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MAXIMALITY PROPERTIES FOR ONE-DIMENSIONAL
ANALYTICALLY IRREDUCIBLE LOCAL GORENSTEIN
AND KUNZ RINGS

VALENTINA BARUCCI and RALF FROBERG

Introduction.

Let S be a numerical semigroup (just a semigroup in the sequel), i.e. a sub-
semigroup of N = {0,1,2,...} with finite complement to N, and let g(S) be
its Frobenius number, g(S) = max{i € Z | i ¢ S}. The semigroup S is called
symmetric if for each i € Z we have i € S or g(S) —i € S. It follows easily
that g(S) is odd if S is symmetric. If S is symmetric and T is a semigroup
that strictly contains S, then g(S)—se€ T for some s&S, hence
g(S)=g(S)—s+se€T, so that g(T) < g(S). It is not hard to see that a
semigroup U with g(U) odd can be extended to a symmetric semigroup
S D U with g(S) = g(U) (in general S is not unique). Hence, given an odd
integer g > —1, the symmetric semigroups are exactly the maximal semi-
groups S with respect to inclusion, that satisfy g(S)=g. A pseudosym-
metric semigroup S is a semigroup such that g(S) is even and for any i € Z
we have i € S or g(S) —i e S or i = g(S)/2. Given an even natural number
g, the pseudosymmetric semigroups are exactly those semigroups S which
are maximal with respect to inclusion and satisfy g(S) =g, (cf. [B-D-F2,
Lemma 2] or [B-D-F3, Lemma 1.1.9]). These results can be formulated in
terms of semigroup rings. If S is a semigroup and k a field, the semigroup
ring k[[S]] is the set of power series {Y ~ya; X' | a; € k,i € S}. A semigroup
ring is a Noetherian one-dimensional local ring 4 with integral closure
A =k[[X]), which is finite over 4. The conductor A :=
{z€k((X))|zA C A} equals X¢+'k[[X]], where g = g(S). Thus, among the
semigroup rings k[[S]] with conductor X“k[[X]], the maximal ones with re-
spect to inclusion are exactly those with S symmetric (if ¢ is even) or pseu-
dosymmetric (if ¢ is odd). Semigroup rings are standard examples of one-
dimensional analytically irreducible local rings, i.e. local rings (4,m) such
that the m-adic completion 4 is a domain. An equivalent definition of a one-
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dimensional analytically irreducible local ring A4 is that the integral closure
(4, m) is a finite A-module and a DVR (cf. [Ka]). It is a classical result by
Kunz that if (4, m) is analytically irreducible, and furthermore 4/m ~ 4/m,
then A4 is Gorenstein if and only if the semigroup of values of nonzero ele-
ments in A4, v(A4) is symmetric (cf. [Ku]). Thus, given a DVR (V,7V) and an
ideal 7V in V, we investigate which are the maximal subrings of V (with
respect to inclusion) with conductor 7V in V, or as we will say, which are
the rings maximal with fixed conductor.

In [F-G-H] rings between k + X“k[[X]] and k[[X]] have been studied. Such
rings A are local one-dimensional and Noetherian with integral closure
A= k[[X]]. It has been shown that, if ¢ is even, the rings in this class maximal
with fixed conductor 4 : 4= X°k[[X]] are exactly the Gorenstein rings. This
has been generalized in [B-D-F1] to one-dimensional analytically irreducible
rings (A4, m) which contain a field isomorphic to 4/m. It was also shown in
this more general setting that if ¢ is odd, the maximal rings with fixed con-
ductor m¢ are exactly those, which have a pseudosymmetric semigroup of
values, the so called Kunz rings (cf. [B-D-F2, Proposition 17(a)] or [B-D-F3,
Proposition I1.1.12]).

In this paper we will generalize the results in [B-D-F2], [B-D-F3] to all
one-dimensional analytically irreducible local rings that are residually ra-
tional, i.e. that satisfy A/m ~ A/m (cf. Theorem 1). (A4/m ~ A/m is true
e.g. if A/m is algebraically closed.) We will also show, that if we drop the
condition residually rational, Gorenstein and Kunz rings are still maximal
with a given conductor (cf. Propositions 2 and 4), but there are rings
maximal with fixed conductor that are neither Gorenstein nor Kunz (cf.
Corollary 14 and Example). A class of one-dimensional analytically irre-
ducible rings (4, m) generalizing the semigroup rings are then studied. Any
such generalized semigroup ring 4, with 4/m = k and A/m = K, that is not
a semigroup ring (i.e. with k # K), is not residually rational. In this case
the semigroup of values S = v(A4) does not give much information on 4. As
a consequence of Proposition 8, we get for example that there is, for any
semigroup S, a one-dimensional analytically irreducible Gorenstein ring
with S as semigroup of values. We get however that a ring A of this class,
with k # K, is Gorenstein if and only if dim; K = 2 and A4 is maximal with
fixed conductor (cf. Theorem 10) and it is Kunz if and only if dim; K =3
and A4 is maximal with fixed conductor (cf. Theorem 12). All the general-
ized semigroup rings with dimy K > 3 and maximal with fixed conductor
are characterized in Proposition 13. We get also that the Gorenstein rings
of this class are characterized by a nice ‘“‘symmetric” property, that gen-
eralizes the mentioned result of Kunz (cf. [Ku]) in the residually rational
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case (cf. Corollary 11). A similar symmetric property characterizes the
Gorenstein rings in a more general situation (cf. Theorem 15).

The residually rational case.

Let (V,nV) be a DVR, let C=7V be an ideal in ¥V, and let
O. = {4 | (4,m) Noetherian ring, A=V, 4: V = C,A/m >~V nV}, or-
dered by inclusion. Let H be a canonical ideal of A4, i.e. a fractional ideal of
A such that for any fractional 4- ideal J we have H : (H : J) = J. Such an
ideal exists, cf. [H-K, Satz 6.21]. If z # 0 is an element in the field of frac-
tions of A, then zH is a canonical ideal if and only if H is a canonical ideal.
Hence we can assume that A is a usual ideal. An element z of minimal value
in H is then a minimal reduction of H, i.e. zH" = H"! if n > 0, cf. [B-F,
Corollary 17]. Finally, replacing H with z~'H, we achieve that we can as-
sume (as we do from now on) that 4 C H C 4. We have A C Hsince 1 € H
and H is an A-module. We have H C A since every element in H has a non-
negative value. A fractional ideal H is a canonical ideal if and only if
vH)=v(A)U{xeN |x¢v(A4),g—x¢v(A)}, cf. [J, Satz 5]. If I CJ are
fractional ideals, we have [4(J/I) =14(H : I/H : J). The ring 4 is Goren-
stein if and only if 4 = H. As in [B-D-F2], [B-D-F3] we call 4 a Kunz ring if
v(A) is a pseudosymmetric semigroup. The ring 4 is Kunz if and only if
14(H/A) = 1, cf. [B-F, Proposition 21]. Recall moreover that, since A4 is re-
sidually rational, then I4(J/I) = |v(J) \ v(I)|, cf. [M, Proposition 1]. With
these hypotheses and notation, we prove the following:

THEOREM 1. A is Gorenstein if and only if A is maximal in O, and c is even.
A is Kunz if and only if A is maximal in O, and ¢ is odd.

Proor. If 4 is Gorenstein, then v(A4) is symmetric, g = g(v(4)) is odd and
¢ =g+ 1 is even. Extending 4 with a new element x means extending v(A4),
since A is residually rational. Since Z\ v(4) = g — v(4), this means that
v(x) = g — s for some s € v(A4). This gives also an element of value g in A[x]
(multiply x with an element of value s in 4). Thus C = 4 : V is strictly con-
tained in A[x] : V and 4 is maximal in O,. If 4 is Kunz, then v(4) is pseu-
dosymmetric, g =g(v(4)) is even and c¢ is odd. Since in this case
Z=v(A)U(g—v(4))U{g/2}, the same argument applies. Now for the
other implication. So suppose that A4 is neither Gorenstein nor Kunz. We
shall show that A4 can be extended to a ring with the same conductor. Let H
be a canonical ideal of 4, A C H C A. We know that v(H) \ v(4) is sym-
metric around g/2. If A4 is neither Gorenstein nor Kunz, then
|[v(H) \ v(4)| > 2, hence there is an h € v(H) \ v(4) with h < g/2. Choose h
minimal and let v(x) = h,x € H. Then x belongs to a minimal system of
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generators for H, since every element of H of smaller value than 4 belongs to
A. Let H be generated by 1,x,k,....,h,. Let L= A+ Ahy + -+ - + Ah, + xmA.
Then [4(H/L)=1 since v(H)\v(L)={h}. Thus I4(H:L/H:H)=
l4(H:L/A)=1, so H:L=A+ Ay for some y. We know that
v(H : L)\ v(H) consists of one value, we claim that this value is g — A, i.e.
v(y) = g — h. We can’t have v(y) = g, since no element of value g multiplies 1
into H. In the same way we see that v(y) ¢ g — v(4). Thus v(y) =g — I’ for
some A, ¢ v(A) U (g — v(A)). If ¥/ > h, then there exists z € H,v(z) = h'. If
v(y) =g —H, then v(zy) =g which is a contradiction to zy € H, since
g¢ v(H). Thus v(y) =g—h>g/2. Since v(y?) >g we have > € A4, so
A+ Ay =A[y], a ring. We also get that A[y]: V' =C since
C=A4:V CA[y]:V and g ¢ v(4A])).

The maximality of Gorenstein and Kunz rings.

We suppose in the sequel that (4,m) is a local analytically irreducible one-
dimensional ring with integral closure A4, and that C = 4: 4. Then 4 is
Gorenstein if and only if /4(4/A) = 14(4/C). We define 4 to be Kunz if
14(A/A) = 14(A/C) + 1 (cf. [B-F]). This extends the definitions above for the
residually rational case.

PROPOSITION 2. If A is Gorenstein, then A is maximal with fixed conductor
(i.e. for any ring B strictly between A and A we have that B : A is strictly lar-
gerthan A: A).

ProoOF. We can assume that 4 is not a DVR. If 4 is Gorenstein, then any
fractional ideal is divisorial, cf. [B, Theorem 6.3]. This gives in particular
that 4 has a unique minimal overring, namely 4 :m. Now A:m=m:m
since if A:m strictly contains m:m, then there is an x such that
xm C A, xm € m, so xm = A and m is a principal ideal, which contradicts the
hypothesis that 4 is not a DVR. Hence 4 : m is the unique minimal overring
of A. Let zA be a minimal reduction of m. Then (4:m): A=
A:(mA)=A:(z A) =z""(4: A) (cf. [B-F, Proposition 16]), which is strict-
ly larger than 4 : 4. Hence a Gorenstein ring is maximal with fixed conductor.

To prove the corresponding fact for Kunz rings we need a lemma.

LeEMMA 3. Suppose that (A,m) and (B,n) are local artinian rings with
m=ANn, with A strictly contained in B, and with A/m ~ B/n. Then
14(A4) < Ig(B).

Proor. If Ig(B) =1, then B = B/n and, since 4/m ~ B/n, there is for
each b€ B an a € A such that b—a € m, hence b € A, so A = B and the
claim is vacously true. Now suppose /g(B) > 1. Take an element x € B with
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xn = 0. By induction /4(A4/A4 N Bx) < Ig(B/Bx). Since Ig(Bx) =1 it is en-
ough to show that /4(A4 N Bx) < 1. If bx € A N Bx then, since for some a € 4
we have b—aem, we get (b—a)xemx=0, hence bx=ax and
AN Bx = Ax. Since xm = 0 we have [4(4x) < 1.

PROPOSITION 4. If A is Kunz, then A is maximal with fixed conductor (i.e.
for any ring B strictly between A and A we have that B :A is strictly larger than
A:A).

Proor. If 4 is Kunz with 4/m = k, then 14(4 : m/A4) = 2 (cf. [B-F, Pro-
position 21]) and 4 : m/m is either a field extension of k of degree 3, or
A:m/m~k[X)/(X?), or A4:m/m~k[X,Y]/(X,Y)* (cf. [B-F, Proposition
27]). Notice that in the last two cases the residue field of 4 : m/m is k. In the
first case, if (4,m) C (B,n) C (4,M), then B= A4 or B = A, cf. [B-F, Pro-
position 27]. Otherwise, it suffices to assume that B is a minimal overring of
A. Then BC A :m, cf. [F-O,Théoréme 2.2). It is clear that l/,(4/A4) >
[3(A/B). Suppose that 4 : A= B: A= C. Then Lemma 3, used on 4/C and
B/C, gives l4(A/C) = 14/c(A/C) < lp;c(B/C) = Ip(B/C). Hence, since A4 is
Kunz, then 1 = 14(A4/A4) — 14(A4/C) gives Ig(A/B) — I(B/C) < 0 which is a
contradiction.

On the other hand there are analytically irreducible rings which are max-
imal with fixed conductor, which are neither Gorenstein nor Kunz (cf. the
following Corollary 14 and Example).

Generalized semigroup rings.

Let A= {>"°a; X', a; € k;}, where k; are subfields of a field L or k; = {0}
and k; # {0} for almost all i. We assume further that for all i,j we have
kik; C kiyj. (For simplicity we set k; = {0} if i < 0.) In particular all k; are
vector spaces over ko and we will denote [k;: ko] by just dimk;. Then
S ={i| k;# {0}} is a semigroup and A4 is a ring, and we call such rings
generalized semigroup rings. Let K =Uk;, and let N=N(4)=
sup{i | k; # K}.

PROPOSITION 5. Suppose that the generalized semigroup ring A is Noether-
ian. Then we have dim K < oo and N < oc.

PROOF Let V, be the vector space generated by U'"!'kk,_; over ko. Let
{b(ll),b ..} be a ko-basis for ki. Then {Xb(ll),sz 3 } is part of a mini-
mal system of generators for m =Y., X'k;. Let {b1 ,b2 ,...} be elements
of k, that complete a ko-basis of V, to a ko-basis of k;. Then
{Xb(,]), ngl), .. ,X2b§2), Xzbg?'), ...} is part of a minimal system of generators
for m. Continuing like this we see that dimm/m? = oo if dim K = oo, and 4
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is not Noetherian in this case. Let g=g(S). (Note that N >g.) If
dim K < oo, we must have k; = K for some A. If i > g we have i € S, hence
kpyi=Kforalli>g,soN<h+g+1.

The following lemma is easy.

LEMMA 6. Suppose that A is a generalized semigroup ring with dim K < oc.
Then:

(1) 4 = K[[X]] and v(4) = {i | k; # {0}}.

(2) 14(A4/4 ) Z o(dim K — dimk;).

B)C=4: XN“K[[X]]

(4) IA(A/C) le dim k;.

PROPOSITION 7. The generalized semigroup ring A is Noetherian if and only
if dmK < oo.

PrOOF. By Proposition 5, if 4 is Noetherian, dim K < oo. That the con-
dition dim K < oo is also sufficient for 4 to be Noetherian follows from Ea-
kin’s theorem and (2) above.

From now on, we suppose that the generalized semigroup ring A4 is Noe-
therian (i.e. that dim K < oo). We will now investigate when 4 is Gorenstein
and Kunz, respectively.

PROPOSITION 8. For any semigroup S of Frobenius number g, any
N >2g+ 1 and any t > 1, there is a generalized semigroup ring A of type t
with v(A) = S and N(4) = N.

PrROOF. Let S be any semigroup. Let g=g(S)and N >2g+ 1. Let k C K
be fields with dimK =7+ 1 and let 4 =Y ;°) X'k;, where k; = {0} if i ¢ S,
ki=kifieSand N-ieSk,=KificSand N—i¢ S. We claim that
A:m= A+ XVK[[X]], hence that I,(4 : m/A) = t. Since XVK[[X]] C 4 :m,
it is enough to show that, if x =3 ) Xia; € A : m, then for any i < N we
have X'a; € A. Let j be the smallest integer such that a; # 0, i.e. let v(x) = .
Suppose that j < N. If j¢ S, thenj < g, hence N—j>g+1,thus N—j€ S
and ky_j=K since N—-(N-j)=j¢S. Let beK\k Since
y=X"7a;:'b € m, we have xy = XNb+--- ¢ 4, a contradiction. So we can
suppose j€S. If N—j€S, then X¥7 em, thus a €k (otherwise
X' XN“Ja; = XNa; ¢ A). Hence in this case X/a;e A. If N—j¢ S, since
X/K C A, we have also Xjaj € A. Since x € A : m and Xfaj €ACA:m, we
have z = x — X’a; € A : m. Replacing the element x with z and arguing as
above we get that, if v(z) = ji, X/'a;, € A4 as requested.

From the previous proposition we get in particular that, for any semi-
group S, there is a one-dimensional analytically irreducible Gorenstein ring
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with S as semigroup of values. To get further results on Gorenstein or Kunz
generalized semigroup rings we need the following lemma.

LEMMA 9. Let A be a generalized semigroup ring with v(4) = S, g = g(9),
and N(A) = N. Suppose that A is Gorenstein or Kunz. Then:

(1) N =g ifand only if A is a semigroup ring (i.e. ki = K or k; = {0} for all
i).

(2) If N >0, then dimK < 2.

Proor. For (1), consider the semigroup ring A’ = Y X'k, where k; = K if
ki # {0} and k; = {0} otherwise. Suppose that N =g. If 4 is not a semi-
group ring, then 4’ # A. Thus, since C = A4 : A= C' = 4’ : A= XV K][[X]],
we have [4(4'/C') > 14(4/C) and, since A=A’ = K[[X]], we have
14(A'/A") < 14(A/A). Hence 14(A/A) —14(4/C) > 2, a contradiction. Con-
versely, if 4 is a semigroup ring, then N = g.

(2) Define 4, =Y kX', where ki = {0} if k; = {0},k; = Q if k; # K and
ki # {0}, and finally k; = Q(v2) if k; = K. Then 4, is a generalized semi-
group ring with the same semigroup of values as 4 and with N(4,;) = N(4).
We get IA(/I/A) > IA(/IQ/AQ),IA(A/C) < 14(A43/Cy), where Cy = 4, : /Iz. If
dim K > 3, then IA(/i/A) > lA(z‘Iz/Az) +1 and lA(A/C) < lA(Az/Cz) - 1.
Since I4(Ay/Ay) — 14(A2/C>) > 0, we have [4(A/A) — 14(A/C) > 2, hence A
is neither Gorenstein nor Kunz.

THEOREM 10. Let A be a generalized semigroup ring with v(4) = S.
(1) If A is Gorenstein then dim dim K < 2.

(2) If ko = K, then A is Gorenstein if and only if S is symmetric.
(3) If dim K = 2, then the following are equivalent:

1) A4 is Gorenstein.

i) A is maximal with fixed conductor.

i) dimk; + dimky_; = 2 for any i.

PrOOF. (1) According to Lemma 9 we need only consider the case N < 0.
Then 4 = ko + XK[[X]] and Lemma 6 gives that 4 is Gorenstein if and only
if dimK < 2.

(2) If ko = K, then A is a semigroup ring, so 4 is Gorenstein if and only if
S is symmetric, cf. [Ku].

(3) Let dim K = 2. If 4 is Gorenstein, then by Proposition 2, 4 is maximal
with fixed conductor, so i) = ii).

ii) = iii) Let 4 be maximal with fixed conductor C = X¥*! K[[X]]. Notice
that ky = ko. Indeed ky # K since the conductor is C, and, if ky = {0}, then
A can be properly extended to the ring B = 4 + X"k, that has the same
conductor C = B :4, a contradiction. Thus, since 4 is a ring and dim K = 2,
we have dimk; + dimky_; < 2 for any i. Suppose dimk; + dimky_; < 2 for
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some [ and let i be the smallest integer such that dimk; =0 and
dimky_; < 2. Consider 4' = A+ XN~'K. To get a contradiction, we prove
that 4’ is a ring. This is enough since A’ : A= A4 : A. In order to show that 4’
is a ring, it is enough to show that ky_;;; = K for any j € SU{N —i}. If
kn-iyj # K, then, by the minimality of i, N — (N —i+j) =i —j € S. Thus, if
jE€S, we get i—j+j=1i€S, a contradiction, and if j= N —i, we get
i— (N —i)=—N €S, which is also a contradiction.

i) = 1) Since dimk; +d1mkN ;=2 for all i, we get by Lemma 6 that
14(4/C) = N dimk; = 22, Lo(dimk; + dimky_;) =12(N+1)=N+1. On
the other hand, again by Lemma 6, [4(A4/4)= Z,’io(dlmK —dimék;) =
(N+1)dim1<—zfiodin1ki=(1v+1)2 (N+1)=N+1, and so A is
Gorenstein.

COROLLARY 11. A generalized semigroup ring A is Gorenstein if and only if
there exists an integer M  such that for each integer |,
dimk; + dimky,_; = dim K.

Proor. If 4 is Gorenstein, then, by Theorem 10, dimK =1 or 2. If
ko = K we have a semigroup ring with S = v(4) symmetric. In this case we
have dimk; = 1 if and only if k; # {0}, i.e. if and only if i € S. Since S is
symmetric, we have that i € S if and only if g — i ¢ S, where g = g(S). Thus,
setting M = g, we get dimk; + dimky; = 1 = dim K for any i. If dim K = 2,
we showed in Theorem 10 (3), ii)=iii), that dimk; + dimky_; = 2 for any i.
Conversely, suppose there exists an M such that dimk; + dimky—; = dim K
for any i. Thus dimkg+dimky = 1+ dimky = dimK. Since ky C K,
dim ks divides dim K and so the previous equality gives dimK =1 or 2. If
dim K =1, then A4 is a semigroup ring with S = v(4) such that i € S if and
only if M —i¢ S. So S is a symmetric semigroup with g(S) = M and 4 is
Gorenstein. If dimK =2, then ky =ky and k; =K if i> M. Thus
M = N(A) and, by Theorem 10 (3), 4 is Gorenstein.

REMARK. Let 4 be a generalized semigroup ring with dim K = 2. Then 4
can be extended to a generalized semigroup ring B, maximal with fixed con-
ductor. By Theorem 10, B is Gorenstein and of course v(B) D v(4). Notice
however that B is not unique. Consider for example 4= Q+ X?Q+
X*Q(v2)[X]]. Then 4 can be extended both to By =Q+ XQ+ X>Q+
X3Q+X*Q(v2)[[X]] and to B, =Q+X*Q(V2) + X*Q + X*Q(v2)[[X]).
Notice moreover that, if N >2g+ 1 (where N = N(4) and g = g(v(A4))),
then there is a unique Gorenstein overring B of 4 with v(B) = v(4) = S and
with B: 4 = XN*1K[[X]]. Indeed B is the ring constructed as in the proof of
Proposition 8. ie. B=)Y X'k}, where, if i<N/2,ki=k; and, if
i>N/2,{i|ki=ko}={i|[N—i€eS}.
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THEOREM 12. Let A be a generalized semigroup ring with v(A) = S.
(1) If A is Kunz, then dim K =1 or 3.

(2) If kg = K, then A is Kunz if and only if S is pseudosymmetric.
(3) If dim K = 3, then the following are equivalent

1) A is Kunz.

1) A is maximal with fixed conductor.

iii) 4 = ko + XK[[X]].

ProOOF. (1) If N > 0 we need, by Lemma 9 (2), only show that dim K =2
is not possible. If dimK =2, we have by Lemma 6 that
14(A)A) = 14(4/C) = (N +1)dim K — 23N dimk; which is even, so 4 is
not Kunz. If N =0 we have that /,(4/A4) — 14(4/C) =dimK —2 =1 im-
plies dim K = 3.

(2) If ko = K, then A4 is a semigroup ring, so 4 is Kunz if and only if S is
pseudosymmetric, cf. [B-D-F2, Proposition 17(a)] or [B-D-F3, Proposition
I1.1.12).

(3) That i) = ii) is proved in Proposition 4. Since 3 is a prime there are no
fields between k¢ and K. Hence ky = {0} or ky =ko. If N >0 and V is a 2-
dimensional vector space over ko, ko C V' C K, then 4 is strictly contained in
A=A+ X"V + XNHK[[X]] and 4" : A= 4: A= X" K[[X]], so 4 is not
maximal with fixed conductor. Hence 4 = ko + XK|[[X]], so ii)= iii). To
prove iii) = i) observe that, by Lemma 6, /4(4/A4) = dimK — 1 =2 and
[4(4/C) =1, s0 4 is Kunz.

Let A be a generalized semigroup ring. We know that if dim K =1 (i.e. 4
is a semigroup ring), then A is maximal with fixed conductor if and only if 4
is Gorenstein or Kunz. By the results above, if dim K = 2, then A4 is maximal
with fixed conductor if and only if 4 is Gorenstein and, if dim K = 3, then 4
is maximal with fixed conductor if and only if 4 is Kunz. If dim K > 3, we
have the following:

PrOPOSITION 13. Let A be a generalized semigroup ring with dim K > 3.
Then A is maximal with fixed conductor if and only if A= ko + K[[X]] and
there are no fields strictly between ko and K.

PrOOF. Let 4 be maximal with fixed conductor. Suppose N > 0. Since
dim K > 3 and dimky divides dim K, we have dimky < dimK — 1. So, if V'
is a (dim K — 1)-dimensional vector space over kj strictly between ky and K,
then A is strictly contained in A=A+ XNV + XNTIK[[X]] and
A A= A4:4=X"*K[X]], so 4 is not maximal with fixed conductor.
Hence 4 = k¢ + XK[[X]]. If there is a field k strictly between ko and K, then
k + K[[X]] is strictly between 4 and K[[X]] and 4 is not maximal with fixed
conductor. Conversely, let 4 = ko + XK|[[X]] and suppose that there are no
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fields strictly between ko and K. If B is a ring, 4 C BC K[[X]] and
C = XK|[[X]], then ko CB/CCK and B/C is a field, so B/C =k or
B/C = K, so A is maximal with fixed conductor.

REMARK. For any n there exists a field extension Q, of Q of degree n such
that there exists no field between Q and Q,. To see this, let f € Q[X] be ir-
reducible of degree n such that the Galois group of the splitting field over Q
is S,. Take an S,,_; C S,. Then the fixed field L of S,_; has degree n over Q
and it is well known that S,_; is a maximal subgroup of S, so there are no
fields between Q and L = Q,.

COROLLARY 14. There are generalized semigroup rings which are maximal
with fixed conductor but neither Gorenstein nor Kunz.

ExAMPLE. Let 4 = Q + XQ({/2)[[X]], where p is a prime, p > 3. Then 4 is
maximal with fixed conductor, but A4 is neither Gorenstein nor Kunz.

A further generalization.

Let £ C K be fields with dimy K < oo, let for i > 1 V; be k-subspaces of K
satisfying V;V; C V. (We allow V; = {0}.) We will investigate when rings
of the form A =k+ XVi+ -+ X"V, + X" K[[X]],V, # K are Goren-
stein. Let cX* € A. If 4 is Gorenstein then B = A/cX*4 is a graded artinian
Gorenstein ring, B = &% B;, with By = k and, for i > 0, B; = X (Vi/cVisg),
hence dimy B; = dimy V; — dimy Vi_, (for simplicity we set V; = {0} if j < 0).
We recall some well known facts about graded artinian Gorenstein rings,
which are useful for us. The socle of B, 0: EB}'I,“'B,', is generated by one ele-
ment, hence is a one-dimensional k-space, say yB, where degy = n + s, and
yB is the unique minimal nonzero ideal in B. Hence if f € B; there is a
g € Byys—; such that fg =y. This shows that ®: B; x B,,_; — k, where
®(f.f") = aif ff' = ay, is a perfect pairing (i.e. ® is bilinear and ®(f,f’) =0
for all f only if /' = 0 and vice versa). ® induces for all f € B; a linear map
Ls:Bus-i =k by Li(f") = ®(f,f'), so there is a map B, — B}, ;=
Homy (B,+5—i, k) which is injective since @ is a perfect pairing. This gives that
dimy B; < dimy B;, ;= dimy B,;,_;. In the same way dimy B, ,_; < dimy B;,
so dimy B; = dimy B,s_;. We are now ready to characterize the rings of this
form that are Gorenstein.

THEOREM 15. Let k C K be fields with dimy K < oo, let V; be k-subspaces of
K satisfying ViV; C Viyj, and let A=k+XV\+ -+ X"V, + X" K[[X]],
Va # K. Then A is Gorenstein if and only if dimy, V; + dimy V,—; = dimy K for
all i. In particular, if n is even, dimy K must be even.
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PrROOF. A trivial modification of Lemma 6 gives /4(4/C) = >/, dimy V;
and [ (A/A) = (n+1)dimg K — Y7 odimy V. If  dimy Vi + dimy V- =
dimy K for all i we get [4(A4/C) =14(A/A) so A is Gorenstein. Now suppose
A is Gorenstein. Since KX" C A : m, and I4(A4 : m/A) = dimg (4 : m/A4) =1,
we get dimy V,, = dimy K — 1. For i € v(4), let cX' € A, and let B= A4/cX'A.
Then dimg V; — 1 = dimy B; = dimy By,y;_; = dimyg V,, — dimy V,_;, hence
dimy V; + dimy V,,—; = dimy V,, + 1 = dimy K. Now suppose i¢ v(4). We
claim that V,_; = K and so dimy V; + dimy V,,_; = 0 + dimy K = dimy K also
in this case. Let i be the smallest integer such that i ¢ v(4) and V,_; # K.
Consider 4' = A 4+ X" 'K. Arguing as in the proof of Theorem 10, ii) = iii),
we get that 4’ is a ring. Since A4 is Gorenstein, by Proposition 2, 4 is max-
imal with fixed conductor, which is a contradiction, because A is strictly
contained in A’ and 4’ :A= A :A4.

We conclude by giving some examples of Gorenstein rings of this form.

EXAMPLE.
Q+X(Q+Q¥2) +x*(Q+Q¥2+Q¥a) +.. +

X2+ a2+ -+ a¥27) + xad2)x),
Q+XQ+.. +X1Q+ X*Q(V2) + XV 4. 4 X%V 4
X%*+1Q@/2)[[X]] with dimg ¥ = 3 and Q(v2) C ¥, and

Q+XQ+-+ X'Q+ XV + -+ X%y 4 x*QE2)([X]]
with dimg V' = 3 and Q C V are all Gorenstein.

NotEe. After submitting this paper we have noticed that some of our re-
sults, Corollary 11 and Theorem 15, also follows from [C-D-K].
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