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GROUPS AS THE UNION OF PROPER SUBGROUPS

M. J. TOMKINSON

1. Introduction.

In [1], J.H.E. Cohn defined o(G) to be the smallest integer n such that the
group G is the set-theoretic union of n proper subgroups. A number of re-
sults were proved for soluble groups leading to the conjecture that if G is a
finite noncyclic soluble group then o(G) = p? + 1, where p? is the order of a
particular chief factor of G. It was also conjectured that there is no group G
for which o(G) = 7. It is well known that o(G) can never be equal to 2 and 7
is the next integer not of the form p? + 1.

In this note we prove both of these conjectures. The methods are mostly
elementary and the only technical result that is required is a theorem of
Gaschiitz [2] which says that, in a primitive soluble group G, the unique
minimal normal subgroup has order greater than the other chief factors of
G.

Cohn [1] also showed that o(A4s) = 10 and o(Ss) = 16. It would be inter-
esting to know what integers can occur as ¢(G). These smallest non-soluble
cases suggest that there may be no groups with ¢(G) = 11,13 or 15. It might
be of interest to investigate o(G) for families of simple groups.

2. Covering soluble groups with proper subgroups.

We begin by dealing with a special case which is essentially Lemma 17 of [1]
although our proof is slightly simpler than that given there.

LEMMA 2.1. Let G be a primitive soluble group with minimal normal sub-
group N such that G/N is cyclic. Then o(G) = |N| + 1.

Proor. There are |N| cyclic core-free maximal subgroups M; which com-
o
plement N. If G = X;U...UX,, then M; =U(M,ﬂXj) and, since M; is

=1
cyclic, it follows that M; is equal to one of the X;. Also MiU...UM, #G
and so o > |N| + 1.
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For the converse, note that M; N M; < (M;,M;) = G and so M;N M; = 1,
for all i # j. Hence

IMiU...UM,| =|N|(|G/N|-1) =G| - (IN| - 1).
It follows that G=NUM;U...UM, and so o < |N| + 1.

THEOREM 2.2. Let G be a finite soluble group and let H/K be the smallest

chief factor of G having more than one complement in G. Then
o(G) = |H/K|+ 1.

Proor. We prove the result by induction on |G|. Let |H/K| = p°.

(@) o(G) <p*+1.

Choose a chief factor V/W of G of order p? such that V' /W has at least
two complements in G and so that |G/V| is minimal with these properties.
Hence if S/T is a complemented chief factor of G with S > V' and
|S/T| < p® then S/T has a unique complement C <G and so S/T is central
in G and so has prime order.

Let M be a complement to /W andlet Y =core M > W.Then G/Y isa
primitci;ve soluble group with unique minimal normal subgroup
X/Y=V/W.If X # V, then X/Y is central and so V/W is also central of
order p. The complements to V/W are then normal and G has a homo-
morphic image isomorphic to C, x C,. Since C, x C, is the union of its p + 1
subgroups of order p, we have o(G) < p + 1. Therefore we may assume that
X=V,Y =W and so G/W is a primitive soluble group with unique mini-
mal normal subgroup V/W.

By Gaschiitz’s result every chief factor of G/V has order less than p? and
so is either a Frattini chief factor or is central. Hence G/V is nilpotent and
each prime g dividing |G/ V| is less than p?. If G/V were not cyclic it would
have a homomorphic image isomorphic to C; x C, and so would have a
chief factor of order ¢ with more than one complement. So G/V is cyclic
and, by Lemma 3.1, 0(G) < o(G/W) =p* + 1.

(b) p* + 1 < 0(G).

Choose N <G maximal with respect to o(G/N) = o(G). Let K/N be a
minimal normal subgroup of G/N. Then either G/K is cyclic or
o(G/K) > o(G).

Let G= X; U...UX,, where the X; are maximal subgroups of G contain-
ing N. Not all the X; contain K, for otherwise we would have
0(G/K) < o(G). Therefore K/N has a complement M.

If K/N had a unique complement, say Xj, then Xj,..., X, must all con-
tain K. But this is contrary to Lemma 5 of [1] or Lemma 2.1 of [3]. Therefore
K/N has at least two complements.
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If K/N has normal complements, then |K/N|=p and G has a factor
group isomorphic to C, x C,. Hence o(G) =p+1 = |[K/N| + 1.
If K/N has non-normal complements, then it has |K/N| complements

(o2
M;,..., My, say. Since M; = U(M,-OX,,) and M /N = G/K is either cyclic

j=1
or satisfies o(M/N) > o, we must have M; = X;, for some j. Therefore
|K/N| < 0. In both cases, K/N is a chief factor with at least two comple-
ments and o(G) > |K/N| + 1.

3. Groups covered by seven proper subgroups.

Our aim in this section is to show that any group which is the union of seven
proper subgroups can be given as the union of fewer than seven subgroups;
that is, there is no group G with o(G) = 7.

The first step in the proof will be to give restrictions on the indices of the
covering subgroups. The first result required for that is Lemma 3.3 of [3]. We
state that result below and also prove a variation which we will need.

LemMMA 3.1. [3, Lemma 3.3] Let M be a proper subgroup of the finite group
G and let H,,. .., Hy be subgroups with |G : Hi| = (;and 01 < 5 < ... < .
IfG=MUH; U...UHy, then 3 <k.

Furthermore if 1 =k, then p1=...=0c =k and HiNH; <M, for all
i #].

LEMMA 3.2. Let N be a proper normal subgroup of the finite group G. Let
Uy,..., Uy be proper subgroups of G containing N and V1, . . ., Vi be subgroups
such that VIN=G with |G:Vi|=0( and p<...<Gk If
G=U,U..UU, UV U...UV, then ) <k.

Furthermore, if By =k, then 1 = ... =Bk =kand VN V; < Uy U...U T,
foralli#j.

PrROOF. Suppose that |UyU...U Uy =4|G|. Since V;N =G, we have
Vi/ViNn N = G/N and so

Vin (U1 U...U Up)| = Vi =%|G|.
1]

Therefore

VAU N...AUp)| = (lll);m.

i

But |V U...U Vi \(UyU...UU)| = (1-7)|G|, and so
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(1-)/6] < (1 ‘"’)'G'(bl"ﬁ“'*ﬁ)'

Hence 1 <4 +...+4 < %andsoﬁlsk.
If 51 =k, then B = ... = B = k and the sets V;\(U; U...U Uy) are pair-
wise disjoint. That is, V, ﬂ Vi <UU...UUp.

Our main proof will consider a number of cases each of which reduces to
considering certain subgroups of Sg x S¢. We deal with the particular groups
which arise first.

LeEMMA 3.3. The only noncyclic subgroups of S¢ which are not the union of
fewer than T proper subgroups are :

S6, A6, Ss, A5 and F,

where F = (C3 x C3) X Cy is a group of order 36 with a minimal normal sub-
group of order 9.

ProoF. This follows easily from Theorem 2.2.

LEMMA 3.4. None of the following groups is the union of 7 proper sub-
groups:

As, Ss, Ag, Se,

Cy, x As, C, x As, (p=2,30r5)
C, x S5, Cp x S, (p=3or5)
C3; x F,

A5 X A5,A5 X S5.

Proor. Cohn [1] has shown that o(4s) = 10,0(Ss) = 16.

Suppose that 4¢ = X; U...U X7 with each X; maximal in A¢. There are six
maximal subgroups M of A4¢ which are isomorphic to As. Since

=MNX))U...Uu(MNXy) and o(M) > 7, it follows that M is one of
the X;. So the remaining elements of A¢ must all be contained in the seventh
covering subgroup. But the conjugacy class containing (123)(456) generates
the whole of Ag.

Similarly for Se; this contains six maximal subgroups isomorphic to Ss
which must be six of the covering subgroups. The conjugacy class of 6-cycles
generates Sg.

Now let G=C x H, where C is cyclic of order 2, 3 or 5 and H is
As, Ss, Ag, S¢ or F. Suppose G = X, U...U X7. One of the X;, say X, does
not contain C. Then X;C = G and X; <« G with G/X; = C. Since G/H = C
and G has no factor group isomorphic to C x C, we have X; = H. The re-
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maining X;’s must contain C and so we get a covering of G/C = H by six
proper subgroups, contrary to Lemma 4.3.

Finally, let G = H x K with H = As and K 2 As or Ss. Suppose that M is
a maximal subgroup of G such that MH = MK =G. Then M/M NK >~ H
and M/MNH=K. Since M/MNK is simple we have either
(MNK)MNH)=M or MNH < MnNK so that M N H = 1. The former
leads to M = (M NK) x (MNH)= H x K =G which is clearly impossible.
Therefore M NH =1 and |G : M| = |K| > 60.

If G=XUX,U...UX;, with each X; maximal, |G:X;|=0o; and
o <ay<...<aj7 then Lemma 3.1 shows that o, < 6 and a further
counting argument shows that a3 < 60. Therefore X7, X5, X3 each contain
either H or K. Since G/K = As, there are no subgroups of index less than 5
containing K. By Lemma 3.2, at most two of the X; contain H. If exactly
two of X, X2, X3 contain H, then the third contains K and, by Lemma 3.2, it
has index 5. Also a4 = ... = a7 = 5 and so five of the X; contain K. But then
Lemma 3.2 implies that the remaining two have index two which is im-
possible.

So we may assume that two of Xj,X>, X3 contain K. If the third also
contained K then we would have a4 < 4 which is impossible. So the third
contains H and has index 2 or 5. If it has index Sthenas = ... = a7 = 5 and
we again have five of the X; containing K. Therefore X has index 2 and
X1, X5, X3 contain X; N K. Since oy > 5, it follows from Lemma 3.2 that all
the X; contain X; NK and so G/X; NK = C, x As is the union of seven
proper subgroups, contrary to the earlier case.

To prepare for the main body of our proof we consider a number of other
very special situations which can not arise in a group G with ¢(G) = 7. These
situations will occur repeatedly in the proof.

LeEMMA 3.5. Suppose that G is a group with o(G) = 7.

() If X < Gwith|G: X| <4, then X <G and G/X is cyclic.

(ii) G has no factor group ismorphic to C, x C, with p =23 or 5.

(ili) G does not have a subgroup D of index 25 contained in six maximal
subgroups of index 5.

(iv) G does not have three maximal subgroups X,Y,Z with |G:X|=
2,G:Y|=|G:Z|=5and YNZ < X.

(v) G does not have 6 maximal subgroups Hy, Hy,...,Hs of index 5 sa-
tisfying HoH; = G, forall i > 1, and H;N\ H; < Hy, forall i >j > 1.

PrOOF. (i) G/core X is isomorphic to a subgroup of S4. If G/coreX is not
cyclic, then (G /coreX) < 7.
(ii) This is clear since o(C, x C,) =p + 1.
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(iii) Suppose that M, ..., Mg have index 5 in G so that |M; : D| = 5. Then
MiNnM;=D and we see that |M;U...UM =|D|+6M\D|l =
|D| + 6 x 4|D| = 25|D| = |G| and so G = M, U...U Mg and ¢(G) < 6.

(iv) Suppose that G does have three maximal subgroups X, Y, Z with the
properties stated. Then YNZ < YN X and Y N X has index 2 in Y. There-
fore Y N Z has index 2 or 4 in Y (and index 10 or 20 in G).

If|G:YNZ|=10,then YNZ=YNX<Yandalso YNZ=ZNX<Z
sothat YNZ <« (Y,Z) = G. But then G/Y N Z has order 10 so is either cyclic
or dihedral. But the dihedral group of order 10 is the union of six proper
subgroups and the cyclic group of order 10 has only one subgroup of index
5.

So we may assume that |G : Y N Z| = 20. Therefore Y N Z has index 2 in
both YNX and ZNX and so is normal in (YNX,ZNX). But
YNX #ZnX, for otherwise we would have YNZ =Y NX =ZN X hav-
ingindex 10inG.So YNX <(YNX,ZNX)<X.But|X: YNX|=5and
so YNX is maximal in X. Therefore (Y NX,ZNX)=X and we have
YNZ«aX.

Now X/YNZ is a group of order 10 and so contains a subgroup
K/Y NZ of index 2. Then |G : K| = 4 and, by (i), K < G. Since Y is maximal,
KY =G and |Y: YNK|=4. It follows that YNZ = Y NK <Y and, simi-
larly, YNZ < Z. Therefore YNZ < (Y,Z) =G and G/Y NZ is a group of
order 20. Since |G/K| = 4,G/K is cyclic and so G/Y N Z is either cyclic or a
split extension of Cs by C,. In the former case this is contrary to there being
two subgroups of index 5. In the latter case G/Y N Z is the union of 6 proper
subgroups.

(v) Suppose that G does have subgroups Hy,...,Hs with the properties
stated. Since HoH; = G, Ho N H; has index 5 in H;. Since H; N H; < Hy N H;,
it follows that H; N H; = Hy N H; and, similarly, H; N H; = Hy N H;. There-
fore H;N H; = D for all i # j and we have a contradiction to (iii).

We now make use of these particular cases in proving the main result of
this section.

THEOREM 3.6. There is no group G with o(G) =17.

PRrROOF. Suppose that there is a group G with o(G) = 7. Then we can write
G as the union of 7 maximal subgroups Xj,...,X7. We let |G : X;| = o4, with
g <oy<...<o.

By Lemma 3.1, a; < 6. Since the X; are maximal subgroups, Lemma 3.5(i)
shows that no ¢; is equal to 4 and so a; = 3,5 or 6. We consider these three
cases separately.

Case 1: ap = 3.
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In this case o =2,X; <G, X2 <G and G/X; N X, = Ce. Since X;(X; N X>)
is not contained in either X; or X, we have X;(X; N X;) = G, for all i > 3.

By Lemma 3.5(ii), o; > S5, forall i > 3. By Lemma 3.2, a3 =...=a; =5
and X;NX; < X1 UX,, foralli>j>3.

By Lemma 3.5(iv), we can not have X; N X; < X; and so X; N X; < X;.

But then X;NX; < X;NX, and X;N X, has index 3 in X;. Therefore
XiNnX;=X;NX>2<X; and, similarly, X;NX;<X;. Hence X;NX;«
(Xi, X;) = G and |G/X; N X;| = 15. But then G/X; N X; is cyclic, contrary to
it having two subgroups of index S.

Case II: ap; = 6.

It follows from Lemma 3.1 that o, = ... = a7 = 6.

Let N} = core Xj, N; = core X, and N = N; N N, =core (X N X3). It fol-
lows from Lemma 3.2 that X; > N, for all i, and so o(G/N) = 7.

If oy =2 or 3, then G/N is isomorphic to a subgroup of C, x S or
C3 x Sg. Since G/N; can not be covered by six proper subgroups and G has
no factor group isomorphic to C, x C,, the only possibilities for G/N are:
Se, S5, C2 X Ag, C3 X Sg, C3 X Ag, C3 X A5, C3 x F. All of these possibilities
are excluded by Lemma 3.4.

We may therefore assume that a; =5 or 6. If X; > Nj, for all i, then
o(G/N;) = 7. But G/N, is a subgroup of Sg and we again have a contra-
diction to Lemmas 3.3 and 3.4. Therefore there is an i > 2 such that X; 2 N;.
By Lemma 3.2, we must have X; 2 Ny, for all i > 2, and X; N X; < X, for all
i>j>2.

Now N1 X; = G and so X;X; = G and X; N X; has index (= 5 or 6) in X.
Hence X;NX;=X;NX;=X NX,;. It follows that X;NX;=D for all
i>j>1.

Now NyND =N NX;aX;, for all i>2, and so NyND<(X;,X;) =G
and |[N;/NyND|=6. Therefore N;/N;ND has a subgroup T/NiND«
G/NyND with |[N;/T|=2. But then X; < TX; < G, contrary to X; being
maximal in G.

Case 1III: ap = 5.

Again, let N; =coreX;, N, =coreX; and N = N; N N, =core(X; N X3).

(a) Suppose first that X; 2 N, for some i > 3. By Lemma 3.2, we have
a; =5, foralli>2,and X;NX; < X;UX,, foralli>;>3.

We also have a; = 2,3 or 5 and consider these three cases separately

() a; =2.

By Lemma 3.5(iv), we can not have X; N X; < Xj and so X; N X; < X, for
all i >j > 3. Since X;N = G, we have X;X, =G and so |X;: X;NX;|=5.
Hence X;NX; = X;N X, = X;N X, and so X; N X; = D, for alli > j > 2. This
is contrary to Lemma 3.5(v).

(i) a3 = 3.
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If X;NX; < Xi, then X; N X; = X; N X; < X; and, similarly, X;N X; < X; so
that X; N X;<(X;,X;) =G and |G/X;NX;| = 15. Then G/X;NX; is cyclic
contrary to it having two subgroups of index 5.

So X;NX; < Xa, for all i > j > 3. Again, we see that X;N X; = D, for all
i >j > 2, and obtain a contradiction to Lemma 4.5(v).

(iii)) a; = 5.

Since NX; =G, we have X X;=X2X;=G and so |X;:X;NnXi| =
|1X;: X;iN Xz =5, for all i > 3.

Therefore X; N X; = X; N X, or X; N X,.

Suppose that there is a kK > 3 and i, such that

XinXry =Xk N X1 =XiN X, andX}ﬂXk=XkﬂXz=XjﬂX2.

Now X;NX; < X;UX;, and, without loss of generality, we may assume
XN X; < X; so that

X,-ﬂ/\GZAIiﬂXZZ)(jﬂXz.

But /YjﬂXz =XrNXyand so XN X2 =X NXy < XN X = XN X giv-
ing X; N X1 = X;N X;. Hence X; N X < X,. It follows that X; N X; < X>, for
all i >j >3, and we again have X;N X; = D, for all i >j > 2, contrary to
Lemma 3.5(v).

(b) We may therefore assume that X; > N, for all i, and so o(G/N) =17.

If oy =2 or 3, then G/Nl ~ Cyor C3. If a; = 5, then G/N] >~ (s, As or Ss.
Since G/N, = Cs, As or Ss, G/N must be C X As,C x Ss,4s x As or
As x Ss. All these possibilities are excluded by Lemma 3.4.
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