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HARDY SPACES OF ANALYTIC MULTIFUNCTIONS
JONAS AVELIN

Abstract.

In this paper we consider a generalization to analytic multifunctions of the classical Hardy space
theory of analytic functions on the unit disc. With [K(\)| = sup (|z|; z € K())) we define the
Nevanlinna class N and the classes H? by restricting the growth of the integral average of |K| on
circles approaching the boundary of D. It is observed that for K € N, |K())| has radial bound-
ary values (call them |K|™') almost everywhere on T, and log |K|*! € L!(T). We prove that the
radial maximal functions are in L” even for p < 1 and with this we prove an inner-outer factor-
ization theorem. We also define a multi-valued generalization B of the Blaschke product. With
this every K € N can be written K = fB where f € N is a zero-free function. Finally, using other
functions on K than |K|, we develop criteria, in terms of a weak global condition and a strong
boundary condition, for when an analytic multifunction is a function, and also when its values
are of capacity zero.

1. Introduction.

The theory of analytic multifunctions has its origin in two parts of mathe-
matics, spectral theory and several complex variables. In spectral theory it is
natural to ask how the eigenvalues of an analytic family of matrices, i.e., a
family of matrices whose coefficients depend analytically on a parameter,
behave. In fact this is an old question; it was studied for the first time by A.
Cauchy in the 1830’s. From complex analysis one can think of many pro-
blems generating multifunctions, for instance the roots of an equation in-
volving analytic expressions. Problems like these have led to the concept of
an analytic multifunction. Their main applications are in spectral theory
where one has found applications to, among other things, joint spectrum,
spectral interpolation, local spectral theory and even to Jordan--Banach al-
gebras. In other parts of mathemathics one has applications to, for instance,
uniform algebras in connection with problems of analytic structure and to
complex dynamics. We refer to [1] for a survey of the theory of analytic
multifunctions and their applications.

In this paper we treat analytic multifunctions from a more function-theo-
retic point of view. A natural generalization of bounded analytic functions

Received July 26, 1995.



128 JONAS AVELIN

on the disc are functions fulfilling some controlled growth condition, for in-
stance uniform bound on the I”-mean on circles approaching the boundary.
These so called H”-spaces have a large number of interesting properties
concerning among other things boundary values and different kinds of fac-
torization. Considering the generalization to analytic multifunctions of these
spaces and of the Nevanlinna space N we notice some similarities. We first
notice that for K € N, |K(A)| =sup (|z|; z € K(\)) have radial boundary
values almost everywhere (call them |[K|™%) and that log|K|™® € L'(T). For
K e H? we get good behaviour on the radial maximal functions
K*(e") = sup,_,; |K(re")| meaning that K* are in L?. This follows from po-
tential theory alone if p > 1, but to get it for p < 1 we use multifunctional
analyticity in an essential way: The nth-root multifunction
Ru(X\) = {z; 2" = A} is analytic across zero so we can compose K with this to
wander between HP-spaces.

Using this good behaviour we prove an inner-outer factorization theorem:
given K € H? there exists an inner multifunction M (i.e., M is a bounded
analytic multifunction with |M|™ =1 almost everywhere) and an outer
function g € H? such that K = ¢M. For multifunctions in N we prove that
each K € N enjoys a representation as (b;/by)M, where b; and b, are zero-
free H*°-functions and M is inner.

In section 5 we define and study a multi-valued generalization B of the
Blaschke product. With this we can write every K € N as K = fB, where f is
a zero-free function in N and we also get a structure theorem for inner
multifunctions, similar to the one for ordinary inner functions: Every inner
multifunction can be written as

MO\ = BO) exp{— /T Z: * i dz/(t)},

where v is a positive finite measure on T which is singular with respect to the
Lebesgue measure. These results helps us to prove that if the zeroes of the
multifunction K fulfills the Blaschke condition, then there is a global selec-
tion to K, i.e., a function f such that f(\) € K(X) for all A € D.

Finally in section 6, we notice that the fact that log|K|™® € L! is true not
only for the radius |K| but also for the nth-diameter 6,(K) and the capacity
c(K). This helps us to draw strong global conclusions on the geometry of K
from a weak global growth condition and a strong boundary condition.

2. Notation.

Let X and Y be sets. A function K: X — 2Y (where 27 stands for the set of
all subsets of Y) is called a multifunction. We fix the following notation:
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Ry ={y e Y;ye K(x)Ix € X} is the range of K.
K*(B) = {x € X; 0 # K(x) C B} is the preimage of the set BC Y.
K(A) ={y € Y; y € K(x) 3x € A} is the image of the set 4 under K.
K~ '(y) = {x € X; y € K(x)} is the inverse of K.
Ker K = {x € X; 0 € K(x)} = K~'(0) is the kernel of K.
'k ={(x,y) € X x Y; x € K(y)} is the graph of K.

The following formula is immediate:

(2.1) K" (Y\B)=X\K*(B)={x€ X; K(x) ¢ B}
Let X and Y be topological spaces.

DEFINITION 2.1. K: X — 27 is

(i) upper semicontinuous if K*(B) is open (in X) for all open sets B (in Y).

(ii) locally bounded if for all x € X there exists a neighbourhood N 3 x
such that K(N) CcC Y (i.e., K(N) is compactly enclosed in Y)

The formula (2.1) then yields

PROPOSITION 2.2. K is upper semicontinuous if and only if K~'(F) is closed
in Rk for all closed sets F in Y.

For metric spaces X and Y we have the following characterization of up-
per semicontinuous compact-valued multifunctions:

PROPOSITION 2.3. Let K: X — 2Y be a multifunction between the metric
spaces X and Y. Then K is upper semicontinuous and compact valued if and
only if K is locally bounded and Tk is closed.

The proof is easy.

3. Some facts about analytic multifunctions.
Following [8] we define an analytic multifunction.
DEerFINITION 3.1. An upper semicontinuous, compact-valued map
K:D — 2%,

where D is an open subset of C¥, is said to be analytic if for every open
D' ¢ D and for every ¢(\,z), plurisubharmonic in a neighbourhood of
{(\,z) e D' x C; z € K()\)}, the function

A sup (Y(A,z); z € K(N))
is plurisubharmonic in D'.

NoTte. For the purpose of this paper we can use the above definition of
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analytic multifunction. The definition of analyticity for multifuctions taking
values in C", n > 2 has however changed to a slightly smaller class. See for
instance [9].

If K is a function, then K is analytic in the ordinary sense if and only if it
is analytic in the above sense.
From [8, Proposition 5.1] we shall need

PROPOSITION 3.2.
(1) If K is analytic on D, then the following are also analytic:

A K(A) x {\}
(z,A) = {z} x K(X)

(i) If K is analytic on D and L is analytic on a neighbourhood of Ry then
their composition

LoK(\) = J{L(z); z€ K(\)}
is analytic on D.
With this we can build new analytic multifunctions out of old ones.

ProposSITION 3.3. Let K and L be analytic on D. Then the following are

analytic on D:
(K x L)(A) = {(z,w); z € K(A), w € L(\) };

(K+L)YN) ={z+w;ze K(\),we L\ };
(KL)(A) = {zw; z € K(N\), w € L(\)}.
If Ker K = () then 1/K is analytic, where

(1/K)(A) = {1/z; z € K(N)}.

PROOF. A — K(A) x L()) is the composition of A — K(A) x {\} and
(z,A) — {z} x L(A). Thus it is analytic. A — K(X\) + L()) is the composition
of A — (K x L)(A) and (z,\) — z + A. Hence it is analytic. K L works in the
same way. For the last statement observe that Ker K = () says that 0 € Rg so
we can find an open neighbourhood of Rgx where z — 1/z is analytic. Then
we compose K with z — 1/z to get the result. This ends the proof.

Nortk. If 1/K is analytic, it follows of course that Ker K = §, since other-
wise, 1/K would not even be bounded.

Just like for analytic functions, one can sometimes remove singularities.
We get this from [5, Proposition 6.1], but first we introduce some notation
concerning limits of multifunctions.
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DEerFINITION 3.4. Let K be a multifunction between two metric spaces.
Then

lim d)‘en K(p) ={z; 3 i — A, zy — z, with z, € K(\,)}
s

is the thick limit (limes densus) of the family {K(u)} as u — A\. We also in-
troduce the thin limit (limes rarus) of K.

limrz}r K(p) ={z; YA\, — A, 3z, — z, with z, € K(\,)}.
=

REMARK. lim den and lim inf are usually called lim sup and lim inf re-
spectively, but this is, although more or less standard, not so good termi-
nology: If one wishes to refer to the usual limsup or liminf for functions,
then one has to call them something else.

PRroOPOSITION 3.5. Let D' be open in C, let P be a closed polar subset of D',
and set D= D'\ P. Let K: D — 2C be an analytic multifunction. For \ € D/,
define

K\ = K(\), A € D;
limdenps,—x K(p), A€ P.

Then if oo ¢ K'(D'), K' is analytic on D'.
We list a few properties of the thick and thin limits.
PROPOSITION 3.6. Let K be a multifunction between two normed spaces and

let |[K())| denote sup (|z|; z € K(X)). Then

(i) lim den K (1) = (KN N D),

where the intersection is taken over all neighbourhoods N of \;

(ii) [lim d/\en K(p)| < limsup |K ()],
[ P

with equality if the right-hand side is finite;
(iii) [lim rar K(p)| <lim i/{lf |K (1)l
= p—

if limrar,_) K(u) is non-empty.

ProoOF. (i) Let z € limdenps,—.» K(i). Then there exist D > A\, — A and
z, — z with z, € K()\,). For all neighbourhoods N 3 X\, A, e DN N if n is
large enough. Thus z,€ K(NND)C K(NND), which is closed, so
z € K(N N D) for all neighbourhoods N 5 A. Conversely let z € () K(N N D).
Then z € K(B,;, N D) for all balls B, with radius 1/n centered at A\. Hence
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for any n we can find z, € K(By,,ND) with |z—z,| <1/n, say. But
zn € K(By, N D) means that z, € K(),) for some X\, € By;, N D, so we have
found A\, — ), z, — z such that z, € K()\,).

(ii) For z € limden, . K(u) it is clear that |z| < limsup,_, |K(u)|. Sup-
pose then that the right hand-side is finite. Then we can find A\, — A such
that |K(A,)| — limsup,_,, |[K(u)|. Since K()\,) is compact we can find
zy € K(Ay) such that |z| = |[K()\,)|. Thus the modulus of z, converges so we
can find a convergent subsequence z), — z, for some z. This z is in ,.\K(u)
and |z| = lim, |z,| = limsup,,_,, [K(p)|-

(ii1) This is clear, so the proof is complete.

REMARK. 1. If K is a function and limrar K # @ then the ordinary limit of
K exists and equals limrar K, which is thus a singleton.

2. We see from (i) that limden K is closed, and if limsup |K| < oo, (ii)
implies, via the Cantor intersection theorem, that lim den K is nonempty and
compact.

3. In [5], limden was defined by (i), but we prefer the definition above
since it runs parallel with the definition of limrar.

The thick and thin limits behave well when multiplying with a function
having non-zero limit.

PRrROPOSITION 3.7. Let K be a multifunction and f a function, both defined on
a set D. If

SO =g lim f(A)

D3A— )0

exists and is non-zero, then

li Kf(N) =f(\) 1 K
DRI KT =00 frprap KO

and

lim den Kf (%) = f(\°) lim den K(X).
pds &) =700 ndep KA

ProoF. We prove the last statement. Let z € limdenpsy_, 5 Kf (). Then
there exist )\, € D so that A, — A°, and z, € Kf()\,) so that z, — z. But
zn = wof (\,) for some w e K(),), and since f(X\°) #0 it follows that
wn — z/f(X?). Therefore z/f(\°) € limdenjsy_,y K(X) so

z=f(\")

f(i(’) €/ limden K(3).

This proves the inclusion “C”. The other inclusion now follows since
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Finite analytic multifunctions have a nice structure. We shall need the
following theorem. For the proof we refer to [1].

limden K(A) = limden Kf —(\) C limden Kf'(A).

THEOREM 3.8 (Scarcity Theorem). Let K: D — 2%, D c C*, be analytic.
Then either {\ € D; #K()\) < oo} is pluripolar in D or there exists an integer
m and a closed analytic subvariety F of D such that #K(\) =m on D\ F and
#K(\) <m on F. Moreover, in the last situation, for each \° € D\ F
there exist hy,,h, holomorphic in a neighbourhood U > X' so that
K()‘) = {hl()\)v »hn(/\)} inU.

4. Hardy Spaces of analytic multifunctions.

Let K: D — 2C be an analytic multifunction. Then, with
IK(N)] = sup (z]; z € K(\)),

the function ¢(A\) = |[K(A)| will become subharmonic, as will the functions ¢”
and log* ¢. This is clear from the definition of analytic multifunctions, since
the functions (z,\) — |z|’ and (z,\) — log|z| are plurisubharmonic.

Let us define an analogue of the H? spaces but now for multifunctions. As
a convention, capital letters will denote multifunctions and small letters or-
dinary functions. Thus if we say K € HP we are talking about the multi-va-
lue analogue to H”, but statements like ¢ € H” refers to the usual H? space.

Let K be analytic on D. For 0 <r <1 and 1 € T let K,(¢) = K(re"). For

0 < p < 0o we define
K| = P L)
i1, = [ 1xr 52)

“Kr”oo = SlflerL

For p = 0o we let

We also introduce

dt
K, =e K|
Il = exp [ 1og* |K,|52

DEerFINITION 4.1. For 0 < p < oo we say that K € H? if K is analytic on D
and

“KHP =4f Sup (”Kr“p; 0<r< 1) < 00.
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We say that K € N if K is analytic on D and
1K llo =at sup (|Killo; 0 <7 < 1) < 0.

THEOREM 4.2.
(i) ||Ky|| is increasing in r so

(i) For all c € C, ||cK||, = || [IK]|,-
(iii) For 1 <p < oo, || - ||, satisfies the triangle inequality, i.e.,

1K+ Lll, < [IKl, + LI,

PrOOF. (i) For p < oo, the subharmonicity of |[K()\)[’ and log" |K()\)|
gives the result. For p = oo the result follows from the subharmonicity of
|K(XA)| and the maximum principle for subharmonic functions.

(i) Immediate.

(iii) We have

(K+L)N)|= sup |z4+w| < sup [z|+ sup |w|=|K(N)]+ [L(N)],
z€K(\),weL()) zeK () weL())

so for 1 < p < oo Minkowski’s inequality gives us that

(K + L), I, < 1K, + 1Kl

and the result follows. This finishes the proof.

The usual theory of HP-spaces has three cornerstones:

(i) |fJf and log|f| are subharmonic.

(ii) radial maximal functions behave nicely, i.e., they belong to L7 if
f € H”.

(iii) One can use Blaschke products to reduce problems to the case of a
non-vanishing function.

As we saw above, we do have (i) for multifunctions so by well established
potential theory, (ii) follows for p > 1. As we shall see below, (ii) follows in
the case of analytic multifunctions even for p < 1. Alas, there are problems
with (iii). Let D be a bounded open subset of C and K an analytic multi-
function on D. First note that there are two different kinds of zeroes of K.
We have the kernel KerK = {\; 0 € K(\)} and also the zero-set of K,
Z(K) = {)\; K()\) = 0}. By Proposition 2.1, the kernel is always closed in D,
but this is all we can say about it. In fact, given any closed subset F of D we
can find an analytic multifunction on D with kernel equal to F:

ExAMPLE 4.3. Let F be a closed subset of D. Let
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L\ =F -\

Since D is bounded, F is compact, so L is analytic. Now KerL =
L1 0)={\eD;0€F—X} so AeKerL if and only if A€ D and A € F.
But F is closed in D so A € Ker L if and only if A\ € F.

To study the zero-set of K #0, let ¢(\) =log|K(A)|. Then ¢ is sub-
harmonic and K(\) = 0 if and only if ¢()\) = —co. Conversely let ¢ be sub-
harmonic and define L(\) = {z; |z| < ¢™}. This is analytic (see for instance
[1]) and the zero-set of L equals the set where ¢ is —oo. Thus zero-sets of
analytic multifunctions are exactly sets where subharmonic functions are
—00, so they are Gs-sets of logaritmic capacity zero. Therefore we see that
no “‘Blaschke-condition” can be fulfilled for the zeroes of an analytic multi-
function. Moreover, the order of a zero need not be a natural number, like
for analytic functions which have zeroes of order 1, 2 et cetera. Thus it is not
trivial what should be meant by “‘dividing away a zero™.

EXAMPLE 4.4. Let n be a natural number and let K(\) = {z; z” = A}. Then
K is the multifunction inverse of P(z) = {z"}. P is a polynomial, hence
proper. By [6, Theorem 3.2] the inverse of any proper analytic function is an
analytic multifunction, so K is analytic. But what is the order of the zero at
the origin? If anything, then it should be 1/n.

The above example, although negative in character, is in fact what we
need to get good behaviour on the radial maximal function even for p <1
since it allows us to get from H” to H™ just by taking the nth root, an op-
eration, by the example and using composition, allowed even if K has zeroes.
So for multifunctions there is much less need to consider zero-free functions,
and this gives us hope to do some HP-theory using just cornerstones (i) and
(ii) above.

We first recall some facts from potential theory. For details, see for in-
stance [2].

Given K: D — 2° we define the radial maximal function K* on T by

K*(e") = sup |K(re")|.

r—1

If u is a complex measure on T we denote by P[du] the Poisson integral of u,
ie.,

2
Plan) = [ 2P duo)

and if ' € L'(T), we set P[f] = P[f%t—r]. Thus if f is real,
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PO /e” + )\ t

el[

Let u be a positive measure on D such that the Green’s potential,

o
Uy(e) = [ togl e du(0)

exists at some point z € D. Then Littlewood [4] proved that

(4.2) lim U,(re") = 0 almost everywhere.

Let now ¢ # —oo be a subharmonic function on D having a harmonic
majorant, and let u = A¢. Then for |z| <r <1 we get from the Riesz de-
composition theorem that

(z du(()

9(2) = S ()

ford=

where 4, is harmonic in rD. We also know that the least harmonic majorant
of g is

h(z) = limh,(2) = lim Plg(re")](2)

and
1

(43) B() = h(z) — 5= Up(z).
If ¢(z) > —o0, the potential therefore converges, so in particular if ¢ #Z —oo,
(4.2) holds.

If
(4.4) sup/qf’(re”)dt < 00,
then ¢ has a harmonic majorant
(4.5) h = P[f dt/2n + do],

where f € L!(T) and do is singular, so if ¢(z) > —oco for some z € D we get
from (4.3) and (4.2) that ¢ has radial limit f(¢”") almost everywhere on T.

We will apply this to multifunctions in N and H?, but first we introduce
some notation.
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DEFINITION 4.5. Given any multifunction K we let the peripheral part of
K equal

PK(A) = {z € K(X); 2| = [K(M)[}.

In general for a multifunction K, PK inherits very little structure from K.
It is not upper semicontinuous in general if K is, not even when K is analy-
tic. It is certainly not analytic if K is analytic (although its convex circled
hull is, but this is just saying that log |PK(\)| is subharmonic which is no
news, since |[PK(A)| = |K())]), and the graph is not closed in general. We can
see this in an example.

ExXAMPLE 4.6. Let ¢ be subharmonic in D and such that ¢(),) = —oo for
some sequence \, — 0 whilst #(0) = 0, and let K()\) = {z; |z| < e?M}. Then
K is analytic, PK()\,) = 0 and PK(0) = T. This implies that PK is not upper
semicontinuous: Let U = {z; 1/2 < |z| <3/2}. Then A, ¢ (PK)"(U) and
0 € (PK)"(U) so (PK)"(U) is not open. Since PK is locally bounded it fol-
lows from Proposition 2.3 that the graph cannot be closed.

If PK()) is constant, and of modulus ¢, say, then certainly |[K()\)| = ¢. The
converse is of course not true in general, but for analytic multifunctions it is
true.

PrOPOSITION 4.7. Let K be an analytic multifunction on a domain D. Then
|K| is constant if and only if PK is constant.

ProoF. The ““if”’-part is trivial. Conversely suppose that |K| is constant,
say equal to c. If PK is nonconstant, then we can find z with |z| = ¢ and A,
A, € D so that z € K(A) but z¢ K(A\y). Let L(\) = K(\) + az, for some
a>0. Then L is analytic and |L(\)| < (1+a)|K|. But the point
(L+a)ze L(\) so |L(M)| > (1 +a)|K| and it follows from the maximum
principle for subharmonic functions that |L| is constant. However for
w4 az € L(\,) we have, since |w| < |z| and w # z, |w + az|* = |w]* + a*|z]* +
2aRe(w, z) < (1 + a)*|K|)* < |L(A\)|*. This contradiction shows us that PK is
constant, and the theorem is proved.

DEFINITION 4.8. Given K: D — 2€, we define

K™(e") = lim den K(re')

r—

and

Keoa(e") =  limrar K(re").

r—
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THEOREM 4.9. If K € N then |K| has radial limit almost everywhere, and
this limit equals |K™3|. Moreover if K # 0 then

log |K™| € LY(T).

ProoF. Assume K # 0. Then putting ¢(A) = log|K ()|, ¢ Z —co. More-
over since K € N, (4.4) holds for ¢ so we get from (4.5) that ¢ has radial
limit f(e") almost everywhere. Hence ¢? = |K| has radial limit almost ev-
erywhere. Thus

lim |K (re")|
r—1
is finite, so

[lim dlen K(re")| = limsup |K(re")| = lilrll |K (re")].
r— r— r—
This shows the first statement and also that log|K™d| = f almost every-
where. This gives the second statement since f € L'(T). Thus the theorem is
proved.

The fact that log|K™!| € L'(T) has an immediate consequence which is
worth stating separately:

THEOREM 4.10. If K € N and K # 0, then |K™(e'")| # 0 almost everywhere.

An interesting question in this context is in what sense K itself has radial
limits. This question was studied by S. R. Harbottle in [3] where the follow-
ing nice result was proved.

THEOREM 4.11. Let K:D — 2€ be an analytic multifunction such that
linll/ log* |K(re")|dt < co.
r— T

Then there is a set A C T of measure 2w such that, for all e € A,
[Krad(eit)] . — [Kwd(eit)] A’
where the hats denote polynomially convex hulls.

Actually the author, unaware of Harbottle’s result, has proved something
along these lines, although weaker, namely that the peripheral parts of K™
and K,,q agree almost everywhere on T.

By Harbottle’s result it is clear that |K™d| = |[K™] | = |[Kwd] | =
| Kraa| = the radial limit of |K|, so in many theorems that follow, one can use
these interchangeably.

We now turn our attention to H”-multifunctions and shall see that their
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radial maximal functions are in L7(T). Again, this follows from the theory of
subharmonic functions if p > 1 but to prove it for p <1 we use multi-
functional analyticity in an essential way. The integrability of the maximal
functions are also the key step in the inner-outer factorization of ordinary
HP-functions, and in fact we shall prove something very much like this for
HP-multifunctions.

THEOREM 4.12. If 0 < p < oo and K € H” then
(i) The radial maximal functions K* are in LP(T);
(ii) |K| has radial limit |K™| almost everywhere, and K™ € LP(T).

LEMMA 4.13. If ¢ is a positive subharmonic function on D such that
o dt
4. s iy —
(4.6) S\ip/TM(re)27r<oo

and 1 < p < oo, then the least harmonic majorant h of ¢ enjoys the same
property.

PrOOF. For R < 1 let
hg = P$(Re").
Since p > 1 it follows that
. dt
sup/ p(re'") — < oo.
r T 27'('
Hence if r < R,
dt .o dt . dt
— iy & ity &~ ity &4
hg(0) /ThR(re ) 5 S /T¢(Re )27r < sep/Tqb(re ) o < 00,

so hg(0) stays bounded. By subharmonicity, hg is increasing in R so by
Harnack’s theorem hgr — & for some harmonic function A, uniformly on
compact subsets. Clearly, /# is a harmonic majorant of ¢ so it suffices to
prove the estimate (4.6) for A. Let therefore r < 1 be given. Since hgr — h
uniformly on compact subsets, we can find an R>r so that
|hr(re) — h(re®) < 1. Then

iy dt Pt dt iy dt
J ey so< [o—nyeen oo+ [ e 5

§1+sup/¢”(Rei‘)—‘-1—t<oo.
R JT 27

IA

DEFINITION 4.14. Let n > 1, n € N and define R,()\) = {z; z" = A}. As we
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saw in Example 4.4 this is analytic on C. Given an analytic multifunction K
we understand by K/ the composition R, o K.

It is clear that |[K'/"| = |K|'/", so that if K € HP, then K'/" € H", and also
|(K/m)d| = |Krad|V/" i the limit exists.

PrROOF OF THEOREM 4.12. Let i be the least harmonic majorant of |K]|.

First assume | < p < co. Then by Lemma 4.13

sup [[h(re")|| ) < 00

0<r<1
so by standard theorems on harmonic functions, #* € L?(T). Hence the same
holds for K*. If 0 < p < 1 we choose an n so that np > 1 and let L = K'/",
Then LeH™, so L*eL™, ie, (L)”eLl. But |L|” =|K], so
(K*)P = (L*)" € L'. This proves (i), since the case p = oo is trivial. The first
part of (ii) has already been proved since we have seen in Theorem 4.9 that
radial limits of |K| exist and equal |K™d| almost everywhere. Obviously,
|K™| < K*, so by (i), K™ € L”. The theorem is proved.

We shall now see that there is an inner-outer factorization for H?”-multi-
functions, and it turns out that the outer factor is a function. First we recall
the definition of an outer function, together with a few properties. For de-
tails see [7].

If ¢ is a positive measurable function on T such that log¢ € L'(T), and if

B e+ ot
a0 = coxnf [ S Jon e =

for A € D, then q is called an outer function. Here c is a constant of modulus
1.

THEOREM 4.15. Suppose q is the outer function related to ¢ as above. Then
(i) lim,_; |g(re")| = ¢(e") almost everywhere on T;

(ii) g € H? if and only if ¢ € LP(T).

In analogy with the definition of an inner function we define an inner

multifunction.

DEFINITION 4.16. K analytic on D is said to be inner if K € H* and
|[K™d| = 1 almost everywhere on T.

THEOREM 4.17. If 0 < p < o0, K € H? and K is not identically zero, then
log |K™4| € LY(T), the outer function
e+ A dt

rad ¢ it\] *°
— log |K™(e")] 5~

gk () = expﬁ

eit
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is in H? | and there is an inner multifunction Mg such that
K = 4K MK.
Furthermore,

(4.7 log |K(0)] < /loglKra‘i(ei’)l ﬂ
T 2

Equality holds in (4.7) if and only if PM is constant.

PrOOF. From Theorem 4.9 we get log|K™!| € L! so that gk is a well de-
fined outer function. Since by Theorem 4.12, |K™d| € 17, it follows that
gk € H?.

Next, since K € H?, log|K()\)| has a harmonic majorant, and the least
harmonic majorant is lim,_; Pllog |K(re)|]. Thus

log [K(3)| < lim Pllog K (re")](3).
Since log|K(re'")| — log|K™(e")| almost everywhere as r — 1 and these

functions are bounded above by the function (1/p)(K*(e"))’, which is in-
tegrable by Theorem 4.12, we can use dominated convergence to conclude

Pllog" |K(re")[](\) — Pllog* |[K™(e")[}(N).
Thus using Fatou’s lemma we get

liII]l Pllog |K(re")[] = lim (P[log™ |K(re")[] — P[log™ |K(re")|])
< Pllog*t |[K™(e")|] — lim inf P[log™ |K(re")|] < Pllog" |K™(e™)]]

~Pllog” [K*4(e")]) = Pllog |K™!(e")].
But Pllog [K™!(¢")|(A) = log|gx (M), 50 log [K(V)| < loglax (V) i,
(43) KO < lax(V).

Therefore, if we define

K\
Mg(\) = ,
K( ) qK()‘)
Mg will be an analytic multifunction of modulus at most 1, hence bounded.
Since lim,_; |gg(re")| = |K™(e'")| almost everywhere and log |K™d(e")| €
L'(T) implies that |[K™d(e")| > 0 almost everywhere, we get
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K(re")
qk(re")

i JK (D]
~ g (re)]

1irrll |Mk(re")| = lim
r—

r—1

almost everywhere. Hence M is inner.

If we put A =0 in (4.8) we obtain (4.7) and equality holds if and only if
|K(0)| = |qx(0)], i.e., if and only if |[Mg(0)| = 1. This can only happen when
|Mk| is constant. Proposition 4.7 now gives the result. This finishes the
proof.

For a function f € N it is well known that
b
f = —b— )
2
where by, b, € H* and b, is non-zero. For a multifunction in the Nevanlinna

class we have an analogous statement.

THEOREM 4.18. For every K € N there corresponds two functions by and b,
in H*®, both zero-free, and an inner multifunction M such that

PROOF. Let 4 be the least harmonic majorant of log|K|. Then according to
4.5),

h(A) = Pldp](A)

for some real finite measure u. If u* — = is the Jordan decomposition of g,
then

(4.9) IK(\)| < exph(N) = exp{%e/ Eit—-:‘_:—; d,u}

T eil

_ ei(+)\ B eit_+_)\ N
—exp{—%e/Teu_)‘du }/exp{—%e/Teil_)\d,u }
e+
by(\) = exp{——/Teit = d;ﬁ}.

Then b, is non-zero and b, € H*. Moreover |Kb,| will be bounded by the
numerator in (4.9) so Kb, € H®. Let by M be the inner-outer factorization of
Kb,. Then b, is zero-free and since b, also is non-zero we get

Put
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5. Blaschke products.

It is well known that for functions analytic on the disc, the property
(5.1 linll/‘log [f(re”)]l =0
r—1 Jt

is equivalent to f being a Blaschke product. This is easy to see: That every
Blaschke product satisfies (5.1) is just Theorem 15.24 in [7]. Conversely, if f
satisfies (5.1) then

lim /T log* |1 (re")| =0,

so by subharmonicity of |f], log" |f| = 0. Thus |f| < 1 and we can factor f as
f =bg, with g zero-free, |g| <1 and b a Blaschke product. Then
|log|1/g]| = |log[b/f1| = |log |b] —log|f|| = log|b| + |log|f]| and (5.1)
holds with 1/g instead of f. By the first argument, |1/g| <1, so g is just a
rotation and f is indeed a Blaschke product.

With this in mind we are tempted to define the multi-valued analogue to a
Blaschke product by the property (5.1).

DEFINITION 5.1. Let B be an analytic multifunction on D. We say that B is
a Blaschke multifunction if

(5.2) linll/llog|B(re”)|| =0.
—lJr

PROPOSITION 5.2. Every Blaschke multifunction is inner.

PrROOF. Since log' |B| is subharmonic it follows from (5.2), that
log™ |[B| = 0. Thus |B| < 1. To show that |B"!| = 1 almost everywhere, let
B = gM be the inner-outer factorization of B. Then |¢"!| = |B"d| < 1 almost
everywhere so |g(A)] < 1. Moreover, by (4.8), |B(N\)| <|q(A)] so
|log|g|| =log™ |g| < log™ |B| = |log|B||. Thus g fulfills condition (5.1) and is
therefore a Blaschke product. Hence |¢g™!| = 1 almost everywhere and the
proof is complete.

THEOREM 5.3. Suppose K € N. Then K can be factored, in a unique way up
to rotations, as

K =fB,

where B is a Blaschke multifunction, f € N is zero-free, and ||f||, = || K|l
Moreover, if K € H?, then f € H? and ||f|, = || K|,

Proor. First we prove the existence. We know that log|K|=h— U,,
where 4 is the least harmonic majorant of log|K| and u = Alog|K|. Ac-
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cording to (4.5), h = P[dv] for some real finite measure v on T. Put

O = exp{/r zi +X du}

and define B = K/f. Then log|B| =log|K/f|=h— U, —h= —-U,. Let for
p <1 p, be the restriction of u to D\ (1 — p)D. The support of u—p, is
contained in (1 —p)D so U, (re') = —Uw(re ) + Uy,(re'") — 0 uniformly
as r — 1. Thus

. i dar 4 dt
}1311‘ i — Uy, (re") 7— = lim A —Uulre") 5.

We get

t
0., 0) lim [ =0, (") 3% = tim [ -0, 37 < 0.
But p, — 0 weakly as p — 1 so the left hand side tends to zero. This proves
that B is a Blaschke multifunction.

Next we prove the statements about the norms. First, since |B| < 1 we get
] = |K|, so we only have to prove ||f{ly < [[K]l, and |If]|, < [K]|,- We have
log™ |f| <log" |K| —log|B|, so by (5.2), [Ifllo < [IK|ly- This proves the first
statement. For the second statement, let for p < 1, u1, be the restriction of y
to pD, put s, = log |K| + U,, and let f, = exp(s,). The support of 1, is con-
tained in pD, so U,(re") >0 wuniformly as r— 1. Therefore,
fo(re") — |K(re'")| as r — 1, so, writing

i, = (1m [ o)

we get [If,, = IK]|,- Moreover, s, =h— U, + U, =log|f| = Uy, so f,
increases to |f| and we get ||f;||, = lim||(f,),[l, < lim[[fy]l, = [[K||,- Thus
If1l, < lIK||,- The other inequality is trivial.

For the uniqueness, let K = fB = fi B), where f and B are from above, f] is
zero-free and B; a Blaschke multifunction. Then log |K| = log|fi| + log |Bi|,
with log |fi| harmonic and log|B;| < 0, so since 4 is the least harmonic ma-
jorant, log|f| = h <log|fi|. We thus get log|B| = log|fiBi/f| = log|Bi|+
|log|fi/f1|, and it follows that f,/f satisfies (5.1). Hence fi/f is a Blaschke
product, but it is also non-zero, thus it is constant. This proves the unique-
ness of the non-zero factor of K, and a fortiori the uniqueness of the Blas-
chke factor, since By = (f/f1)B. This completes the proof.

COROLLARY 5.4. Suppose 0 < p < oo, K € HP, K # 0 and B is the Blaschke
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multifunction associated with K. Then there is a zero-free function 4 € H?
such that

K = Bh¥?.

THEOREM 5.5. Suppose B is a Blaschke multifunction, v is a finite positive
Borel measure on T which is singular with respect to Lebesgue measure, and

(5.3) M(\) = B(\) exp{— (/T:;Z—i—i dl/}.

Then M is inner and every inner multifunction is of this form.

PrROOF. Suppose (5.3) holds. It is clear that |M]| < 1. Let

eit + A
SN :exp{—/Te” — du}.
Then log|f| is the Poisson integral of —dv, and since v is singular,
log |f™4] = 0, i.e., |/ = 1 almost everywhere. Since |B™!| = 1 almost ev-
erywhere it follows that M is inner.

Conversely, let M be inner. By Theorem 5.3, M = fB, where log|f| is the
least harmonic majorant of M. By (4.5), log|f| = Plgdt/2n + d€], where
g € L(T) and ¢ is singular with respect to the Lebesgue measure. Both |M|
and |B| have radial boundary values equal to 1 almost everywhere, so it is
clear that log |f™4| = 0 almost everywhere. But the radial boundary value of
log |f| equals g almost everywhere, so & = P[d¢]. Since A is real and |h| < 1, it
is clear that h = P[—dv] for some positive singular measure v on T. This
proves the theorem.

By these theorems, we see that the Blaschke multifunction has many
properties in common with the ordinary Blaschke product. However, it is
not determined by the zero-set of K, as is the case for functions. Moreover,
we cannot divide by B and hope to get something analytic, simply because B
is a multifunction: K = fB does not imply f = K/B; factoring and dividing
are not equivalent when we deal with multifunctions.

We close this section with a theorem concerning the existence of global
selections to certain multifunctions in N.

THEOREM 5.6. Suppose that K € N is such that Z(K) fulfills the Blaschke
condition, ie., p= Alog|K|=7) a;j6), with the a;’s being integers and
Y- aj(1 —|\|) < oo, Then there is a function f € N which is a global selection
for K, ie., f()\) € K(X) for all \ € D.

PrOOF. Write K = fB with f zero-free. Since Z(K) fulfills the Blaschke
condition we can form the corresponding Blaschke product 5. Then
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log|b| = —U,, and we also know that log|K| = —U,, so it follows that
|K| = |b|. Thus defining
b | limdengy (B/b)(€), if b(N) =0,

it is clear from Proposition 3.5 that B/b is analytic. But it is also of constant
modulus so by Proposition 4.7., P(B/b) = C and it follows that, for some
constant ¢, cb(\) € B(\) for all A € D. Therefore ¢(fb)(A\) € K(\) for all
A € D. The theorem is proved.

6. Criteria for zero-capacity and finiteness of an analytic multifunction.

Given a compact set K C C we recall that the nth-diameter is defined by

@)
6n(K) = sup (H |zi —2j1> :

i#f
taken over n+ 1 points z; in K. For n =0, with the convention that

CZ) = 1, this is just the above defined |K| and for n = 1 the usual diameter

of K, diam K
If K is an analytic multifunction, we know by Proposition 3.3 that
L(A\) = K(A) x --- x K(N)

n+1

is analytic. Thus since

V(A 21,y Znyl) = (Z)_l Zlog |zi — zj]
is plurisubharmonic it follows that
A log6,(K(N) = sup (Y(A, 21, .., Zns1); (21, -+ -y Zna1) € L(N))
is subharmonic. Thus also
A 6,(K(N)
is subharmonic. We state this in the following

PROPOSITION 6.1. If K: D — 2, where D C C, is an analytic multifunction,
then the functions

A 8,(K(N)
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and
A log 6, (K(N))
are subharmonic on D.

It is easy to see that for n > 0, §,(cK) = || 6,(K) for all ¢ € C and that for
n=0,1, §,(K+ L) < 6,(K) + é,(L). This is not true for n > 2.

If 6,(K) satisfies the growth condition in Theorem 4.9, we can apply the
theorem and in this way get a test for when §,(K) = 0, namely if the radial
limits are zero on a non-null subset of T, the logarithm of these cannot be in
L' and thus the function is identically zero. Noting that for n > 1, 6,(K) = 0
if and only if #K < »n and using the Scarcity Theorem we get

THEOREM 6.2. Let K € N. If for some n > 1, liminf,_; 6,(K(re")) =0 on a
non-null subset of T, then #K(X) < n. Thus there is a closed analytic sub-
variety F in D such that for any \° € D \ F there exist hy, ..., h, holomorphic
in a neighbourhood U > X so that K(\) = {h(\),...,h,(\)} in U.

Proor. We notice that §,(K) < 2|K| so if K € N the growth condition of
Theorem 4.9 is fulfilled for all 6,(K) and the theorem applies. In particular if
6.(K) # 0, then log (6,(K)™") € L'(T), which is a contradiction if the as-
sumptions in the theorem are fulfilled.

The case n = 1 is interesting enough to state separetely.

THEOREM 6.3. Let K be analytic on D. If

; t
sup/ log" diam K (re'") g— < 00
r T [

and
lim inf diam K(re") =0
r—
on a non-null subset of T, then K is a holomorphic function on D.

If ¢(K) denotes the (logarithmic) capacity of K, it is known (M. Fekete, G.
Szeg, see [1]) that ¢(K) is the decreasing limit of 6,(K) as n — oo. Thus ¢(K)
is subharmonic and using Theorem 4.9 again we get

THEOREM 6.4. Let K be analytic on D. If

sup/ log" c(K(re")) ? < 00
r T ™

and
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lim illifcr(K(rei’)) =0

on a non-null subset of T, then K is of capacity zero on D.
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