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EDGE OPERATIONS

G. SHABAT, V. SHABAT and M. RAZIN

Abstract.

We introduce and describe a group %, that acts on dessins d’enfant (a class of graphs on Rie-
mann surfaces considered by Grothendieck) with one marked directed edge. The group is con-
structed with the help of a, presumably new, operation -- semiflip -- a “half”’ of a known op-
eration flip. The group &%, is generated by the semiflip and the known operations of the carto-
graphic group. Our main result: the action of £%, on a set of dessins with a marked directed
edge with given number of edges and given genus is transitive.

§ 0. Introduction.

Our interest to dessins d’enfant has been inspired by Alexander Grothen-
dieck’s work [Gro], which suggests that there exists an equivalence between
the category of dessins d’enfant (topological objects) and the category of
Belyi pairs (see [ShVo]), which are objects of arithmetic geometry. Since the
Galois group Gal(Q/Q) acts on Belyi pairs, Grothendieck theory offers a
possibility to visualize its action via dessins d’enfant. In the present paper we
take a purely combinatorial approach and construct a group £%, that acts
on dessins with one marked flag. To construct a group we introduce a new
operation, semiflip, that resembles a “half”’ of the operation flip on triangu-
lations (see [BKKM]).

The structure of this paper is as follows: in §1 we give the definitions, state
the results, and explain intuitevely the ideas of proofs. This makes some of
these statements look rather obvious; however, we have decided to include
the formal combinatorial proofs, which can be found in §2. A brief discus-
sion follows in §3.

We are indebted to Alexandre Zvonkin, Dimitry Zvonkin and Valentin Silantyev for stimu-
lating discussions. We are grateful to the University of Stockholm and Dimitry Leites for hos-
pitality at the final stages of the work. We would also like to thank Gavril Farkas for pointing to
the reference [G1].

Received August 1, 1995.
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§ 1. Definitions and results.

1.1. Our main object, dessin d’enfant (or simply dessin) is a pair X, D X,
where X; is a compact oriented surface and X; is a graph with a finite num-
ber of vertices such that X;\ X, is homeomorphic to a finite disjoins of disks.
In other words, every 2-cell of X>\X; must be topologically trivial. Graphic
understanding of this object is sufficient for this paper.
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Figure 1. Dessin d’enfant

1.2. To deal with dessins combinatorially, we introduce a map -- a triple
(M,a,i), where M is a finite set, a,i € Aut(M), # =1, < a,i >C Aut(M)
acts transitively on M and i has no fixed points in M. The elements of M will
be called flags.

Each map defines a certain dessin. Take a map (M, a,i). To each orbit of
< a > we associate an oriented polygon such that its edges are in bijective
correspondence with the flags of the orbit, and for any flag f of this orbit af
is next to f in the counterclockwise direction.

On the set of polygons we obtain, the involution i defines the pairwise
identification of edges. Now, we can glue these polygons together using the
following rules:

(1) any flag f is glued to if,

(2) the orientation on the polygons must match each other after gluing.

Figure 2. Restoring a dessin from a map
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As a result, we get the graph X, (its edges are the glued edges of polygons)
on the oriented surface X, (see [Gl], p.136, for a definition of oriented
manifold). It is a dessin.

Conversely, given a dessin, we can restore the corresponding map. To do
this, we represent each edge of a dessin as a pair of flags bordering the ad-
jacent cells (the involution i maps them onto each other). The permutation a
maps each flag to the next one bordering the same cell (in the counter-
clockwise direction).

We focus our attention on dessins with one marked flag. When drawing a
marked flag we draw an arrow in place of the corresponding edge, pointed
counterclockwise with respect to the cell that the marked flag borders.

1.3. We now define the new unary operation on the set of dessins with one
marked flag. This operation will be called semiflip (and denoted ). Graphi-
cally, it will look as in Fig. 3:
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Figure 3. Semiflip

This operation is ““local”’, meaning it only changes the area around the
marked flag without changing the rest of the dessin; for this reason we draw
only those parts of the dessin that are changed.

Now, let us define semiflip in terms of maps. Let (M,a,i) be a map and
f € M be a marked flag. Take two transpositions: 4, B € Aut( ), where 4
swaps f with a~'if, and B swaps f with af. Then

$(M,a,i) = (M,aAB,i)

with f as a marked flag.

Several remarks below motivate this definition.

Take a dessin (M, a, i) with a marked flag f. Let us denote by Y (f) the set
{f,af ,a7tif} c M.
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Figure 4. Y(f)

STATEMENT. Y(f') consists of two or three elements.

PrROOF. Suppose it consists of just one element, which means
f =af =alif; then f = af = a(a"'if) = if which is impossible because i
has no fixed points in M by definition.

Now, we classify dessins with one marked flag by the position of the
marked flag. If # Y (f) = 3, the dessin will be called regular; if #Y(f) =2, it
will be called degenerate. The degenerate cases may be classified (see Fig.5):

Vot

loop bubble

Figure 5: Degenerate dessins with marked flag

1) if af = £, this case will be called a loop;

2) if alif = f, this case will be called a tail;

3) if a~lif = af, this case will be called a bubble.

The semiflip has to be defined separately for the degenerate cases.

Take a bijection V : M— M such that it is the identity outside Y (f), and
inside Y (f) it acts like this:

if the marked flag f is nondegenerate, it is a cyclic permutation
f—aof —alif > f;

if the marked flag f is a loop or a tail, it permutes two elements of Y (f);

if the marked flag f is a bubble, it is the identity.

Now, if we put ¥(M,a,i) := (M,aV,i), we get exactly the operation dis-
played in Figure 3. In the first definition of semiflip we represented V as a
product of two operators so that the definition is invariant.

Note on notation. Because the set of flags M and the involution i do not
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change under semiflip as well as under other operations we consider, we shall
omit, where possible, the notation for M and i. The dessin with a marked
flag will be denoted as (a,f). The operator V depends on both f and a, so we
write V(a,f).

Thus, the definition of the semiflip can be written as

Pa.f) = (aV(a.f).f).

To denote permutations we use cyclic notation: for example, in the regular

case V(a.f) = (f,af ,a”'if).

1.4. We are going to use the semiflip to construct a group, so we should
prove its invertibility. The formal combinatorial proof is given further in
section 2.1; its idea can, however, be well seen in the pictures (Fig. 6): if we
look at the application of ¢ ““in the mirror’”’, what we actually see is the ap-
plication of 1~!. More precisely, if we introduce the reflection operator p,
then (yYp)® = 1, hence, ¥~! = ppp.

ARSI ERY

Figure 6: Semiflip’s invertibility

1.5. The cartographic group €5 is the free product Z + Z/(2) with marked
generators p; and p; in Z and Z/(2), respectively (the elements of this group
are often dubbed ‘“Grothendieck operators”). It acts on the set of dessins
with marked flags (via their maps) by changing the marked flag: p, marks
the flag which is next in the counterclockwise direction to the one previously
marked, and p; marks the opposite to the previously marked. In our nota-
tions we may write this as:

p2(avf) = (a’af)’ pl(aaf) = (aa lf)

1.6. Let us denote the set of dessins with marked flags by D’; we have de-
fined the operators p;, p; and ¢ that act on D'.

DEFINITION. The subgroup < pi, p2,% > Aut(D’) will be called the edge
group and denoted £%>.

1.7. The semiflip (and, hence, the edge group) does not change the genus
of the dessin. This follows from the Euler formula:
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(number of vertices) — (number of edges) + (number of faces) = 2 — 2 - genus.

The semiflip only changes the number of vertices and number of faces in
cases of loop and tail, but the value in the left part remains constant.

1.8. MAIN THEOREM. The action of the edge group on the set of dessins with
one marked flag with a given number of edges and a given genus is transitive.

For the proof see 2.2. It states that §%, can transform a dessin with given
genus and given number of edges into a certain canonical form. This is done
in two stages: first, £¢, transforms the dessin into a dessin with one face.
The dessin is a polygon with its edges glued together to form a surface and,
possibly, with some edges drawn on it. In the second stage we prove §%>-
equivalency of the dessins with one face using Gauss words to describe them;
the canonical form is one of the dessins with one face.

Figure 7 : The canonical form of the dessin

1.9. The investigation of the structure of the edge group has so far led us
to find two relations its elements satisfy (see also 3.3). Consider the opera-
tors T := pz_lpw,[) and S := pz‘zplwz.

THEOREM. T°¢ = S!2 = 1.

A proof is outlined in 2.3. The restrictions of these operators to different
cases have different orders. In the regular case these relations are displayed
on Fig. 8.
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§2. Proofs.

2.1. Semiflip’s invertibility.
To formally prove semiflip’s invertibility, we introduce a reflection operator
w:(@f) = (@ if).
THEOREM (py))” = 1.

ProoF. Consider R = u1). Because it includes a semiflip we must consider
various positions of the marked flag in the dessin R is applied to. It turns out
that:

(a,f) is a loop => R(a,f) is a tail;

(a,f) is a tail => R(a,f) is a loop;
(a,f) is a bubble = R(a,f) is a bubble;

(a,f) is regular => R(a,f) is regular.

We first check this for a degenerate (a,f) and then see that if (a,f) is reg-
ular, R(a,f) cannot be degenerate.

By definition, ¥(a,f) = (aV(a,f),f); hence, ¥(a,f) = R(a,f) = (V" (a,f)
a’l)if).

If (a,f) is a loop: af = f, V(a,f) = (f,a”if) (transposition);
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R(a,f) = ((f,a 'if)a™',if) is a tail: (f,a"tif)a~lif = f = iif.

If (a,f) is a tail: af = if, V(a,f) = (af,a”'if);

R(a.f) = ((af ,a 'if)a,if) is a loop: (af ,a”'if)a”'if = af =if.

If (a,f) is a bubble: af = a”lif, V(a,f) =1,

R(a,f) = (a71,if) is a bubble: a~'if = qiif = af.

Now, if (a,f) if regular: V(a,f) = (f,af,a'if), R(a,f) = ((f,a if,
af)a”!,if).

Suppose R(a,f) is a loop: (f,a”'if ,af)a”'if = if = af = if = (a,f)isa
tail.

Suppose R(a,f) is a tail: (f,a”'if ,af)a~'if =iif = af =f = (a,f)isa
loop.

Suppose R(a,f) is a bubble: (f,alif,af)a 'if = a(f,af,a 'if)iif =
af = a*f = (a,f) is a loop.

It remains to check that R? = 1 in all these four cases.

If (a,f) is regular, R%*(a,f) = ((if,a*f,af )a(f,af ,a"if),f). To see that
R(a,f) = (a,f), one must simply check that (if,a*f,af)a(f,af,a " if)
al=1.

If (af) is a loop, R*(a,f)=((f,if)a(f,a  if),f) = (a,f) because
f if)a(f’a_]if)a_l =1.

If (af) is a tail, R*af) = ((if,af)a(f,af).f) = (a,f) because
(if afaf,afa" = 1.

If (a,f) is a bubble, R2(a,f) = (a,f).

2.2. Transitivity theorem.

We shall prove that all the dessins with a given number of edges on a
surface of given genus are §%,-equivalent, i.e., belong to the same £%,-or-
bit.

STATEMENT. Any dessin is £%,-equivalent to a dessin with one face.

ProOF. In a dessin with more than one face, there exists a flag f such that
if does not belong to the orbit < a > f. Then if we mark f (via the carto-
graphic group) and apply semiflip to (a,f), the orbit <a >f becomes
shorter; repeating this, we obtain a loop and after one more semiflip the
number of faces will decrease.

To work with dessins with one face we use Gauss words, which are a spe-
cial kind of cyclic words. Let us recall that a cyclic word is a class of
equivalence of words in an alphabet, where the equivalence relation is de-
fined as follows: two words W) and W, are equivalent, if there exist words A4
and B such that W; = AB, W, = BA. For each letter of a Gauss word, next
letter is correctly defined: take a representative in which the given letter is
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not the last (this is always possible since the length of a Gauss word is at
least two), and then take the next letter in the usual sense.

Now, we define a Gauss word as a cyclic word in which every letter occurs
exactly twice. Each Gauss word defines a unique map as follows: the set of
letters occuring in a Gauss word is taken for the set of flags. Now, we can
take a permutation which maps a letter into the next one and the involution
which permutes two occurencies of the same letter, and clearly we get a map.
Conversely, each map defines a Gauss word, uniquely up to the renaming of
letters in an alphabet. We shall enclose Gauss words in round brackets.

On the set of Gauss words consider the following operation: mark one of
the two occurencies of some letter (we shall do this by typing it boldface),
then cut out the letter following it and paste it right in front of the other
occurency of the marked letter:

(fgef )= fgf..)

This operation corresponds to a semiflip on a dessin, applied to the flag f.
There is one restriction to it --- the second occurency of the marked letter
should not be the letter next to it (the semiflip should not be applied to a
tail).

A subword of a Gauss word will be called a block (of course it is not a
cyclic word by itself). By the equivalence of two blocks we mean that one can
be transformed into the other one using semiflip without changing the re-
maining part of the Gauss word. The blocks will be enclosed in square
brackets.

A block B will be called transparent if the blocks Bx and xB (where x is
some letter) are equivalent. When speaking of transparent block we do not
need to state its location in the Gauss word explicitly because it can be
moved through the Gauss word to any location.

A block will be called isolated if each of its letters is included in it twice.
We will also need to consider two special kinds of blocks: a handle is a block
of type [fgfg] and a branch is a block of type [gg].

LEMMA. Handles and blocks are transparent.
PROOF.
[fefgx] — [fxgfe] — [fexfe] — fefxg] — [xf2fel; [ggx] — [xgg).

THEOREM. Any isolated block is equivalent to a block that consists of han-
dles and branches (the order is not important because handles and branches are
transparent ).

ProOF. It is sufficient to show that from any isolated block it is possible to
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extract either a handle or a branch. Suppose a block contains no handles or
branches. Then it is of one of two kinds:

fg...f...g...]or[fg...g...f..]

In the first case, we can proceed as follows (note that we will put one ar-
row which actually represents the application of semiflip several times) :

fg...f...g..]—>fef...... g .]—=1.-... fefe .. ]
and we obtain a handle.

In the second case, we have the following possibilities:

a) l[fg...x...g..x..f..]—=fg...... fx...g...x..] (back to the first
case).

b) fg..x...g..f..x..]=fg...x...f...... gx...] (back to the first
case).

c) If we cannot find such x, it means the block between two g’s is isolated.
Here we need to use induction: suppose the theorem has already been proven
for all the shorter isolated blocks, then the block between two g’s is equiva-
lent to a collection of handles and branches; hence, it is transparent and we
can move it aside. Thus, we get [fg...g...f...]—[..feg...f.. ]

We have obtained a branch.

COROLLARY. An arbitrary Gauss word is equivalent to a word that consists
of handles and branches (which will be called its canonical form).

To deduce the transitivity theorem from the Corollary, it remains to ob-
serve that the number of handles in the canonical form is precisely equal to
the genus of the corresponding dessin; this follows directly from Euler’s
formula.

2.3. Relations within the edge group.

Proofs of the relations within the edge group is indeed a combinatorial
verification of the facts that we have noticed and checked on the pictures. If
one trusts the pictures it will be worth it just to ensure, by combinatorics,
that no cases were missed. We shall just outline the proofs for a few ex-
amples.

Consider the operators T := p; ! p19 and S := p32p19?.

THEOREM. T% = 1.

Proor. The semiflip is applied several times, so we must check the possi-
ble combinations of cases. Two of the regular cases here should be looked at
separately: if iaf = a”'f, then (a,f) will be called bubble-1 and if iaf = aif,
then (a,f) will be called bubble-2. It turns out that

(a,f) is a loop => T'(a,f) is a tail;

(a,f) is a tail = T'(a,f) is a loop;
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(a,f) is a bubble = T'(a,f) is a bubble-1;

(a,f) is a bubble-1 = T'(a,f) is a bubble-2;

(a,f) is a bubble-2 => T(a,f) is a bubble;

(a,f) is regular = T(a,f) is regular (‘“regular’” here does not include
bubble-1 and bubble-2).

The above can be checked by straightforward calculation.

It remains to check that 7 =1 in all these six cases. Here and further
ahead, we encounter a new situation: T%(a,f) = (cac™!,cf) where ¢ is some
permutation of flags. This shows that the resulting dessin is isomorphic to
the original one but flags have changed their places.

If (a,f) is regular, T3(a,f) = (cac™',cf) where ¢ = (f,iaf,if,af ). Indeed,
T3(a,f) = (aV1V,V3,iaf), where

Vi=(f,af ,a”'if), Va=(af,if,Vi'a  iaf), V3= (if,iaf,V;'Vi'a"'f).

The equation aV;V,V3 = cac™! can be verified manually, checking con-
secutively all the possible cases of inclusion or noninclusion of certain flags
into the area changed by the nablas.

f (a,f) is a loop, T*(a,f) = (cac™',cf), where c¢= (f,if). Indeed,
T%(a,f) = (aV1V2,if), where Vi = (f,a"lif), Vo = (£, if).

There is a case in which the equation has to be proven separately:
if =alif -- a dessin with one edge (a loop) on the sphere. But the verifica-
tion is obvious.

In other cases, we have V|V, = (f,if,a"'if) = a lcac™.

Continuing this process in the same manner for other cases we will get a
complete proof of the theorem.

THEOREM. S'? = 1.

PrROOF. Let us see the possible layouts. Here we need to consider, sepa-
rately, the cases tail — 1 (in which a?f = f) and fail — 2 (in which iaf = a*f).
We have:

(a,f) is a loop = S(a,f) is a loop,

(a,f) is a bubble => S(a,f) is a bubble,

(a,f) ia a tail = S(a,f) is a tail-1,

(a,f) is a tail-1 = S(a,f) is a tail-2,

(a,f) is a tail-2 = S(a,f) is a tail,

(a,f) is regular => S(a,f) is regular.

We leave the proof of these assertions and and of the theorem itself to the
reader. The technique of the proof is similar to that of the previous theorem.
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§ 3. Discussion.

3.1. The definition of semiflip presented in this paper is not the only possible
one. One could define it differently in degenerate cases (see Fig.9).

FELNR A & U e

Figure 9. Alternative definition of semiflip.

The operation displayed in Fig.9 is invertible for the same reason the
semiflip is. A kind of transitivity theorem for it also exists: the “small edge
group”, defined using this operation, acts transitively on the set of dessins
with given number of edges, given genus and given number of faces. Because
of the transitivity of the edge group the small edge group is a subgroup of
the edge group.

3.2. It will be useful for applications of the edge group to Grothendieck
theory to know what the effective edge group (the group of automorphisms
of the set of dessins with one marked flag with given genus and given number
of edges induced by the edge group) is. At this point we have calculated this
group for one- and two-edged spherical dessins, two- and three- edged des-
sins on the torus and four-edged dessins on the surface of genus 2. In all
these cases it turned out to be the symmetric group. It will be interesting to
see if this always holds.

3.3. Because the two relations within the edge group we have found look
alike, one might suppose there exists a generalization of a kind
(py "p1y")® = 1. This does not hold for n = 3. We offer, however, a con-
jecture derived from observations:

CONIJECTURE. The operator p;"p1{" has a finite order for any n.

3.4. The groups similar to the ones defined in the present paper could be
used in the theory of cell decompositions of moduli spaces of curves. We
shall address this topic in our future works.
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