p(x)*Ta(g) () =0

where

Ty(h) := k" + (1 — 1/A)H'?

in the sense of distributions. Thus (7 (p),p?) and (T\(q), —¢*) are parallel
vectors, but since they depend on different variables their direction must be
constant, so

T\(p) = —vp* and Ti(q) =vg’

Now it is sufficient to solve the equation for p. Since the equation is invariant
under translations, we change coordinates so that p is defined for x = 0 and
p(0) # 0. The integral curves in the phase plane with coordinates (p,p’) are
generated by the vector field

P (v (= 1UNIp) 3

which is smooth except at p = 0. Let py = p(0) and py’ = p’(0). Then there is
a unique integral curve through the point (po,po’). We let

() — po [ Rx = 2)/) ’
B cos(vVawx®/\)

where x° is a point that fulfills

po’ = poVav tan(Vavx®/))

and is chosen in the following way:

If \v < 0, then x° is uniquely defined; If Av > 0, then we choose x° so that
the projection of U on the x-axis is contained in the interval
{xeR:|x-x"< %L} If v = 0, then the function f is constant. It is now
easy to verify that 7)(p) = —vp?. Thus the maximal domain to which p can
be extended is the interval above and U must be contained in the corre-
sponding strip stated in the theorem. This concludes the proof.

REMARK 5. The vector field is singular at p = 0, but if we make a change
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of coordinates to (p,s) where s = p’/p we get a resolution of this singularity;
the vector field in these coordinates is

0 N
g, = =2/ g,

and the solutions can be found by integrating this vector field.
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