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TENSOR PRODUCTS OF MODULES, RIGIDITY AND
LOCAL COHOMOLOGY

CRAIG HUNEKE and ROGER WIEGAND

Dedicated to the memory of Maurice Auslander

In this paper we continue our study of the rigidity of Tor over hypersurfaces
and regular rings, begun in [HW]. A starting point of this paper is a result in
a paper of Luk and Yau [LY] which gives a cohomological criterion for a
vector bundle over complex projective space to be a direct sum of line bun-
dles. A commutative algebra interpretation of this result gives a condition,
over a regular local ring R, for a reflexive module M to be free. Basically the
condition amounts to saying that a second local cohomology module van-
ishes, namely HZ (M ®g M*) = 0. It is known that a torsion-free module M
over an integrally closed domain is free iff M ®g M* is reflexive. One possi-
ble interpretation of the result of Luk and Yau is to speculate that there is a
cohomological rigidity theorem which says if one local cohomology module
of a tensor product vanishes, then all lower ones vanish. Under suitable as-
sumptions, we are able to prove this. Since the vanishing of the first r local
cohomology modules of N is equivalent to depth(N) > r, such a rigidity
theorem is really a statement about the depth of the tensor product of two
modules, provided a single local cohomology module of the tensor product
vanishes. Theorem 2.4 states:

2.4. THEOREM Let M and N be finitely generated nonzero modules over a
local ring (R,m) of dimension d whose completion is the quotient of an un-
ramified (or equicharacteristic) regular local ring by a nonzero element. Let r
be an integer with 0 < r < d. Assume that M @r N satisfies Serre’s condition
(Sr+1) on the punctured spectrum of R. Further assume that N has finite pro-
Jjective dimension. The following conditions are equivalent:

(1) H (M ®r N) = 0 and both M and N have depth at least r.

(2) depth(M) +depth(N) >d +r+ 1.
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(3) depth(M Qg N) >r+ 1.
(4) M ®g N satisfies Serre’s condition (S;).

Thus, not only is a rigidity theorem true, but we are able to give necessary
and sufficient conditions in terms of the depth of the modules for the tensor
product to have high depth. Moreover, the theorem is true for hypersurfaces,
provided one of the modules has finite projective dimension. In Theorem 2.5
we give a rigidity theorem for hypersurfaces without any assumption of finite
projective dimension, but we must assume two consecutive local cohomology
modules vanish. The theorem of Luk and Yau follows from the special case
in which R = C[Xo, ..., Xa](x, x> ¥=2, N=M"*, and M is a graded re-
flexive R-module which is free on the punctured spectrum of R.

Theorem 2.4 has many nice consequences. For example in (2.6) we recover
the main result of an old paper of Auslander and Goldman. Another cor-
ollary (2.7) gives that for nonzero reflexive modules over a regular local ring,
Hompg(M, N) satisfies Serre’s condition (S3) only if it is isomorphic with
M* ®g N, and all the higher Tors of M* and N are zero. If a direct sum of
copies of M maps onto N we can conclude M has a nonzero free summand.
Later corollaries give depth estimates and rigidity theorems for tensor pro-
ducts of modules which are free on the punctured spectrum of a regular local
ring. Proposition 3.6 shows that if M and N are of this form, M has rank 2,
and H2 (M ®g N) = 0, then M** is free. Corollary 3.8 shows that if the sec-
ond local cohomology module of the tensor product of at least dim(R) — 2
such modules is zero, then the double dual of at least one of them is free.

Section 1 gives basic background material including a discussion of an
important formula on the depth of a tensor product, which we call the depth
formula. In addition an interesting fact is proved about finitely generated
modules M and N over hypersurfaces: one of them has finite projective di-
mension iff all sufficiently high Tors of M and N are zero. See Theorem 1.9.

Section 2 proves most of the main theorems and gives several con-
sequences. Section 3 applies the main theorems to the depth of tensor pro-
ducts of modules that are locally free on the punctured spectrum of a regular
local ring. By an abuse of notation, we call such modules vector bundles.

Section 4 gives applications of the main theorems to tensor products of the
form M ®g M*. This is the case studied by Luk and Yau. It is the torsion of
this module which plays a role in ramification theory, as first noted by the
pioneering papers of Auslander and Goldman [AG], Auslander and Buchs-
baum [AB2], and Auslander [A1,2]. Indeed, the proofs of many of our re-
sults come from the work of Auslander and his co-authors in the late 1950’s
and early 1960’s. The techniques developed in these papers and reported on
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in Auslander’s address at the International Congress in Stockholm in 1962
[A3] are still amazing today.

In Section 5 we translate our theorems on local rings to theorems about
vector bundles over projective space. The theorem of Luk and Yau is one of
the corollaries of this translation.

Finally in Section 6 we give a new rigidity theorem for Tors which we
discovered while trying to prove Theorem 2.4. Except for one special case
the theorem says that over an unramified regular local ring, if Torﬁl(M ,N)
is nonzero and has finite length, then the depth of Tor®(M, N) must be 0.

1. A depth formula.

Let M and N be nonzero finitely generated modules over a local ring (R, m).
We say that M and N satisfy the depth formula provided

(L.1) depth(M) + depth(N) = depth(R) + depth(M Qg N).

Observe that a necessary condition for the depth formula to hold is that
depth(M) + depth(N) > depth(R). Auslander and Lichtenbaum [A, (3,1)],
[L] showed that M and N satisfy the depth formula if (R,m) is regular and
M ®g N is torsion-free. The main step in the proof is to show that
Tor®(M,N) = 0 for all i > 1. In fact, if (R, m) is a complete intersection the
depth formula holds [HW, (2.5)] whenever Torf(M, N)=0foralli>1. We
record the following observation, pointed out to us by David Jorgensen:

1.2. LEMMA. Let (R,m) be a complete intersection, and let M and N be R-
modules such that Tor®(M,N) =0 for all i >> 0. Then TorR(M,N) = 0 for
all i > dim(R).

Proor. We proceed by induction on the codimension r of R, the case
r =0 (that is, R regular) being clear. Assuming r > 0, write R = S/(f),
where S is a complete intersection of codimension r — 1. There is a change-
of-rings spectral sequence yielding a long exact sequence [L], [HW, (2.1)]

where Tf = Torf(M,N) and Tis = Tor,.S(M, N). It follows from (1.2.1) that
Torf(M,N) =0 for i>>0, and by induction that Tor{ =0 for
i > dim(S) = dim(R) + 1. From (1.2.1) we see that TR (M,N)=
Tor® (M, N) for all i > dim(R) + 2. The result follows immediately.

1.3. PROPOSITION. Let (R,m) be a complete intersection, and let M and N
be nonzero R-modules satisfying Serre’s conditions (Sy) and (Sy), respectively.
If m+n > dim(R) and TorR(M,N) = 0 for all i >> 0, then the depth formula
(1.1) holds for M and N.
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ProoF. We may assume that m + n = d := dim(R). Since R is Gorenstein,
M is an mth syzygy of some R-module X, and N is an nth syzygy of, say, Y.
(See, e.g., [EG, (3.8)]. Now Tor®(X, Y) = 0 for all i >> 0, and by the lemma
above Tor®(X,Y) =0 for all i > d. The long exact sequence of Tor then
implies that Torf(M, N) =0 for all i > 0. By [HW, (2.5)], M and N satisfy
the depth formula.

1.4. CorROLLARY. Let (R,m) be a Noetherian local ring which is a complete
intersection. Suppose that M and N are finitely generated R-modules which are
both free on the punctured spectrum of R. If depth(M) + depth(N) > dim(R)
and Tor®(M,N) = 0 for all i >> 0, then M and N satisfy the depth formula
(1.1).

It seems reasonable to conjecture that if, in (1.4), we have
depth(M) + depth(N) < dim(R), then M ®g N must have depth 0. This is
true if R is the quotient of an unramified (or equicharacteristic) regular local
ring by a nonzero element and N has finite projective dimension. (See Lem-
ma 2.3.)

1.5. REMARK. Recently, Petra Constapel [C] has found a one-dimensional
Gorenstein domain with two modules of depth 0 whose tensor product has
depth 1. The ring is k[[#%, ..., 4], which is not a complete intersection.

Hypersurfaces. A hypersurface is a ring of the form S/(f), where S is a
regular local ring and f is an element in the maximal ideal of S. For hy-
persurfaces, we are able to prove the depth formula under very mild hy-
potheses. There is one technicality that we will have to deal with. Suppose,
for example, that R = k[[x,y]] = k[[X, Y]]/(XY), where k is a field. Put
M = R/(x?) and N = R/(x). Then x is a nonzero torsion element of M, since
it is killed by the non-zero-divisor x+y. On the other hand
M ®z N = R/(x) = (y), which is torsion-free (in fact, reflexive, as R is one-
dimensional and Gorenstein). Thus M has depth 0, while M ®g N, N and R
all have depth 1; and the depth formula fails. We say that a finitely generated
R-module (R any Noetherian ring) has constant rank (or constant rank r)
provided there is an integer r such that Mp = Rg) for every P € Ass(R).

We recall the following results from [HW]:

1.6. THEOREM [HW, (2.7), (3.1)]. Let R be a hypersurface, and let M and N
be nonzero finitely generated R-modules, at least one of which has constant
rank.

(1) If M®rN is reflexive, then both M and N are reflexive, and
TorR (M, N) = 0 for every i > 0.
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(2) If M ®g N is a maximal Cohen-Macaulay module, then either M or N is
free.

1.7. COROLLARY. Let R be a hypersurface, and let M and N be nonzero fi-
nitely generated R-modules, at least one of which has constant rank. If
M ®Rgr N is reflexive, then M and N satisfy the depth formula (1.1).

ProOOF. By (1.6)(1) we have Tor®(M,N) = 0 for all i > 1. The depth for-
mula now follows from [HW, (2.5)].

The following example shows that in Corollary 1.7 it is not enough to as-
sume that the tensor product is torsion-free.

1.8. EXAMPLE. Let k be a field and put R=k[x,y,uv)]=
kK[X,Y,U,V])]/(XY — UV). Then I := (x,u), J := (y,v) and L := (y,u) (and
of course R) are vector bundles of depth 3. However, depth(I ®g J) =0, and
I®gr L>=m:= (x,y,u,v), which has depth 1. In particular, the depth formula
fails in both cases.

Proor. This example is discussed in [HW, (4.1)], and it is shown there
that I, J and L have depth 3 and that I ®g L is torsion-free. Therefore
I ®r L= IL = (xy,xu,yu,u?) = (uv, xu, yu,u?) = u(v,x,y,u) =m. If P is any
non-maximal prime then Ip ®g, Lp = mp = Rp. It follows that I and L are
vector bundles (and so is J by symmetry). To see that depth(/ ®g J) =0,
that is, I®gJ 1is not torsion-free, we note [HW, (4.1)] that
TorR(R/1,R/J) # 0 and apply [HW, (1.4)].

By (1.4) we know that not all the higher Tors can vanish in the example
above. In fact, it is shown in [HW, (4.1)] that Tor®(1,J) = 0 if and only if i is
odd (or negative). Also Torf(l ,L) # 0 for every odd positive integer i. Sur-
prisingly, vanishing of the higher Tors forces one of the modules to have fi-
nite projective dimension. This time there is a device for avoiding the hy-
pothesis of constant rank.

1.9. THEOREM. Let R be a hypersurface, and let M and N be finitely gen-
erated R-modules. If Torf(M,N) =TorR (M,N) =0 for some i >0, then
either M or N has finite projective dimension.

Proor. We assume M and N are both nonzero. We write R = S/(f),
where S is a regular local ring and use the long exact sequence (1.2.1) con-
necting TS := Tor and TR := Tor®. We see that Tor},,(M,N) = 0, and the
rigidity theorem of Auslander and Lichtenbaum [A], [L, Corollary 1] now
implies that Torf(M, N)=0 for all j>i+1. Now (1.2.1) shows that
Torf o Torj’ir2 for all j > i, and it follows that Torf(M, N)=0forallj>i
(This is a special case of Murthy’s rigidity theorem [M] for complete inter-
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sections, namely, the vanishing of 1 4+ codim(R) consecutive Tors forces all
higher Tors to vanish; the assumption that the “ambient” regular local ring
be unramified is no longer necessary in view of Lichtenbaum’s proof [L] of
rigidity in the ramified case.) By replacing M and N by sufficently high sy-
zygies, we may assume that both M and N are maximal Cohen-Macaulay
modules and that Tor®(M,N) = 0 for all i > 1.

Our goal is to show that either M or N is free. We can harmlessly assume
that neither M nor N has a nonzero free summand, and now we seek a
contradiction. Since (for complete intersections) the depth formula holds
whenever all positive Tors vanish [HW, (2.5)], M ®g N is a maximal Cohen-
Macaulay module. Since we are not assuming that M or N has constant
rank, we need to pass to the double branched cover R* := S[[Z]]/(f + Z?),
[HW,-p3]. On reading through the proof of [HW, (3.6)] we discover that the
hypothesis that M have constant rank is never used. Thus (3.6) implies that
M?#* @gs N¥ is a maximal Cohen-Macaulay R#-module. Here M# and N#
are the first syzygies of M and N viewed as R¥-modules via the map killing
z. Being syzygies of torsion modules, M# and N# have constant rank. By
(1.6)(2) either M# or N# is free. But [HW, (3.5)] says that neither M# nor
N# has a nonzero free summand. Thus either M# or N# is 0, an obvious
contradiction.

A particular example of this theorem was used by Dutta, Hochster, and
McLaughlin in [DHM]. Claudia Miller, a student at the University of Illi-
nois, has given a nice proof of this theorem without appealing to Theorem
1.6.

2. Local cohomology.

Let (R,m,k) be a local ring. Given a finitely generated R-module M, let
H? (M) = {x € M|m'x = 0 for some ¢ > 1}. Then HY, is a left exact functor
on R-modules, and by definition {H. } is its sequence of right derived func-
tors. If M is finitely generated and nonzero, then [BH, (3.5.7)] depth(M)
(respectively dim(M)) is the least (respectively largest) integer r such that
H. (M) # 0. Thus the vanishing of H! (M) for i <r is equivalent to the
depth of M being at least » + 1. Our main results in this section are essen-
tially rigidity theorems for the local cohomology of a tensor product of
modules. For example, (2.4) says (for hypersurfaces with at least one of the
modules having finite projective dimension) that the vanishing of
H} (M ®gr N) entails the vanishing of all lower local cohomology modules.
Thus, the vanishing of a single local cohomology module gives a lower
bound on the depth. A similar result (2.5), for hypersurfaces without as-
suming one of the modules has finite projective dimension, assumes that two
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consecutive local cohomology modules vanish. We were motivated to begin
study of this problem by a result of Luk and Yau [LY] which gave some
conditions which imply holomorphic vector bundles over complex projective
space are direct sums of line bundles. Suitably interpreted, their conditions
amount to the condition that HZ(E ® E*) = 0, for a module E correspond-
ing to the vector bundle, and their conclusion corresponds to the statement
that FE is free. We derive this from our main theorem, which is considerably
more general. We discuss applications to vector bundles in Section 5.

2.1. LEMMA. Let (R,m) be a local Gorenstein ring and let M be a finitely
generated R-module. Let r be an integer, 1 <r <dim R. Assume that
depth M > r and M satisfies Serre’s condition (S,) on the punctured spectrum
of R, for some n > 1. Then there is an exact sequence

0-M-—>F—>C-—0,

in which
(1) F is free,
(2) C has depth at least r — 1,
(3) C satisfies (Sp—1) on the punctured spectrum, and
(4) for every prime ideal p, C, is free iff M, is free.

PrROOF. Let F be a free R-module of rank at least pgp(M*) := number of
generators required for M*. Map F* onto M*, obtaining a short exact se-
quence

(2.1.1) 0O->X—->F —->M —0.
Dualize, getting an exact sequence
(2.1.2) 0 — M™ — F — X* — Exth(M*,R) — 0.

M is torsion-free since both r and n are at least 1, so that M embeds in M**.
This gives an exact sequence,

(2.1.3) 0—M—F—C—0.

The exact sequence (2.1.3) is called the universal push forward of M. It has
two properties: firstly it commutes with localization (up to free summands),
and secondly if M is an nth syzygy, then C is an (n — 1)th syzygy. The loca-
lization property is clear from the construction, while the syzygy property is
explained on page 49 of [EG]. Since R is Gorenstein, it then follows from
Theorem 3.8 of [EG] that as M is (S,) on the punctured spectrum, C must be
(Su—1) on the punctured spectrum. The exact sequence (2.1.3) shows that the
depth of C must be at least depth M — 1, which gives (2); and (4) is clear
from the construction.
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2.2. LEMMA. Let M and N be finitely generated modules over a Noetherian
local ring (R,m) such that the projective dimension of N is finite. Let q be the
largest integer such that Torf;(M ,N) #£0. If the depth of Torf(M ,N) is at
most one, or if ¢ =0, then

(2.2.1) depth M + depth N = depth R + depth(Tor} (M, N)) —g.

Proor. This is simply the statement of [Al, (1.2)] after taking into ac-
count the Auslander-Buchsbaum formula.

2.3. LEMMA. Let (R,m) be a local ring whose completion is the quotient of
an unramified (or equicharacteristic) regular local ring S by a nonzero ele-
ment. Let M and N be finitely generated R-modules such that M Qg N is tor-
sion-free. Assume in addition that pdg(N) < co. Then TorR(M,N) = 0 for all
i > 1 and the depth formula holds for M and N.

PrOOF.! We may assume that R is complete.? Let M (respectively N) be
M modulo its torsion (respectively N modulo torsion). An easy argument
(See Lemma 1.1 of [HW]) shows that M ®g N is also torsion-free. Embed M
into a free R-module F, and let C be the cokernel. Tensoring with N gives an
exact sequence,

0 — TorR(C,N) = M ®z N — ...

Since M ®g N is torsion-free, it follows that Torf(C ,N) = 0 as this module
is torsion (N has finite projective dimension and is therefore generically
free). Applying Theorem 3 of [L], we obtain that Tor®(C,N) =0 for all
i > 1. It follows that Torf(ﬁ, N)=0forall i > 1. Let 7 C M be the torsion
submodule of M. Tensoring the exact sequence 0 — 7 — M — M — 0 with
N, we then see that T g N C M ®gr N. The second module is torsion-free,
forcing 7 = 0. The vanishing statement of the Lemma follows immediately,
while the last statement follows from [HW, (2.5)].

We are ready to prove one of our main results.

2.4. THEOREM. Let M and N be finitely generated nonzero modules over a

! This Lemma is essentially due to Lichtenbaum. One only needs to put together some of
Auslander’s ideas with Theorem 3 in [L]. Namely, in Theorem 3 of [L], Lichtenbaum proves ri-
gidity of Tor for any two finitely generated modules over R such that all sufficiently high Tors
vanish. As we have seen in Theorem 1.9, the assumption of finite projective dimension for one of
the two modules, a clearly sufficient condition for the higher Tors to vanish, is also necessary.

2 There is a technical point in the reduction to the complete case: We need to know that
M ®r N ®g R is torsion-free. Note that the hypotheses on R imply that R is Gorenstein and
therefore that M ®g N can be embedded into a free R-module. On completing, we see that
M ®r N ®g R embeds into a free R-module and is therefore torsion-free.
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local ring (R,m) of dimension d whose completion is the quotient of an un-
ramified (or equicharacteristic) regular local ring by a nonzero element. Let r
be an integer with 0 <r < d. Assume that M Qg N satisfies Serre’s condition
(St+1) on the punctured spectrum of R. Further assume that N has finite pro-
Jective dimension. The following conditions are equivalent:

(1) H (M ®g N) = 0 and both M and N have depth at least r.

(2) depth(M) + depth(N) >d +r+ 1.

(3) depth(M ®g N) >r+ 1.

(4) M Qg N satisfies Serre’s condition (S;y1).

PrOOF. Since M ®g N satisfies (S;+;) on the punctured spectrum, (3) and
(4) are clearly equivalent. Assume (4). M ®g N satisfies (S;), that is, the-
tensor product is torsion-free. Lemma 2.3 then proves the depth formula
holds for M and N, which implies condition (2).

Assume (2). Since M ®g N is torsion-free on the punctured spectrum,
Lemma 2.3 applies to prove that all the higher Tors of M and N are zero on
the punctured spectrum, i.e., that Tor®(M, N) has finite length for i > 1. If
some Torf (M, N) is nonzero for some i > 1, then we may apply Lemma 2.2
to reach the contradiction that—g > r + 1, where g is the index of the last
nonvanishing Tor. Hence Torf(M ,N)=0 for i > 1. By [HW, (2.5)] the
depth formula holds and depth(M ®g N) = depth M +depth N —d > r+ 1.
Hence H; (M ®g N) = 0. Both M and N must also have depth at least 7, as
each of their depths is bounded by d. This proves (1).

Now assume (1) holds. If r = 0 we get (3) immediately. Assume r > 0 and
proceed by induction. Since N has constant rank (1.7) implies that the depth
formula holds on the punctured spectrum for M and N. In particular, both
M and N must be (S;;;) on the punctured spectrum (see [HW, Corollary
2.6]). Therefore they satisfy (S;) since (1) gives that their depths are at least r.
Form the universal pushforward as in Lemma 2.1:

(2.4.1) 0—-M-—>F—C—0,

in which F is free, C has depth at least r — 1, and C satisfies (S;) on the-
punctured spectrum.
Tensoring (2.4.1) with N, we get a four-term exact sequence

(2.4.2) 0 — TorR(C,N) = M @ N - F®r N - C®r N — 0,
which we break into two short exact sequences:

(2.4.3) 0 — TorR(C,N) - M ®r N — D — 0,

(2.4.4) 0->D—->F®N—-C®N—D0.
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We claim that 7 := Torf(C,N) has finite length. The module N is gener-
ically free since it has finite projective dimension. In particular, Torf(C, N)
is torsion. As M ®x N is torsion-free on the punctured spectrum of R the
claim follows. In particular H.™'(T) = 0. It follows from the long exact se-
quence of local cohomology (applied to (2.4.3)) that H] (D) = 0. Also, since
depth(N) > r, we have H,!(N) = 0. Part of the long exact sequence of local
cohomology from (2.4.4) is:

v = HY(F®r N) = H ' (C®r N) — HL (D) — ...,

which proves that H~ 1(C ®r N) = 0. We claim that C ®x N satisfies (S;) on
the punctured spectrum. Localizing at a prime p # m we get an exact se-
quence,

0— (M®rN),— (F®rN), > (C®N),—0.

Both (M ®g N)p and N, satisfy (S41) (see the discussion before (2.4.1)). If
dim R, > r + 1, the exact sequence above shows that (C ®g N), has depth at
least r. If dim R<r, (M ®g N )p will be maximal Cohen-Macaulay. In this
case both M, and N, will be maximal Cohen-Macaulay by Lemma 2.3 and
[HW, (2.0)]. Since N, has finite projective dimension, N, will be free. Since
C, satisfies (S;), (C®r N) » is also maximal Cohen-Macaulay, which finishes
the proof that C ®g N satisfies (S;) on the punctured spectrum.

Our inductive assumption then gives that depth(C ®g N) > r. In parti-
cular, C ®g N is torsion-free (since r > 0), and we have Torf(C,N ) =0 by
Lemma 2.3. Now (2.4.2) proves that depth(M ®g N) > r + 1.

Note that every complete ramified regular local ring is the quotient of an
unramified regular local ring by a nonzero element. Thus Theorem 2.4 ap-
plies to all regular local rings.

The modules in (1.8) show that (2) does not imply (3) if N is not assumed
to have finite projective dimension. Also, when viewed as modules over the
regular local ring k[[X, Y, U, V]], they show that the Serre condition on the
punctured spectrum cannot be eliminated.

Next we prove another rigidity theorem for hypersurfaces, in which nei-
ther of the modules is assumed to be finite projective dimension. Not sur-
prisingly, in this case we require that two consecutive local cohomology
modules vanish. After the fact, this then forces one of the modules to be of
finite projective dimension, and the equivalences below can in part be viewed
as giving sufficient conditions for a module to have finite projective dimen-
sion.

2.5. THEOREM. Let (R,m) be a hypersurface of dimension d. Let M and N
be finitely generated nonzero modules over R, at least one of which has con-
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stant rank. Let r be an integer with 1 <r < d. Assume that M ®g N satisfies
Serre’s condition (S;11) on the punctured spectrum of R. The following condi-
tions are equivalent:

(1) H''(M @ N) = H,,(M @& N) = 0 and both M and N have depth at
least r.

(2) depth(M) + depth(N) > d +r+ 1, and either M or N has finite pro-
Jective dimension.

(3) depth(M ®r N) >r+ 1.

(4) M ®g N satisfies Serre’s condition (S;41).

ProoF. This proof is almost identical to that of Theorem 2.4. However, it
is difficult to combine the two proofs efficiently. We may assume that M has
constant rank. Since M ®g N satisfies (S;4+1) on the punctured spectrum, (3)
and (4) are clearly equivalent. Assume (3). Then M ®z N satisfies (S,), that
is, the tensor product is reflexive. By Theorems 1.6 and 1.9, either M or N
has finite projective dimension. Corollary 1.7 proves the depth formula holds
for M and N, which implies condition (2).

Assume (2). Since M @g N is reflexive on the punctured spectrum, Theo-
rem 1.6 applies to prove that all the higher Tors of M and N are zero on the
punctured spectrum, i.e., that TorR(M, N) has finite length for i > 1. If some
Torf(M ,N) is nonzero for some i > 1, then we may apply Lemma 2.2 to
reach the contradiction that —g > r+ 1, where g is the index of the last
nonvanishing Tor. Hence Tor®(M, N) = 0 for i > 1. Then the depth formula
holds [HW, (2.5)] and depth(M ®zr N) = depth M +depth N —d >r+ 1.
Hence H; (M ®z N) = 0. Both M and N must also have depth at least 7, as
each of their depths is bounded by d. This proves (1).

Now assume (1) holds. If r = 1 we get (3) immediately. Assume » > 1 and
proceed by induction. As M ®g N is reflexive on the punctured spectrum,
Corollary 1.7 shows that the depth formula holds on the punctured spectrum
for M and N. In particular, both M and N must be (S;;;) on the punctured
spectrum (see [HW, Corollary 2.6]). Hence both M and N satisfy (S;) since
(1) gives that their depths are at least r. There is a short exact sequence given
by Lemma 2.1:

(2.5.1) 0—-M—->F—C-0,

in which F is free, C has depth at least r — 1, and C satisfies (S;) on the
punctured spectrum. Furthermore, C will also have constant rank.
Tensoring (2.5.1) with N, we get a four-term exact sequence

(2.5.2) 0 — Torf(C,N) > M ®r N - F®r N - C®r N — 0

which we break into two short exact sequences:
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(2.5.3) 0 — Torf(C,N) - M®r N — D — 0,
(2.5.4) 0—>D—F®gN—-C®N —0.

We claim that T := Tor®(C, N) has finite length. Since C has constant rank
we know that Torf(C,N) is torsion. As M ®x N is torsion-free on the
punctured spectrum of R the claim follows. In particular H. (7) =0 for
i > 1. It follows from the long exact sequence of local cohomology (applied
to (2.5.3)) that H: (D) = 0 for i = r — 1, r. Also, since depth(N) > r, we have
H/ (N) = 0 for j < r — 1. Part of the long exact sequence of local cohomol-
ogy from (2.5.4) is:

.. — H (N) - H(C®& N) —» Hi''(D) — ...,

which proves that H, (C®g N) =0 for j=r—2,r — 1. Lemma 2.1 shows
that depth(C) > r — 1. We claim that C ®g N satisfies (S;) on the punctured
spectrum. Localizing at a prime p # m, we get an exact sequence

0— (M®rN),— (F®rN), > (C®rN),— 0.

If dim R, > r+ 1, then depth(M ®z N)p >r+1, and by Corollary 1.7 it
follows that both M, and N, have depth at least r 4 1. The exact sequence
above then proves that the depth of (C®g N), is at least r. If dimR, <r,
(M ®rN )p will be maximal Cohen-Macaulay. In this case [HW, (3.1) says
that either M, or N, is free. If M is free so is C, by Lemma 2.1. If N, is free
then depth(C ®g N), = depth C, = dim R, (since C satisfies (S;) on the
punctured spectrum). This finishes the proof that C ®g N satisfies (S;) on the
punctured spectrum.

Our inductive assumption then gives that depth(C ®g N) > r. In parti-
cular, C®g N is reflexive (since r > 1), and we have Torf(C, N)=0 by
Theorem 1.6. Now (2.5.2) proves that depth(M @z N) > r+ 1.

In the next section we will give several applications of these theorems to
questions concerning the depth of tensor products of vector bundles, and
when vector bundles are free. To close this section, we give an application of
Theorem 2.4 to give a quick proof of the main technical result of the paper
of Auslander and Goldman [AG, Theorem 4.4]:

2.6. COROLLARY. Let (R,m) be a regular local ring and let M be a finitely
generated R-module such that Homg(M, M) is a free R-module. Then M** is

free.
ProoF. Since R is integrally closed, a standard argument shows that the

double dual of Homg(M, M) is Homg(M**, M**) (cf. [AG, (4.1)]). In parti-
cular, we may assume that M is reflexive. By induction on the dimension of
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R we may also assume that M is free on the punctured spectrum and that
dim R > 3 (since reflexive modules over a 2-dimensional regular local ring
are free by the Auslander-Buchsbaum formula). It follows that HZ(R) =0
and therefore H2 (Homg(M, M)) = 0.

There is a canonical map from M ®g M* — Homg(M, M) which is an
isomorphism iff M is free (cf. [Al, (3.3)]). In our situation, both the kernel
and cokernel of this canonical map will be of finite length, and consequently
H,zn(M ®gr M*) = 0. Theorem 2.4 applies to give that M ®z M* is reflexive,
and now an elementary argument given in [A, (3.3)] proves that M is free.>

Our main theorem can also be used to prove that modules of the form
Homg(M, N) rarely have good depth properties. Namely:

2.7. COoROLLARY. Let (R,m) be a local ring of dimension d whose comple-
tion is the quotient of an unramified (or equicharacteristic) regular local ring
by a nonzero element. Let M and N be finitely generated reflexive R-modules,
such that N has finite projective dimension. Suppose that Homg(M,N) sa-
tisfies Serre’s condition (S3). Then TorR(M*,N) =0 for all i > 1, M* and N
satisfy the depth formula, and M* g N = Homg(M, N) via the natural map.

Proor. We induce upon the dimension of R. If dim(R) < 2, then N is free,
and in that case the Corollary is immediate. There is a natural map
¢: M*®r N — Homg(M, N) given by f ® n — {m — f(m)n}. By induction
we may assume that the kernel and cokernel of ¢ have finite length. In this
case H2(M* ®g N) = H(Homg(M,N)) = 0. On the punctured spectrum,
M* @ N satisfies (S3) since it is isomorphic with Homg(M, N) which sa-
tisfies (S3). Moreover the depths of M and N are at least 2 since they are
reflexive and dim(R) > 3. Theorem 2.4 then gives that M* ®z N satisfies
(S3). It then follows from (1.6) that Torf(M*,N) =0 for all i > 1, and since
both M* g N and Homg(M, N) satisfy (S3), ¢ must be an isomorphism.
Finally M* and N satisfy the depth formula by (1.7).

2.8. CorOLLARY. Let (R,m) be a local ring of dimension d whose comple-
tion is the quotient of an unramified (or equicharacteristic) regular local ring
by a nonzero element. Let M and N be finitely generated reflexive R-modules,
such that N has finite projective dimension and is nonzero. Suppose that
Homg(M, N) satisfies Serre’s condition (S3) and that a finite direct sum of
copies of M maps onto N. Then M has a nonzero free summand.

3 The general statement is that if R is an integrally closed domain, and M is a torsion-free R-
module such that M @z M* is reflexive, then M is projective. One proves this by considering the
natural map from M ®g M* — Homg(M, M) which is an isomorphism iff M is projective. By
induction on the dimension one can assume the kernel and cokernel of this map have finite
length. But then M ®z M* reflexive gives that the map is an isomorphism.
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ProOF. Our assumptions guarantee that M* ®g N = Homg(M,N) by
(2.7), and that ®M — N is onto for some finite direct sum of copies of M. It
then follows that the natural map ¢ : M ® g Homg(M,N) — N induced by
m® f — f(m) is onto. Consequently the map from M Qg M* g N to N is
onto. However, this map has image in 7N, where 7 is the trace ideal, i.e. the
image of the natural map from M ®gr M* to R. If 7 Cm then N C mN,
which contradicts Nakayama’s lemma. Thus 7 = R, and since R is local it
follows that M maps onto R.

2.9. CoROLLARY. Let (R,m) be a regular local ring, and let M be a finitely
generated reflexive R-module. If Homg(M, M) satisfies Serre’s condition (S3),
then M is free.

Proor. Induce upon the dimension of R. If dim(R) <2 then M is free
since it is reflexive. We may assume that M is free on the punctured spec-
trum of R, and that dim(R) > 3. Corollary (2.7) gives that M* and M satisfy
the depth formula:

depth M* + depth M > dim R + 3,
We can now apply duality [V, (3.3.16)] to conclude that M is free.

3. Tensor Products of Vector Bundles over a Regular Local Ring.

3.0. REMARK. Let (R,m) be a local ring. By a slight abuse of terminology,
we define a vector bundle over R to be a finitely generated R-module M such
that Mp is a free Rp-module for every prime ideal P # m. Note that we do
not require M to be reflexive; thus there may be many non-isomorphic vec-
tor bundles over R that induce the same vector bundle (= coherent locally
free sheaf) on the punctured spectrum Spec(R) — {m}.

Our starting point in this section is the observation that the equivalence of
(2) and (3) in (2.4) gives a formula for the depth of the tensor product of two
vector bundles in terms of the depths of the factors. An easy induction yields
the following generalization of this formula:

3.1. PROPOSITION. Let M,,, M, be nonzero vector bundles over a regular
local ring R of dimension d. Then depth(MQ®g...®QrM,)=
max{0, Y., depth(M;) — (n — 1)d}.

Every regular local ring has a nice source of vector bundles of various
depths, namely the syzygies of the residue field. Given a regular local ring
(R,m, k), let E, denote the rth syzygy in the minimal (Koszul) resolution of
k. Then depth(E,) = r for 0 < i < d. In particular we have the tangent bundle
T := E;_,. Using (3.1) it is easy to compute the depth of any tensor power of
T:
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3.2. EXAMPLE. Let R be a regular local ring of dimension d, and let T be the
tangent bundle. Then depth(®}T) = max{0,d — n}.

In order to get information from the vanishing of local cohomology of an
n-fold tensor product, we will use the following lemma, whose proof is an
easy diagram chase left to the reader.

3.3. LEMMA. Let M be a vector bundle over a local ring (R,m), and let M
be the image of the natural map from M into its double dual M**. Let N be any
finitely generated R-module.

(1) The natural map Hi,(M ®g N) — H. (M ®g N) is surjective for i =0
and an isomorphism for i > 1.

(2) The natural map H: (M ®g N) — H. (M** @g N) is surjective for i = 1
and an isomorphism for i > 2.

3.4. PROPOSITION. Let My,...,M, be nonzero torsion-free vector bundles
over a regular local ring (R,m) of dimension d>2, and suppose
Hl (M) ®r...®r M,) =0.

(1) M;, ®r ... ®r M,, is reflexive whenever 1 <i; < ... < i, <n.

(2) Y°i, depth(M;) = (n— 1)d + depth(M; Qg ... ®r M,) > (n— 1)d + 2.

(3) If n > d — 1 then at least one of the M; is free.

ProOF. The case n = 1 is trivial, and if n = 2 we can apply (2.4). Therefore
we assume n > 3 and proceed inductively. Put N = M, Qg ... g M,. By
(3.3) HL(M;®rN)=0, and (1.4) then implies that depth(M;) +
depth(N) > d + 2. Therefore depth(N) > 2. Then HY, (N) =0, so HL.(N) =0
by (3.3). By induction (and permutation of the subscripts), we see that

(3.4.1) HL (M, ®r...®rM;) =0 if 1<ij<...<i<n.

Applying (1) to N with t =n— 1, we see that N is reflexive and therefore
torsion-free. Then (2.4)(4) implies that M ®g N is reflexive, and now (1)
follows from (3.4.1) and induction.

The inequality in (2) is now clear, and the identity follows from (3.1).

If none of the M; is free then ) _;_, depth(M;) < n(d — 1). Then (2) implies
that n(d — 1) > (n— 1)d + 2, that is, n < d — 2. This proves (3) and com-
pletes the proof.

Using essentially the same proof, with N** replacing N, we obtain the
following:

3.5. PROPOSITION. Let My,...,M, be nonzero reflexive vector bundles
over a regular local ring (R,m) of dimension d >3, and suppose
HZ (M) ®r ... ®r M,) = 0.

(1) depth(M;, ®r ... ®r M;) > 3 whenever 1 < i) < ...<i; <n
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(2) Y, depth(M;) = (n — 1)d + depth(M; ®g ... ®g My) > (n—1)d + 3.
(3) If n > d — 2 then at least one of the M is free.

Example 3.2 shows that the inequalities in (3.4)(3) and (3.5)(3) cannot be
improved, since H. (®%72T) = H2(®%3T) = 0.

The next few results use the Syzygy Theorem [EG, (3.15)], which says that
a non-free module having finite projective dimension and satisfying Serre’s
condition (S;) has rank at least r. The proof of the Syzygy Theorem uses “‘big
Cohen-Macaulay modules”, so we will need to restrict to regular local rings
containing a field.

3.6. PROPOSITION. Let M be a vector bundle of rank 2 over a regular local
ring (R, m) containing a field. If H2(M ®g N) = 0 for some nonzero vector
bundle N, then M* is free.

Proor. If d4:=dim(R) <2 then M* is free, being a second syzygy.
Therefore we assume d > 3. By (3.3) we can assume both M and N are re-
flexive. Then depth(M) + depth(N) >d+3 by (2.4). Therefore
depth(M) > 3, so M satisfies (S3). Since the rank of M is less than 3, the
syzygy theorem [EG, (3.15)] implies that M is free.

If we don’t care which module turns out to be free we can do better:

3.7. PROPOSITION. Let M and N be vector bundles over a regular local ring
(R, m) containing a field. Assume HA(M ®g N) = 0. Then any of the following
conditions implies that either M* or N* is free:

(1) d :=dim(R) < 4.

(2) rank(M) < 3 or rank(N) < 3.

(3) rank(M) + rank(N) < d +2.

PrROOF. As in the proof of (3.6) we may assume that d > 3 and that M and
N are reflexive. Let g=depth(M), h =depth(N). By (2.2) we have
g+ h>d+ 3. We assume neither M nor N is free, that is, g < d and 4 < d.
Therefore g > 4 and h > 4. Also, by the Syzygy Theorem [EG, (3.15)], we
have rank(M) > g and rank(N) > h. This data obviously contradicts (1), (2)
and (3).

Here is a expanded version of (3.7). The proof is essentially the same (but
uses (3.5) instead of (2.4)) and is left to the reader.

3.8. CorROLLARY. Let My,..., M, be vector bundles over a regular local
ring (R, m) containing a field. Assume H(M; ®g ... ®r M,) = 0, but none of
M3, ..., M; is free. Then

(1) d :=dim(R) > n+3; and
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(2) For every positive integer t < n and every sequence 1 < i) < ... < <n
we have Y rank(M;) > (1= 1)(d—1)+n+2.

Perhaps it is worth spelling out these conditions for n = 3:

3.9. ExaAMPLE. Let M, M,, M3 be non-free reflexive vector bundles over a
regular local ring R of dimension d > 3. Assume R contains a field and that
an(Ml ®Rr M, ®g M3) = 0. Then d := dim(R) > 6, each M, has rank at least
5, any two have ranks adding to at least d + 4, and the sum of the ranks of
all three is at least 2d + 3.

The usefulness of (2.4) is some what limited by the assumption, in (2.4)(1),
that both M and N have depth at least r. (Indeed, this requirement is what
prevents us from extending the last few results to an and beyond.) Un-
fortunately the assumption cannot be deleted, even if N = R:

3.10. EXAMPLE. Let R be a regular local ring of dimension d, and let
M = m be the maximal ideal of R. Then H.,(M) =0 if and only if i =1 or
i=d.

PrOOF. We know H (M) # 0 for i = 1 and i = d, because these values are
respectively the depth and the dimension. Since R/M has finite length and
the intermediate local cohomology modules vanish for R, they also vanish
for M.

4. Cohomology of M Qg M*.

In this section we study the cohomology of M ®z M*, where M is a vector
bundle on the punctured spectrum of a regular local ring. We begin with the
following application of the Hartshorne-Ogus Theorem [V, (3.3.16)] and
(2.4):

4.1. THEOREM. Let M be a vector bundle over a regular local ring R of di-
mension d > 2.

(1) IfH) (M ®r M*) =0, then M = F ® T, where F is free and T has finite
length.

(2) If HA (M ®g M*) = 0, then M* is free.

Proor. To prove (1) we may assume that M is torsion-free by (3.3)(1). We
have depth(M) + depth(M*) > d + 2 by (2.2). The Hartshorne-Ogus Theo-
rem [V, (3.3.10)] now implies that M is free. For (2), we may assume that
d > 3 (since M* is a second syzygy and is therefore free if d = 2). By (3.3) we
have H2 (M** @ M*) = 0. Since both M* and M** have depth at least 2,
(2.2) implies that depth(M*) + depth(M**) > d + 3. Again, we apply [V,
(3.3.16)] to conclude that M* is free.
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Theorem 4.1 (2) is one of the main theorems of Luk and Yau in [LY]
when restricted to the case of vector bundles over projective space, as we
shall discuss in the next section. See Theorem 5.2.

To get information on the higher local cohomology groups, we can some-
times use the following duality theorem. We let ( )" denote the Matlis dual
Homg( , E(k)), where E(k) is the injective hull of the residue field .

4.2. THEOREM. Let M and N be vector bundles over a regular local ring R.
Assume d :=dim(R) > 3, and let j be an integer with 2 <j<d— 1. Then
(H (M ®g N))" = HIH=/(M* @ N*). In particular, Hi,(M @& N) = 0 if and
only if HIH(M* @ N*) = 0.

ProOOF. There is a natural homomorphism & : M* ®g N* — (M ®g N)*
taking f ® g to the map x ® y — f(x) - g(y). If M is free one checks easily (by

choosing a basis) that & is an isomorphism. Therefore in general the kernel
and cokernel of @ have finite length. Since d + 1 —j > 2 it follows that

(4.2.1) HEH (M* @g N*) =2 HENS((M ®g N)*) for i> 2.
It follows from Grothendieck’s local duality theorem [BH, (3.3.8)] that
(4.2.2) HAH (M ®r N)*) = (H,(M @& N)™))".

(See [BH,(3.5.15)].) Combining (4.2.1) and (4.2.2) with (3.3), we obtain the
desired isomorphism.

4.3. COROLLARY. Let M be a vector bundle over a d-dimensional regular
local ring (R,m). If HS"Y(M ®g M*) = 0, then M* is free.

PrOOF. By (4.2) we have H2 (M* ®g M**) = 0. Then (4.1) guarantees that
M** is free, whence so is M*.

4.4. CoROLLARY. Let M and N be vector bundles over a regular local ring
(R,m) of dimension d > 3. Assume H2,(M @ N) = HL /(M @g N) = 0. Then
either M* or N* is free.

Proor. By (4.2) we have H,zn(M* ®gr N*) =0, and H,zn(M** QrN*)=0
by (3.3). Therefore depth(M*)+ depth(N*) >d+3 and depth(M**) +
depth(N**) >d +3, by (2.2). It follows that either depth(M*) +
depth(M**) > d +3 or depth(N*) + depth(N**) > d + 3. The Hartshorne-
Ogus Theorem [V, (3.3.16) implies that either M* or N* is free.

5. Vector bundles on P".

One of the motivations for beginning work on this paper was our interest in
the following theorem of Luk and Yau [LY, Theorem B]:
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5.1. THEOREM. Let E be a holomorphic vector bundle on P%, n > 2. Then E
is a direct sum of holomorphic line bundles iff H'(P%, (E ® E*)(k)) = 0 for all
kel

This theorem follows directly from our main results in Section 4. Even
more, we can prove the following theorems:

5.2 THEOREM. Let E be a vector bundle on P}, k a field and n > 2. Then E
is a direct sum of line bundles iff H' (P}, (E ® E*)(I)) = 0 for all | € Z.

5.3. THEOREM. Let E be a rank 2 vector bundle on P}, k a fieldand n > 2. If
there exists a nonzero vector bundle F such that H' (P}, (E ® F)(I)) = 0 for all
1 € Z, then E is a direct sum of line bundles.

Theorems 5.1-5.3 are immediate corollaries of Theorem 2.4 and Proposi-
tion 3.6 once a translation is made. We review this translation here. Let
X=P; and let E be a vector bundle on X. The module
M = @;50H°(X, E(])) is a graded reflexive module over the polynomial ring
S = k[ Xy, ..., Xu]. The sheaf associated with this module over Proj(S) = X is
exactly E. The fact that E is a vector bundle corresponds to the property
that Mp is free over Sp for all P # m = (X, ..., X,,). To say FE is a direct sum
of line bundles is equivalent to the statement that M is a free S-module. We
note:

5.4. LEMMA. Let S = k[Xo, ..., X,] be a polynomial ring over a field k with
the usual grading. Let M be a finitely generated graded reflexive S-module,
and let E be the associated sheaf over X = Proj(S). The following are equiv-
alent.

(1) M is a free S-module.

(2) E is a direct sum of line bundles.

(3) My is a free Sy-module, where m = (Xj, ..., X,,)S.

ProoF. The equivalence of the first two is discussed in the paragraph
above. Clearly (1) implies (3), so it remains to see that (3) implies (1). The
locus of primes P in Spec(S) at which M is not free is a closed set defined by
a homogeneous ideal I. Assuming (3), I € m. Since I is homogeneous it fol-
lows that 7 = S, and M is locally free, i.e. is a projective module. However,
since M is graded, it now follows that M is a free S-module (cf. [E, (19.2)]).

We also recall the interpretation of sheaf cohomology in terms of local
cohomology. The following is given as Theorem A4.1 in [E]:

5.5. PROPOSITION. Let R be a nonnegatively graded ring over a field
k= Ry, and let M be a graded R-module with associated sheaf E over
X = Proj(R).Let m be the irrelevant maximal ideal of all elements of positive
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degree. Then there are isomorphisms for every i > 1,

> HI(X,E(D)) = Hi' (M)
]
where the sum extends over all integers.

PROOF OF (5.2). Let S = k[X, ..., X,] and let M be the reflexive module
corresponding to the vector bundle E. The condition on the global coho-
mology of E in (5.2) translates by (5.5) to the condition that
H2 (M ®s M*) = 0. If this condition holds, we localize at m = (X, ..., X,)S
and let T = S;,. We then have that M, is a vector bundle in the sense of (3.0)
and H,zn(Mm ®7 M},) = 0. Theorem 4.1 implies that M,, is free over Sy, and
E is a direct sum of line bundles by (5.4). The converse is trivial since
dim(S) =n+1>2.

PRrOOF OF (5.3). Let S = k[X, ..., X,] and let M be the reflexive module
corresponding to the rank two vector bundle E, and let N be the S-module
corresponding to the vector bundle F. The condition on the global coho-
mology of F®F in (5.3) translates by (5.5) to the condition that
H2 (M ®s N) = 0. Localize at m = (Xp, ..., X,)S and let T = S,,. We then
have that M, and Ny are vector bundles in the sense of (3.0) and that
H,Z“(Mm ®7 Nm) = 0. From Proposition 3.6 it follows that My, is free over
Sm, and then from (5.4) that E is a direct sum of line bundles.

6. A Rigidity Theorem.

In this section we prove a new rigidity theorem for the depths of Tors over
unramified regular local rings. As in Auslander’s proof of the original theo-
rem on the rigidity of Tor, we reduce our main statement to a statement
concerning Koszul homology. We begin with two elementary lemmas. We
use A\( ) to denote the length of a module.

6.1. LEMMA. Let (R,m) be a Noetherian local ring, and let M be a finitely
generated R-module. Fix x € R.

(1) AM(Anny(x)) < oo implies A\(Anny (x")) < oo for alln > 1.

(2) A(M/xM) < oo implies \(M /x"M) < oo for all n > 1.

ProOOF. Let f: M — M be multiplication by x. A(Anny(x)) < oo iff fp is
injective for every prime P3# m iff f} is injective for all P#m iff
A(Anny (x")) < oo.

Similarly A(M/xM) < oo iff fp is surjective for every prime P # m iff f7 is
surjective for all P # m iff A(M/x"M) < oco.

6.2. LEMMA. Let (R,m) be a Noetherian local ring, and let M be a
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finitely generated R-module. Fix x € R. If 0 < AAnnpy(x)) < oo then
depth(M /xM) = 0.

PROOF. Annp(x) C Annp(x?) C ... C Anny(x") C ..., so we may choose
n so that this chain is stable. Set L equal to the stable submodule. By Lemma
6.1 L has finite length. Suppose that depth(M/xM) > 0. The image of L in
this module must then be 0, so that L C xM. Given z € L write z = xy. Then
zx" = 0 implies yx"*! = 0 implies y € L and so L = xL. Nakayma’s lemma
applies to give L = 0, a contradiction.

6.3. THEOREM. Let (R,m) be a Noetherian local ring, and let M be a fi-
nitely generated R-module. Fix xy,...,x, € m. Assume that the Koszul homol-
ogy Hi(x1,...,xn; M) is a nonzero module of finite length. Then
depth Hy(xy, ..., Xp; M) =0.

Proor. The long exact sequence on Koszul homology [Ma, p. 128] in-
duces a short exact sequence

(6.3.1) 0 — K/x,K — Hi(x1,...,x,; M) = Anny(x,) — 0

where K = H(x1,...,x,-1; M) and N = Ho(x1, ..., Xp—1; M).
Assume that depth Ho(xi, ..., x,; M) > 0.

6.3.2. Claim. Anny(x,) = 0. If not then 0 # A(Anny(x,)) < oo, which fol-
lows from (6.3.1) since H;(x, ..., x,; M) has finite length. Lemma 6.2 then
gives that N/x,N = H(xy,...,x,; M) has depth 0, contradicting our as-
sumption. Hence Anny(x,) =0 and K/x,K = H;(x, ..., Xxn; M).

Now replace x, by x in (6.3.1). Since x, is not a zero-divisor on N, xX will
also be a non-zero-divisor and we obtain isomorphisms,

K/)J;K = H](Xl, ,)J(

M)

for all k > 1. Moreover by Lemma 6.1, K /xk,,K must have finite length, and
consequently so does H;(x1, ..., x; M). In addition, depth Ho(x1, ..., x5; M) =
depth N/xKN = depth N/x,N = depth Ho(x, ..., X,; M) > 0. It follows that
if the elements xi, ..., x, give a counterexample to the statement of the theo-
rem, then so do xi, ..., xX for every k > 1. In addition every permutation of
elements xi, ..., x, giving a contradiction to the statement of the theorem also
gives a counterexample, as the Koszul homology does not change after re-
arranging the elements x;. By iterating the argument, we can conclude that
forallk; > 1,

)\(Hl()/l",...,x’,j";M)) < oo and depth Hl(x’l“,...,xﬁ";M) > 0.

By Claim 6.3.2, )/,‘ is a non-zero-divisor on the module
MR Xk M. We now claim by induction on s that



182 CRAIG HUNEKE AND ROGER WIEGAND

X1,...,xs form a regular sequence on M. Suppose we have shown this for
some s, 0 < s < n— 1. After rearrangement we know that x;,, is a non-zero-
divisor on the module M/(x, ...,xs,xfjjzz, oy XYM for every k; > 1. Letting
the k; go to infinity gives that x4, is a non-zero-divisor on M/(xy,...,x,)M,
which proves the claim. But xy, ..., x, a regular sequence on M proves that

Hi(x), ..., xs; M) = 0. This contradiction proves the theorem.

6.4. THEOREM. Let M and N be finitely generated modules over the regular
local ring (R,m). Suppose, for some positive integer n, that TotR(M,N) is a
nonzero module of finite length. If n = 2 assume that either M or N has posi-
tive depth. Assume R is either equicharacteristic or unramified; and if n = 1
and R is not equicharacteristic, assume that char(R/m) is a non-zero-divisor
either on M or on N. Then Tor® (M, N) has depth 0.

PrOOF. Suppose n=1. We may assume that R is complete, so that
R=k[[Xi,...,X;]], where k is either a field or a discrete rank-one valuation
ring. In either case, our hypotheses imply that Torf(M ,N) =
H;(x1,,x,;; M&;N), where M&;N is the complete tensor product (which is a
finitely generated k[[X1,...,X,, Y1,..., ¥;]]-module) and where x; = X; — Y.
(See [S, Chap. V, Part, B,-p2] and [Al, pp. 635-636].) The desired result
nowfollows from (6.3).

Suppose next that n =2 and N (say) has positive depth. Choose an exact
sequence

(6.4.1) O—-M -F—->M-—0

with F free. Then TorR(M;, N) = TorX(M,N), which by assumption is a
nonzero module of finite length. Since M, is torsion-free, the case n = 1 im-
plies that depth(M; ®g N) = 0. Now tensor (6.4.1) with N, getting an exact
sequence

0 — TorR(M,N) - M; @ N 5> F®r N - M ®g N — 0.

Since N has positive depth, the image C of « also has positive depth. The
exact sequence

0 — TorR(M,N) - My @ N - C -0

and the fact that depth(M;®rN)=0 now imply that
depth(TorR(M, N)) = 0 as desired.

Finally, assume that n >3. Let N’ be the (n—2)nd syzygy of N. Then
TorR(M,N') = Tor®(M, N), and since depth(N’) > 0 the case n = 2 implies
that TorR(M,N’) has depth 0. Since TorR(M,N’) = Tor® |(M,N) we are
done.
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