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CONVERGENCE RESULTS FOR THE SQUARE ROOT
OF THE POISSON KERNEL

JAN-OLAV RONNING

Abstract.

In the disk, we prove that integrals of boundary functions against the square root of the Poisson
kernel converge in regions which we call I” weakly tangential. If p > 1 these regions are strictly
larger than the weakly tangential regions used by Sjogren. We also investigate how sharp these
results are.

In the bidisk, we prove that we have convergence in the product region 4 x B, where 4 is a
nontangential cone, and B is a weakly tangential region. In this case, the kernel will be a tensor
product of powers of Poisson kernels, with the exponent larger than 1/2 in the first variable, and
the exponent equal to 1/2 in the second variable.

1. Introduction.

Let P(z, ) be the standard Poisson kernel in the unit disk U, that is,

11—z

P(Zy 30) = ZT—IZ _ ei(p|2

,z€ U,p € R/27Z.

A well-known Fatou type result states that the Poisson integral

H@=ﬂmmwww¢

of a function f € L'(T) converges to f(e') if z tends to ¢/’ nontangentially,
for a.a. ¢’ € T. Littlewood proved that this is the largest “natural” region of
convergence, although some larger regions of convergence were obtained by
Nagel and Stein. Let

hﬂ@=ﬂP@¢VW7WM% A>0,

where f € LP(T), 1 <p <oo. We know that P,f(z) is a solution of the
equation L,u = (A2 — 1/4)u where, if z = x + iy,
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LZ_4(1 Izl ) (6x2+8y2)
is the hyperbolic Laplacian.

But P,f(z) does not generally converge to f(e’’) as z tends to € for
A # 1/2, because then P,1(z) does not converge to 1. In fact,

Pyl ~ (1 =1z if A>0and

1

=1 if A=0.

Pyl ~ (1= z)"?10g

Here, by the notation f ~ g we mean that there exist two constants
0 <k < K < 00, not necessarily the same at each occurrence, such that

k<f/g<K.
In order to get convergence to f we consider the operator
Pyf(z
2i(e) = o,
which has the kernel
P(z, (p)/\+1 /2
Py1(z)

If A\ >0and f € I7(T),1 < p < oo, we know that 2,f(z) converges to f(e’¥)
as z tends to e’ nontangentially, because then the kernel of 2,f(z) essen-
tially has the same behaviour as P(z, ). Thus nontangential convergence is
essentially the best we can expect for 2,f(z), A > 0.

If A= 0and f € L'(T?) as above, we know that 2,f(z) converges to f(e'*)
as z tends to e’ weakly tangentially, in the sense that z stays in the region

{z € U:|arg(z) — 8] < 4(1 —|z]) 10g1+|z1 , A arbitrary but ﬁxed}.

This was proved by Sjogren [Sjo84] in the beginning of the eighties.
If f € LP(T),1 < p < oo, however, we will prove that 2(f(z) converges to
f(z) in a larger region A’[’j defined by

Al = {z € U: |arg(z) — 8] < 4(1 — |z|)<logt1-|—z—l>p} .

We say that Af, is the L” weakly tangential regions.
The main part of the proof is to prove that the corresponding maximal
operator M 4 defined by
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MA”f(ﬂ) = S.u,l;" gAVI(Z) f € Lp(T)v

is of weak type (p,p). We will also prove that in a natural sense the L
weakly tangential regions are the largest convergence regions for 2yf (z).

We will finally prove a convergence result in the bidisk, considering the
operator

Py, of (21,22)

e@)\l,(lf(zl’zz) = P)‘h()l(ZlaZz) ’

where

P)\l,Qf(Z],ZZ) = /TP(Zla501)/\"”/21)(22’(pZ)l/zf(eiw7ei¢2)d<p1d@2a

A > 0 and f € L'(T?). In this case the convergence region is a product re-
gion A x B where A is a nontangential cone and B is a weakly tangential
region.

With a slight abuse of notation, we will identify ¢’ € T and (¢, e/®) € T?
with e R, 0 < 8 <2, and (f;,5) € R?, 0 < 1,5, < 2, respectively. C
and c will denote various constants.

The structure of this article is as follows: In section two we give the con-
vergence result, and the proof of it, for the square root of the Poisson kernel
in the unit disk U, and give a statement about how strong the theorem is. In
section three we give and prove the convergence result for* 2, of (z1, z2).

2. The one dimensional result.

In [Sj684] Sjogren shows that 2f(z) = ;;‘{Ei;,f € L'(T) converges a.e. to the

function f as z tends weakly tangentially to a point 3 on the boundary of the
unit disk U. We will extend this result by proving the following theorem:

THEOREM 2.1. Let A% be an LP weakly tangential region, that is

1 p
P . _f8l < _ —_
Al {z € U: |arg(z) — B < A(1 - |z|) (logl — |Z|> },
where A is an arbitrary positive real number. If f € LP(T), 1 < p < oo, then
Pof (z) converges to f () for a.a. B €T as z tends to 3 in A}

Theorem 2.1 is established by standard methods using the following max-
imal function estimate:
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THEOREM 2.2. Let

M 4of (B) = sup Polf|(z), f € LP(T),1 <p < o0
zEA?’
lel>172

Then M 4 is of weak type (p,p).

In order to prove theorem 2.2 we will need the following lemma which is
an extension of a lemma given in [Sj683].

LEMMA 2.3. Assume that the operators Ty, k = 1,2,... are defined in T" by
Tif (x) = sup K * |f|(x),
s€li

where the K are nonnegative and integrable in T", and K, and the index sets I
are such that Tyf are measurable for any measurable function f. Let, for each
i=1,...,n, a decreasing sequence {i;}r., be given, and assume that the op-
erators Ty are of weak type (p,p) with constant at most Cy for some
2,1 < p < oo. Also assume that

supp K; C {x = (x1,...,%4) € T |xi| < miyi=1,...,n},s € Iy,
and, denoting
K; (x) = sup{K;(x + »); [yil < wanis i=1,...,n}

for s € Iy and some natural number N,
(2.1) /K:(x)da: < Cp, s€ Ugly.

Then the operator
Tf (x) = sup Tif (x)

is of weak type (p,p) with constant depending only on Cy, N,n,and p.

The proof of this lemma is given in the authors thesis [JOR]. It is almost
analogous to the proof of the original lemma so we will not give it here.

PROOF OF THEOREM 2.2. Let z = re?® and suppose 0 < f(p) € L(T). Also
suppose A = 1 in the definition of A’[",‘ We have that
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1 S ()
P (2) ~ 1 T+ =9

- 1 ( 1 X(l—r)(lo 1 )”<|x|<1r + ”"’l‘”‘“xlx|<(1—r)(xo ! )") *f(6)
log 1\l —r+ x| 81 1—r+|x| e
1-r
=L xf(6)+ 5L =f(0).

Let
T'f(B) = sup i =£(9) i=1,2.

Z€ 5
r>1/2

We have
Muf (B) < T'f(B) + T*f(B)

so we want to prove that T*, i = 1,2, are of weak type (p,p).

By considering the values of I; on the sets {2¢"!(1 —r)(logL) <
Ix| < 2¥(1 - r)(log )"}, we get, after some elementary calculation, the esti-
mate

Q(P,r) 1 1

2k(1 —r) (log

1 \? Xix<24(1-r) (logr;)
1- r)

o, r) = 0(—10g((1 -r) (log1 _1~ r)p)) = 0<1<)g1 l_r)

Because z € A} implies

1-r

where

1 \?
0—p]<(1 ~r)<log1 —r) ,
we also have
Xix<2(1-r)(togrls) * () = Xjaent (1-0) (togr )’ +f(B) -
Thus
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T'f(8) < Csup Z

. 1
r>IA/2 log1 2"(1 —-r) (log]

)P Xlxlfzk“(l—r)(logﬁ)" xf(8)

—r

Mf(B) < C Mf(B),

12er<t k=1 log
I—r

where Mf is the Hardy-Littlewood maximal function. Hence T'f is of strong

type (p,p)-
By considering the values of I on the sets {2¢71(1 —r) < |x| < 2¥(1 - r)},
we easily get that

N(pr) 2- —k
L(x,r) Z T 7 Xkl<2(-n >
k=0 Og

l—r

p 1 !
< = .
N(@p,r) <1 +log210g(10g1 ——r) 0<plog<log1 — r))

Because of this estimation, we have

where

N(pr) 1 2—k
Tzf(ﬂ) < C| sup Z T 1= X)x| <24 (1-7) *f(6)
zeA’;3 =0 10g1 r

N(p,r) 1 2—k
S(r=60-p< s | Y —— 7 Xxerizran | </ ()

1/2<r<i
k=0
iri<(1-r) (togrk)” log 1 -

Let B = {r:27? <1-r<2?"} j€Z,. Then we have

) lp+1] 1 2k
T°f(B) < Csup Sltp Z T = Xitrl<2(1-n) *f(B) <
] re. —0

Jrl<(1- r)(nogTL)
< Csup Tif (B)
J

where
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rEBj k=0 rej
Iri<(1-r)2P Irl<(1-r)2P

lpt1l 9k
ij(ﬁ) = Ssup (Z 1= X|x+‘r|<2"(l r)) *f(B) = sup K., *xf(0).

We shall now show that we can use Lemma 2.3 on the operators 7;. We
start with a rather crude estimate. Take an arbitrary term in the sum, say
if(llTr) Xjx+ri<2¢(1-r) *f(B8). This term satisfies

1 1 B+r+2K(1-r)
A1 o Xx+r|<2k(1-r) * ﬂ = ‘—'——/ d
2k(1 —r) |x+7|<2%(1-r) f(B) 2k(1 ) Br—2(1—1) Sflp)dp

up 1 BHr+2 2P(1-r)
/ f(@)p

< ____
=2k 2P(1 = 7) Jprr2w(1-r)
where the inequality holds because 2% < 271, This now gives that

1 2P
Tuf (B) = sup (1= )X|x+T|<2"(l n*f(B) < CFMf(ﬂ)

Ir|<(t-n2P

and thus we have that Tj is of weak type (1,1) with constant at most C%¢
and of strong type (oo, c0) with constant ~ 1.
Marcinkiewicz’s interpolation theorem now gives that

p/p
“T}k”p C(pa )2/(//.7’ 1<p<OO,
This implies that

lip+1] lip+1]

1 1
k=0 , k=0
lip+1] 1 ile le+11 5j(p/p-1)

< ¢(p, ) Zk/l’ c(p,p) - (2l/p)k

~ C(P,p)Z"”/”“’ <clp,p) if p>p.

This implies that if p > p then T} is of strong type (p, p) uniformly in j, which
gives one of the conditions in Lemma 2.3 .

Thus it remains to prove the rest of the conditions of the lemma. The
condition of measurability is obviously satisfied, as are the conditions of in-
tegrable kernels and non-negative operators.

We have that
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lip+1] 1 1
TIB)~ sup D g =gy Xierisa-n */(9)
|Ir|<(1=-r)2P
lip+1] 1 1
= ?é%,’ ; 2 2R(1 — p) XHIs@+27)(1-n) *f(B) .

Letting
v, =272 and
L={(n7): re B, |1 < (1-n2r'}
c{(r,): reB;, |r| <27¥ Wy
we have, for s = (r,7) € I,
supp K; C {x : |x| < 2 olip+1]p-27"! }.

Since {v;} is decreasing for j sufficiently large, it can be modified to get a
decreasing sequence {v;}with the desired properties, satisfying v; < C -~} if
C is large enough.

What remains is to prove the integrability of K}(x). Notice that

N(pr) 1 1
Kr,‘r(x) = Z 1 zk(l _ r) X|x+7|<2%(1-r) <
k=0 log1 -
N(pr) 1 |
= 1 2k(1-r) X|x|<2k(1-r)+ -
k=0 log1 -

We now take N =1 in the definition of K (x) and let r € B;. Thus we get
K (x) = sup Kr-(x+y).

|Y|S"ll+l

Then
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N(p,r)
/ H(x)dx = /bup{ Z 2k X|X+T+y|<2" 1-r) sl < 7}+1}dx

1
BT, 1—r
1 Neo
< 1 / Z k(1 _ X|x+‘r|§2"(1~r)+7,+|dx =
1 — 2k(1 —7)
g 1-r =0

I L
= 1 Z k(1 — /XIXISZ"(]—r)+'y,+|dx = C(p, raj) < C(p)
log —— k=0 (1=7)
1—r
This implies that the last condition is satisfied, and Lemma 2.3 gives that 7

is at least of weak type (p,p). This altogether gives that M - is of weak type
(p,p), and the theorem is proved.

Finally in this section, I am going to show that the I” weakly tangential
regions are the largest possible convergence regions in the disk for our op-
erators if we want the regions to be regular in the sense that the boundary of
the regions is described by a monotone function for 1 — r sufficient small.

Assume that (2 is a convergence region for #yf(z) corresponding to the
point 1 = ¢° € T with boundary defined by |arg(z)| = g(1 — r) where r = |z|
and g is a monotone increasing function. Let £2¥ be the corresponding con-
vergence region for x = e'”, B € (0,2n]. Then we have that the maximal
function M2f(z), where Mgu(x) = sup,co~|u(z)|] is of weak type
(p,p),1 < p < oo (see [Ga, result 1.1.2 and section 3]). We will now use this
to prove the statement.

Let Q={reé? €U : || <t, 1 —r<t}, andlet 2(t) = 2N {1l —r =1} for
an arbitrary ¢ € (0, 1). It is easy to see that

12(0)] < {x € T; Maxo(x) > 1/2}],

because Moxo(x) =1 if QNN # 0. In fact, we can replace 1/2 with any
number 7 such that 0 < v < 1 without violating the inequality.
Let /() = log 1 - x|,<,- We want to prove that

{x €T Maxo() 2 )| < {x € T; Mo/ (x) > 7).

From this and the weak type (p,p) estimates for M %, mentioned above, we
would get that

1 p

=k

12001 < €l = €1 =) (1oe

which would prove our claim.
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First observe that [{x € T; Moxo(x) > 1/2}| = 2(g(¢) + t).Next, we know
that

1 ACD)
Pof (2) ~ dp.
loglir/Tl—rH@—sol

If we consider this estimation in the point z = (1 — t)e" we can easily con-
clude that Pof((1 — t)e") > ~ for some fix v > 0. But it is easy to see that
(1—1)e" € (%) if x| < g(¢) + ¢. From this it follows that

{x € T; Moxo(x) 2 7} < {x € T; MoPof (x) 2 7},
so we have proved that the I” weakly tangential regions are the best possible
convergence regions in the above meaning.
3. The two dimensional results for L' functions.

In this section we will prove the convergence for 2, of (1, z2) in products of
weakly tangential regions and nontangential regions in the bidisk, if
f e LT,

THEOREM 3.1. Let f € L\(T?), and let (zy,z;) = (r1€®', r,e%?). Define

Ag, g, = {(z1,22) € U?;

1
1—r1~1—r2,|ﬁ1~91|S(1—rl),|ﬂz-92|5(1"'2)10g1

_r2

}-
Then 2, of (z1,22) converges to f(eP &) as (z1,2,) tends to (¢, e) in
Ap, 5,» for a.a. (eP,e?) € T2,

As usual, the theorem follows from a maximal function estimate:

THEOREM 3.2. Let

Mf(B1,82) = sup 2 olfl(z1,22) .

(1:22)€45, 5,
ry>1/2,r3>1/2

Then M 4 is of weak type (1,1)
In the proof of this estimate we will use the following proposition:

ProrosiTION 3.3. Let g(r) : (0,1) — Ry be such that
i) g(r) - r is increasing on (0, ) for some o >0 and g(r) > 1 if0 <r < 1.
ii) lim, o g(r) -r=0.
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Let o4, 4, be the collection of all intervals on T* of the type

{(e1,02) : 1B — 1] <1y |82 — 2] < g(r) -1},
and let

Mof (B1,B2) = sup I—;—l / (o1, 02)ldiprdeon.

Aed 3 3,
Then M is of weak type (1,1).

Proor. The assumptions on g and &/, g, give that the sets in /g 3, are
convex and nested. Theorem 3.2.10 in [dGu] gives that M, is of weak type
(1,1), with constant less than 25 and not depending on g.

ProOF OF THEOREM 3.2. Assume that f > 0. First we conclude that
Mf ~ M4f, where

Alﬁlﬂz = {(rei917rei02) : 1/2 <r<l,

1B =< (1=r),|B—6]<(1 —")(1081 1—r>}’

because of Harnacks inequality, and the fact that 1 —r; ~ 1 —r.
Next we have that

M 4f (B, B2)
(1-r)™ fp1,02)dp1des
~ sup 1 0+
g P =r+0—el)™ (1 =r+102 = ¢2)
2/\1

=, [/ oL L]
rol,OzeA” B log Bl Bz B‘; B4

« f 1, <Pz)d<Pld902
(1 =r+160 — o) (1 =1 + 162 — 2

where
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o1,02) B — 1l L2(1=7), |82 = 2| <2(1 = r){ log

Br—1] >2(1 =71),|B — 2| <2(1 —7)

<P1,<P2

n={ (1s75)
{%,wz |ﬁ1-<ﬂ11S2(1*7)7|r32—<ﬁ2|>2(1“’)(l°g1l_ )
5= {ne (s75)

(1575)

By— {(wl,m) B — il > 21— 1), By — 2] > 21— 1)

Here, of course,

!
r, 01,02 € Ay, 5,

means that
(re? re®) € Ay 5,
Let
L) = (1—r™ / S 1, p2)dprdip,
logT_l_ (L=r+10i = @) (1 =7 + 162 - 2
—r
and let T'f be the corresponding maximal function, i = 1,...,4.

We now want to prove that each operator 7" is of weak type (1,1). In
order to do so we will need some estimates of the operators I;(f):
We have that

_a =)™t S (p1,02)dp1dps
o= /Bl(l—r+|91

log —— )P =7+ 162 — )
1—r
1 —r)* L 2)dprd 1
< ( i . (j;(wlr)ff.)+1f; <pi) = ; T/, S (1, 92)dprdpa,
1 - - — 1
lOgl—r (I-r) log—————1 —
L(f) = (1—n™ (o1, 02)dp1dor
3 ) - 1 1 0 2M1+1 0
10g1__ By (1 —r+ 101 — 1) (1 =r+102— 2
—r
(1-r)™ S (p1,p2)dprdpr

~

B |6 — oMY

(1 —r)logli
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llogr ] (1 -

~y =0 [l p2)dprdes _
1 1823 <2(1-r) ogrL- k(1 _ A2+ =
k=1 (1-r) 10g1 —; 2k"(l—'§5|ﬁ|~vllé21’-‘t—r) (21 =)™

log7L
< [gzr,] 1 1 / S (1, p2)dprdp,
> (2")2)\' ( 1 182 =212(01 ~r) log k= (zk(l _ r))

= 1- r) lOgl_:—r |ﬁ1-g||52k(l—r)log]-£-,

and

[logrl]
1 1 S (1, p2)dprdp,
L(f) ~ / e el
; (29" (1= )log it Jig-pi<za-n e L =7 + 182 = 2]

Finally, the estimate for L,(f) is

1 S (p1, p2)dprdpr
I ~ .
(/) Bl —r+6— ¢

1
(1 —r)logl—_—r

We will now show that the operators 7" are of weak type (1, 1), which will
give us the wanted weak type (1, 1) estimate for M 4

T'f The function g(r) = (1 — r)log ;- satisfies the condition in Proposition
3.3 which together with the estimate above implies that T'f is of weak
type (1,1).

T3f Proposition 3.3 and the summation theorem for operators of weak type
(p,p) (Theorem 3.8.2 in [dGu]) gives that T3 is of weak type (1,1).

T*f This operator can be majorized by a weak type (1, 1) operator if we can
prove the same for T2f because T*f is a sum of operators similar to
T?f with coefficients which allow the use of the summation theorem for
weak type (p,p) operators.

T?f To prove that T%f is a weak type (1, 1) operator is the hard part of the
proof. We will use the decomposition lemma given in section 2 to ob-
tain this estimate.

Let x; = B — @1, X2 = B2 — 2. Then



232 JAN-OLAV RONNING

1 S (1, 02)dprdps
g, 1—r+|x]

L(f)<C T
(1 —I‘) logm

1 S (o1, ¢2)
/

x2|>2(1-r) logr l—r+ |X2I

PP X |<2(1-ndsp1dips.
(1-r) logl—_;

We now introduce a partition which is specially designed to be used with
Lemma 2.2. Define ¢, = e~ for k = 0,1,2, ... and e is arbitrary but greater
than 1 if k£ < 0. If we assume that e < 1 — r < ¢;_;, we have

log ~ 2K and 21 < ¢|x).

1—r
If we also make the partition
ek—u2k+l < |x2| < ek—u—12k+la V= O, 1, v ,k,

we can consider the kernel

c k 2k
T X|x|<2(1-r) E T T Xeroy 21 < xa | ey 2K+ s
1—r =1 —r+|x) v "

which can be estimated with
k 2—k

C
T Xx | <2(1- Z—"X <epy_12k+
1—r Jxi|<2(1-r) £ e, 2Kt + |x2| [x2|<ex—p-1 )

because of the lower bounds of the partition.
Accordingly we will consider the majorizing operator

o ¢ 2—k+u
22"’ sup Sup f * |=Xjol<2t —rm—— Xlon|<er_,_ 2K+
=0 k>v ex<t<er- ¢ Mol Ty 2] beal et

o0 (&)

= ZZ"’sup sup f*K] = ZT"sup T.f,
—0 k>v ep<t<ex_, V=0 k>v

where ¢ =1 —r, and the last equalities define K; and 7}. Lemma 2.3 will

give that the operators sup,.,, T} are of weak type (1, 1), uniformly in v, and

thus show that T2 is of weak type (1,1).
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We have to show the following:
i) K/ is nonnegative and integrable on T2
ii) TYf is measurable if f is measurable.
ili) 7y is of weak type (1,1) uniformly in v and k.
iv) For i = 1,2 there exist {i}res> Wi > Y+14 > 0, such that
(a) supp K} C {(p1,92) € T* : looi| <y, i =1,2}
ift €s, = [ek,ek_l).
(b) [K;dpidpr < Co
if 1 € Ugsk, where for t € s,
K} = sup,_(,, ;) 1K/ (0 +2); il < Weawvis i=1,2}
for some fixed natural number N.

We see that i) and ii) follows directly from the definitions of K; and T}.
iii) Let k£ > v. We have that

c 2—k+u
T f(B) = sup—/ — a1/ (01, p2)dprde;
W (0) tese T J1x)|<21, Pra|<epoy 21 ex— 2K + | xo )

c
= sup- S * A (o1, Br)de
tes T J)xy| <2t
where the convolution is with respect to ¢, and
2—-k+u

Aen02) = T

Xlpa|Sex—p1 26+ -

This gives that

2—k+V
Mol = / 2 [ 17
Ml = J o i a0

2—k+v
=2 / ————dpy < Cy.
0<pr<ep 1 264! ek 2K + ¢y v2 0
Now Young’s inequality implies that f x A4, (6;) € L'(T) and this, to-
gether with weak type (1, 1) estimates for Hardy-Littlewoods maximal func-
tions, gives that T} is of weak type (1,1) uniformly in v and k.

iv) Let {ve1 Yo = {2ec-1}pmr, {matie; = {2 ex—1}ie
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Then iv) a) is obvious if we choose 7 suitably for k < 0. Thus it remains

to prove that iv) b) is satisfied. Let N = 1 and let ¢ € sx. Then
. ¢ 2—k+v

K; = Sl;p { ;XW’I +yi|<2 ey 2kt + |2 + ¥l Xlp2+ya|<ex-y

2k+|

il < i = 1,2}
2—k+u
ek-v 2 + |2 + 2

¢ k+2
< sup { ;X|¢1|52t+28k X|p2+y2|<ex_, 26+ + [y2| <2 * ek—u}
Y2

2—k+u

X <ep_y1 2K+ fep_, 2k+2
ex— 2T+ | lp2l<ex—y-1 ex

c

< 7 Xlel<yt

where the first inequality is due to the definition of ~y;. Thus
/K,*dgold(pz < Cy for all ¢.

With all this done, we can use Lemma 3.4 to get

sup T is of weak type (1,1) uniformly in v
k>v

Thus
Z 27" sup Tyis of weak type (1,1)

v=0 k>v

which gives that T2 is majorized by a weak type (1, 1) operator, and thus

M, is of weak type (1,1).
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