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REGULARITY AT INFINITY FOR A MIXED PROBLEM
FOR DEGENERATE ELLIPTIC OPERATORS IN A
HALF-CYLINDER

JANA BJORN

Abstract.
We consider a mixed boundary value problem for the degenerate elliptic equation

div(e/(x)Vu(x)) = f(x)

in an infinite half-cylinder Go. The matrix ./ satisfies a one-weighted boundedness and ellipticity
condition with a weight satisfying a modified Muckenhoupt condition. The right-hand side f is
assumed to have a compact support. On a subset F of Gy, with infinity as a limit point, the zero
Dirichlet data are prescribed, while on dGj \ F we consider the Neumann condition. We obtain
a necessary and sufficient condition for the Wiener regularity at infinity, generalizing the criter-
ion obtained in Kerimov-Maz’ya-Novruzov [6] for the Laplace operator.

1. Introduction.

Let Gy = w x (0, 00) be an infinite half-cylinder in R", n > 2, where w ¢ R"™!
is a bi-Lipschitzian image of a ball in R""!. Let F be a closed unbounded
subset of Gy such that Gy \ F is connected, and assume that F contains the
base w x {0} of Gp. We shall use the notation x = (x',x,) with
X = ()C], .. .,xn_l) € R"!'and xn € R.

In Gy \ F, consider the following differential equation in divergence form

€] div(e/ (x)Vu(x)) = divf(x) — fo(x), x € Go\F,

with the boundary conditions u = 0 on F and Nu = (f,v) on 0Gy \ F, where
v is the outer normal of Gy and Nu(x) = (o/ (x)Vu(x),v(x)) is the conormal
derivative of u at x. The brackets (-, -) denote the scalar product in R".

ReMARK. The problem (1) is sometimes called the Zaremba problem,
named after S. Zaremba who studied the mixed boundary value problem for
the Laplace operator in [11].

The matrix /(x) = (a;(x));;-; is symmetric with real-valued measurable
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entries a;;, satisfying for a.e. x € Gy and all ¢ € R" the weighted boundedness
and ellipticity condition

aw(x)|gl® < (o (x)q,q) < arw(x)|ql.

The weight w is a non-negative measurable function on Gy satisfying the
following condition. There exist positive constants r,, and C,, such that

(2) w(BN Go)w™ (BN Gp) < Cpt™"

holds for all balls B with center in Gy and radius r < r,,. Here and in what
follows, w(E) stands for the integral [, w(x) dx.

The generality of the coefficient matrix sz¢ requires that the equation (2) be
understood in the weak sense, i.e. through the integral identity

/G (oA (), V() dx = / (Zf

where the test functions v belong to LO’ (Go, F,w) and the solution u belongs
to L(l)’z(Go,F, w) or to L'2(Go,F,w). The spaces Ly*(Go,F,w) and
L'2(Gy, F,w) will be defined later, see Definition 2.3.

The notion of regularity at infinity will be made precise later, but roughly
speaking it means that for any right-hand side with compact support, the
weak solution of (1) tends to zero, as x, — oco.

In the special case when the matrix «/ is the unit matrix, i.e. for the
equation Au = divf — fj, a necessary and sufficient condition for the reg-
ularity at infinity was obtained by T. M. Kerimov, V. G. Maz’ya and A. A.
Novruzov in [6]. Their result is as follows (cap denotes the Newtonian ca-
pacity in R").

() ),

THEOREM 1.1. Infinity is regular for the Zaremba problem for the equation
Au =divf — fy if and only if

D jcap({x € F:j < x, <j+1}) =
j=1

Unfortunately, some of the methods used in the proof cannot be directly
applied to the general operator div(./(x)Vu(x)). However, the connection
between the Zaremba problem on Gy \ F and the Dirichlet problem on a
bounded domain, together with the Wiener test for degenerate elliptic equa-
tions (see Fabes—Jerison—Kenig [2]), makes it possible to obtain a criterion of
regularity at infinity for the Zaremba problem for the operator
div(e/ (x)Vu(x)).

We introduce a change of variables which maps the infinite half-cylinder
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Gy onto a bounded domain and preserves the weighted ellipticity of the op-
erator div(.e/(x)Vu(x)). In order to obtain a Dirichlet problem, the part of
the boundary, on which the Neumann data are prescribed, is eliminated.

The equivalence of the regularity for the Zaremba problem in
L(')‘z(Go,F ,w) and the regularity for the Dirichlet problem is proved. In this
way, the Wiener test for degenerate elliptic equations, see Fabes—Jerison—
Kenig [2], provides us with a necessary and sufficient condition for the reg-
ularity at infinity for the Zaremba problem in L(l)’z(Go,F ,w), see Theorem
4.5. The regularity in L'?(Gy, F,w) is investigated separately, see Theorems
4.8 and 6.8.

The reason for considering two different spaces is that infinity may or may
not be regarded as an element of F. In some sense, u € L(l,‘z(Go,F , W) means
that zero Dirichlet data are considered at infinity, whereas for
u € L'*(Gy, F,w) there is no such condition. We show that in some cases the
spaces L(')‘Z(Go, F,w) and L'*(Gy, F,w) coincide, see Corollaries 4.7 and 6.9.
In fact, they differ if and only if w=!(Gy) < oo and cap. (F) < oo, where the
capacity cap, is generated by the kernel

A (x,y) /R ey -y <R
y X, = T ) 0, |X— = 4

Y x| w(B(x,r) N Gy) r Y Y
with some fixed R > 0.

The presence of the weight on Gy leads to some peculiar cases. If the
weight w grows sufficiently fast at infinity, i.e. if w™!(Gy) < oo, then infinity
is always regular for the Zaremba problem in L(')‘Z(GO,F ,w). This corre-
sponds to the fact that in the weighted potential theory, single points may
have positive capacity. In the opposite case and for the regularity in
L'2(Gy, F,w), the regularity criterion reads

3)

™

wl ({x € Go: %, <j})capy({x € F:j < xy <j+1}) = o,

j=1

see Theorem 6.8.
The following table summarizes the possible cases.

Lé‘z(Go7 F,w) Regularity in
w1 (Go) < 0o 3) = LGy, F,w) | LY(Go,F,w) | L'%(Go, F,w)
True True True True
True False False True I False
False True True True
False False True False
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In the last two sections we study and compare two different capacities on
Gy associated with the weight w, cap, and cap,-, see Theorems 5.3, 5.7 and
6.3-6.7.

We also obtain a two-sided estimate for the Neumann function for the
operator — div(/(x)Vu(x)) in Gy, see Theorem 5.7.

REMARK. It should be pointed out that in Kerimov-Maz’ya—Novruzov [6]
the assumptions on the half-cylinder Gy are more general then here, viz. they
do not assume that w is homeomorphic to a ball. Thus, in this direction, our
result does not cover theirs.

The lemma in Chapter 1.1.8 in Maz’ya [9] shows that if w is a bounded
domain, star-shaped with respect to every point of a ball with center at the
origin, then w is a bi-Lipschitzian image of a ball.

2. Weighted function spaces and weak solutions.

We begin this section by proving some auxiliary results about the weight w.

Let G denote the infinite cylinder G =w x R. Put G, ={x € G: x, > t}
and F,={xe€F:x,>1t}. Let also B(x,r)={yeR":|y—x|<r} and
B(X,r)={y eR:|y —-X|<r}.

Unless otherwise stated, the letter C will denote a positive constant whose
exact value is unimportant and may change even within a line. By X ~ Y we
mean that there exist positive constants C and C’ such that CX < Y < C'X.

Recall that w is a weight on Gy satisfying the condition (2). Note that a
restriction to Gy of a weight belonging to the Muckenhoupt class A4, satisfies
(2). However, the Muckenhoupt class does not allow weights with ex-
ponential growth, while the weight w(x) = ¢, a € R, satisfies (2). Thus the
class of weights considered here is wider than 4.

Note also that the weight w can be symmetrically extended to G\ Gy by
w(x',x,) = w(x', —x,) and the condition (2) remains valid for all balls B with
center in G and radius r < r,,.

LEMMA 2.1. Lett € R. Then
(a) w(G-1\ Gi) =~ w(G,\ Guy1),
(b) W(Gt_.] \G[)W_I(Gt_] \Gt) ~ 1.

PROOF. Since w is a bi-Lipschitzian image of a ball, we may assume that
G=(-1,1"""xR. Let M > \/n/r, be a fixed integer and put a = M".
Divide G,-; \ Gi+1 by hyperplanes into 2"M" pairwise disjoint cubes with
common sidelength a and edges parallel to the coordinate axes. Let 2 be the
collection of all such cubes.

For Q), 0, € 2, we can find a chain of cubes from 2 connecting Q; and Q»
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in the sense that each cube has at least one vertex in common with its pre-
decessor in the chain. The chain can be chosen so that its length does not
exceed 2nM. Let Q' and Q" be two neighbouring cubes in the chain and let B
be the smallest ball containing Q' U Q”. If x is the characteristic function of
0, then by the Holder inequality,

2
= (/ X(x)w(x)'”w(x)”‘”dx) <w(Q@)Ww ' (BNG).
BNG
The condition (2) now yields

aw(Q") < w(@)W(BNGw (BN G) < Culavn)"w(Q),

i.e. w(Q") < Cw(Q'). Repeated application of this inequality to both w and
w! gives w(Q;) ~ w(Q,) and w™'(Q)) = w™1(Q,).

To obtain (a), apply w(Q)) =~ w(Q5) to all cubes Q; C G, \ G, and their
translations @, = {(X',x, + 1) : (¥, x4) € Q1} C G, \ Gy1.

As for (b), let Q) C G,-1\ G, be fixed and Q> C G-\ G, arbitrary
(01,0, € 2). Since G,_; \ G, consists of 2"~! M" cubes Q,, we get using (2),

w(Gio1 \ G)w ' (G-1 \ G) = w(Qi)w™ ' (@) < Ca™.
Conversely, the Holder inequality yields

2
1~ (/ w(x)‘/zw(x)"/zdx) <w(G \ GIWw (G \ GY).
G/«l\Gt
The following corollary of Lemma 2.1 shows that weights satisfying the
condition (2) cannot grow arbitrarily fast at infinity.

COROLLARY 2.2. There exist positive constants k and C such that for all
teR,

(a) / W(x)e"z""‘"dx/ w(x)'le(z”z")“ndx S Ce—2nm,
G, G,
) / w(x)erdx = e (w ! (G \ G1)
G,

Proor. Apply Lemma 2.1, part (a), to the partition {G 4k \ Griki1 e Of
G,. Then for k > 0,
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/ w(x)e 2 dx < Ce™M'w(G,_ \ G,) ng(logC—Zn) and
Gi k=0

00
/G w(x)—le(Z«Zn)nx,,dx < Ce(Z—Zn)»ctw—l(Gt_l \Gr) Zek(l()gC-(Zn—Z)n).
1 k=0

Choose « so that log C < 2k, then the last two series converge and (a) fol-
lows. As for (b), we have by above

C'e % 'w(G, \ Gryy) < / w(x)e 2 ndx < Ce > w(G,_; \ G).

1

Lemma 2.1 finishes the proof.

REMARK. Note that C and the constants in “~ depend on the choice of
k. Let therefore, k be fixed from now on.

We can now define suitable function spaces on Gy and give a precise
meaning to the weak definition of a solution of the equation (1). For an open
set {2, let ¥>°(£2) denote the space of infinitely many times differentiable
functions on {2. Let also

€3°(92) = {v € €°(£2) : spt v compact, sptv C {2},
%>(Gp) = {v:v € () for some open 2 O Gy},
EX(Go \ F) = {v:ve &y (R\F) for some open 2 D Gy}.
DerFINITION 2.3. Let x be the constant from Corollary 2.2. Let
Ly*(Go, F,w) be the closure of €3°(Go \ F) in the norm
¥l = [ (MG 4 900wt e

Similarly, let L''?(Gy, F,w) be the closure of
{v € €~(Go) : VIl 12(Gy Fw) < 00 and v = 0 in some neighbourhood of F}
in the L'?(Gy, F,w) norm.

REMARK. The definition should be understood in the sense that there exist
smooth v, and a function u: Gy — R" such that v, — v in L?(Gp, e *w)
and Vv — u in L?(Gy,w), as k — co. However, since the weight w™! is lo-
cally integrable, it turns out that u is the distributional gradient Vv of v, see
e.g. Section 1.9 in Heinonen—Kilpeldinen—Martio [5].

DEFINITION 2.4. Let & be a bounded linear functional on L(’)'z(GO,F JW).
The function u € L'?(Gy, F,w) is called a weak solution of the Zaremba
problem if
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(4) / (o (X)Vu(x), Vo(x)) dx = B(v) for all v € LI3(Go, F, w).
Go

REMARKS. 1. By the usual Banach space isometric embedding argument,
see e.g. Section 5.9 in Kufner-John-Fucik [8], every bounded linear func-
tional @ on L(l)’z(Go,F ,w) can be represented as

ﬂw:LAgMM%gbﬁumw)m

where the functions " fy/w and f;/w, j = 1,...,n, belong to L?(Gp,w). For

smooth data, this representation leads to the divergence type equation (1).
2. Theorem 3.6 and the weighted Sobolev embedding theorem, Theorem

1.3 in Fabes-Kenig-Serapioni [3], show that the norm || ||.i2G, Fy I8

equivalent to
1/2
< / |Vv(x)|2w(x)dx) .
Go

The Lax—Milgram theorem then ensures that for every bounded linear func-
tional on L(])‘Z(GO, F,w) there exists a unique weak solution u € L(')‘2(Go, F,w)
of the problem (4). On the other hand, there is no uniqueness in
L'2(Gy, F,w), unless L'2(Gy, F,w) = Ly*(Go, F, w).

DeriNiTION 2.5. Infinity is regular for the Zaremba problem in
Lé’z(GO,F, w) (in L'"?(Gp, F,w)) if for all bounded linear functionals & on
LO’Z(GO,F ,w) with compact support, the weak solution u € L(l)’z(Go,F ,w) (all
weak solutions u € L'?(Gy, F,w)) of (4) tends to zero as x,— oo,
x=(x',x,) € Gy \ F.

3. Change of variables.

Since w is a bi-Lipschitzian image of a ball, and bi-Lipschitzian mappings
preserve the weighted ellipticity of the operator div(«/(y)Vu(y)) (with a new
weight, also satisfying the condition (2)), we may in the following assume
that w is the unit ball in R*™!. Let « be the constant from Corollary 2.2 and
introduce the following change of variables.

DEefFINITION 3.1. Let T:R" — R"\ {(¢,&) € R": € =0, & <0} be de-
fined by T'(x,x,) = (¢,&,), where

26y e (1 - )

!
=== & =
ST 1+ |
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LEMMA 3.2. There exist positive constants Cy and C,, such that if x,y € G
and x, < yp, then

Cie™™|x — y| < |Tx — Ty| < Cre™™|x — ).

ProOF. By direct calculation using the definition of 7' and the inversion
formulas e~ = |¢] and ¥ = (|¢] + &,) "¢, where £ = Tx.

Let dT'(x) and Jr(x) denote the differential and the Jacobian of T at x,
respectively. By 4* we denote the transpose of a matrix A.

COROLLARY 3.3. Let x € G. Then
(a) |dT(x)"q| ~ e™"|q| forall g € R",

(b) 7 (x)] =~ e7" .

The mapping 7 is a ¥°°-diffeomorphism between the circular half-cylinder
Gy and the unit half-ball T(Gy) = {£ € B(0,1) : £, > 0}. In fact, it can be
verified that derivatives of any order of £ with respect to x can be written as
polynomials in & and |¢|. Similarly, derivatives of x with respect to ¢ are
polynomials in e™*%, x; and 1+ x|

The diffeomorphism 7" maps the base B'(0,1) x {0} of Gy onto the half-
sphere {£ € 9B(0,1) : &, > 0}. The lateral surface 9B'(0,1) x (0,00) of Gy
corresponds to the punctured (n— 1)-dimensional unit  ball
(B'(0,1) x {0}) \ {0}. Since |T(x', x,)| = e " — 0, as x, — oo, the set T(F)
has a limit point at the origin. In order to eliminate the part of the boundary,

where the Neumann data are prescribed, reflect the domain 7(Gy \ F) in the
hyperplane {¢ € R" : £, = 0} and add T(0Gy \ F). The result of this fusion is

D = B(0,1)\ (T(F) U PT(F) u{0}),
where P : R" — R" is the reflection P(¢',¢&,) = (¢, —¢,). Note that
oD C T(F)U PT(F) U {0}
and if the interior of F is empty, then 8D = T(F) U PT(F) U {0}.

The change of variables x — £ = Tx shows that in the new coordinates
(&,&n), the operator divy(e/(x)Viu(x)) has the form dive(#(&)Veu(§)),
where
(5) B =B(Tx) = |Jr(x)|"'dT(x)/ (x)dT(x)* for & € T(Gy).

Extend % to B(0,1) \ T(Gy) by putting #(§)=PRB(PE)P.

Put for £ € R", &, >0,

w(E) = w(T 'Ol
and extend w symmetrically to &, < 0 by w(¢) = w(P§).
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The definition of %, formula (5), together with the weighted ellipticity of
o/ and Corollary 3.3, now yields that # satisfies the weighted ellipticity
condition

(B(€)q,q) ~w(€)|g)* fora.e. e B(0,1)and all g € R".

THEOREM 3.4 The weight w belongs to the Muckenhoupt class A, i.e. there
exists a constant C such that for all balls B = B(¢,p) C R",

w(B)W ! (B) < Cp™.

PrOOF. Due to the symmetry of w, we may assume that the centre £ of B
satisfies &, > 0, i.e. £ = Tx for some x € G. Moreover w(B) ~ w(B*) and
w=l(B) ~ w™!(B"), where B = {£ € B: ¢, > 0}. Hence by Corollary 3.3,

6)  w(B)w'(B)~ /

Wy [ i) g,
T-1(B*) T

1(BY)
We shall distinguish two cases.

1. Assume that p < é|§|, where 0 < § < 1 will be fixed later. Lemma 3.2
then yields T '(BY) C B(x,r)NG, where r=(C;(1-6)¢) 'p<
(Cy(1 — 6))7'6. Fix 6 sufficiently small, so that r < r,,. The estimate (6) and
the assumption (2) then yield

w(B)w™1(B) < Ce " w(B(x,r) N G)w™ ' (B(x,r) N G) < Cp™.
2. Let p > 6|¢|. Then T-'(B*) C G, with t = —k ' log((1 + 6~')p). Hence
(6) and Corollary 2.2, part (a), yield
w(B)w™ ! (B) < Ce ™! ~ p™",
It is well-known that 4,-weights have the doubling property
w(B(¢,2p)) < CW(B(E, p)),

where C is independent of £ and p. For more about A,-weights see e.g.
Chapter IV in Garcia-Cuerva-Rubio de Francia [4] or Section 15.2 in Hei-
nonen-Kilpeldinen-Martio [5].

As a consequence of the doubling property of w, we obtain the local dou-
bling property for w. For fixed R > 0, there exists C such that

w(B(x,2r) N G) < Cw(B(x,r)NG) forall x € Gand r < R.

In contrast to the doubling property of w, the constant C depends on R and

thus, for w, the doubling property need not hold uniformly for all r.
Weights belonging to the Muckenhoupt class are admissible for the theory

of weighted Sobolev spaces, as studied by E. B. Fabes, D. S. Jerison, C. E.
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Kenig and R. P. Serapioni in [2] and [3]. See also Heinonen—Kilpeldinen—
Martio [5].

DEFINITION 3.5. Let {2 be a bounded domain in R". The weighted Sobolev

space H(;’z(.Q, w) is the closure of €°(£2) in the norm

s = [ (MO + [THOP(E) de.
Similarly, H"?(£2,w) is the closure of {v € €°(£2) : ||| ;24 < oo} in the
H'"2(£2,w)-norm.
THEOREM 3.6. Put for v € L'*(Go, F,w) and (¢,¢&,) € B(0;1),

(voT™)(€,&) if & >0,
(voT)(€,~&) if & <O0.
Then v € H(;’Z(DUB(O, p), W) for all p >0 and conversely, if v belongs to
Hé’z(DuB(O,p),W) Jor all p>0, then the function v =7V|yg oT, where

§|T(GO} is the restriction of v to T(Gy), belongs to L'(Gy, F,w). If moreover
Ve LO’Z(GO,F, w), then v € H(;’z(D, W) and conversely.

I)(5’» gn) = {

PROOE. 1. By Corollary 3.3, ||vl| 2y ) = [¥ll712(800,1\ (o), - We can as-
sume that v € €*°(Gy). By Lemma 3.2, v is locally Lipschitz in B(0,1) \ {0}
and consequently (by e.g. Lemmas 1.11 and 1.15 in Heinonen—Kilpeldinen—
Martio [5]), ¥ € H"2(B(0,1) \ {0},w). Since the (n — 1)-dimensional Haus-
dorff measure of {0} is zero, v belongs to H'?(B(0, 1), w) (by Theorem 2.6 in
Kilpeldinen [7]).

If v vanishes in some neighbourhood of F, then ¥ has compact support in
D U B(0, p) for all p > 0, and hence v € H(;'Z(D U B(0, p), w) for all p > 0 (by
e.g. Lemma 1.25(i) in Heinonen-Kilpeldinen—Martio [S]). Similarly, if v be-
longs to ¥5°(G \ F), then spt# C D and ¥ € Hy*(D, W).

2. Conversely, if v € €3°(D), then v =7y, o T € 65°(Go \ F). Finally,
assume that v belongs to H&’z(DUB(O, p),w) for all p>0. Fix e >0 and
choose ¥; € €°(D U B(0,e7)) so that

(7) 19 — Wl mnagsoy 5 < 27e e

Put v; = V|G, © T then v; € ¥°(Go) and v; vanishes in some neighbour-
hood of F\ G;. Let ¢; € 43°(1}), j € Z, be a partition of unity subordinate to
the covering I; = (j — 2,/) of R, such that lgj(#)] < C for all £ € R and all j.
Put ¥ =37, vjp;. Then ¥ € €*°(Gy) and v vanishes in some neighbourhood

j
of F. If v ="9|p(g, o T, then
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.
19 = Vliragorn < 2105 = V)0il2Go
Jj=1

At the same time, using |;(1)| < 1, [¢}(¢)| < C and (7),

2 2
(v — V)%‘”L'Z(GO,F,w) < v — V”L'Z(Go,F,w)

+ Cez*‘f/ |vi(x) = v(x)|7e~ 2% w(x) dx
G/--Z\G/

< cey; - v“i‘l(Go,F,w) < C27Yel

It follows that [[v— V|2, Fw < Ce and letting € — 0 shows that
v € L'2(Gy, F,w).

DEFINITION 3.7. We say that div(#(§)Vu(¢)) = 0 in the H'2(£2, w) sense if
u€ H?(2,w) and

/ (BE)Vu(€), Vv(€))de =0 for all v e Hy*(£2,W).
0

By Theorem 2.3.12 in Fabes—Kenig—Serapioni [3], the solution u is locally
Holder continuous in 2.

THEOREM 3.8. Let u € L(l)‘Z(Go,F, w) be a weak solution of the Zaremba
problem (4) and suppose that the right-hand side ® has compact support. Then
there exists p > 0 such that (with the notation as in Theorem 3.6) the function
# is a solution of div(#(€)Va(£)) = 0 in the H'*(D N B(0, p), w) sense.

PROOF. Since the support of @ is compact, there exists ¢ such that
(8) / (o (x)Vu(x), Vv(x))dx =0
Go

for all v e L(l)'z(Go,F, w) with spt v C G,. Due to the symmetry of # and #, it
suffices to show

[ @@vie.vrg)ds =0
T(Gy)

forallve H&’Z(D N B(0,p),w), p < e " This follows directly from (8) using
Theorem 3.6 and the definition of £, formula (5).
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4. Regularity and the Wiener test.

If EC 02, we say that v > ¢ on E in the H'2(2,W) sense, if v can be ap-
proximated in H'?(£2, ) by Lipschitz continuous functions v, on §2 satisfy-
ing v > con E.

DEerFINITION 4.1. Let K C B(0,1) be compact. The A-capacity of K in
B(0,1) is

capa(K) =it [ (BOTHO, V() e,
where the infimum is taken over all v € Hé’z(B(O, 1), w) satisfying v > 1 on K
in the H'2(B(0, 1), w) sense.

By Theorem 1.20 in Fabes—Jerison—-Kenig [2], there exists a unique mini-
mizing function, called the capacitary potential of K. Moreover, the capaci-
tary potential satisfies the equation div(#4(§)Vu(§)) =0 in the
H'?(B(0,1) \ K, w) sense. By Theorems 4.5 and 4.7 in Fabes-Jerison-Kenig
[2], the capacity cap, extends to Borel (even analytic) sets E C B(0,1) by

capg(E) = sup{capg(K) : K C E compact}.

A property is said to hold quasieverywhere (q.e.) if it holds except for a set
of #-capacity zero.

We are now ready to prove the equivalence of the regularity for the Zar-
emba problem in L(l)’z(Go, F,w) and for the Dirichlet problem. Put
Do = DN B(0,}). For a detailed definition of the regularity for the Dirichlet
problem see Section 5 in Fabes—Jerison-Kenig [2]. For our purposes, it is
important, that by Lemma 5.3 in Fabes—Jerison—Kenig [2], n € 0Dy is a
regular point of Dy if and only if for all p > 0, the capacitary potentials u, of
the sets B(n, p) \ Do satisfy u,(§) — 1, as £ = n, £ € Dy.

THEOREM 4.2. Infinity is regular for the Zaremba problem in L(l)'z(Go, F,w)
if and only if the origin 0 is a regular point of Dy.

PrOOF. 1. Let the origin 0 be a regular point of Dy. We shall show that
for every bounded linear functional ¢ on L(l,’z(GO,F ,w) with compact sup-
port, the weak solution u € L(l)’Z(GO, F,w) of the Zaremba problem (4) tends
to zero, as x, — 00, x € Gy \ F. Let p and # be as in Theorem 3.8. Then
it € Hy*(D,w) and div(#(€)Vi(€)) = 0 in the H"2(D N B(0, p), W) sense. By
Theorem 2.4.3 in Fabes-Kenig-Serapioni [3] about L™ estimates for solu-
tions of div(#(£)Viu(€)) = 0, |a(€)| < M for £ € Dy, [¢| = 1p.

The strong maximum principle (Corollary 2.3.10 in Fabes—Kenig—Ser-
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apioni [3]) yields that the capacitary potential of B(0,3p)\ Dy satisfies
u,4(€) < ¢ < 1 for |¢| > 1p. Since u,/4 = 1 on B(0,3p) \ Dy, it follows that

4 <

= c(l —uy4) on d(DyNB(0,1p))

in the H'?(Dy N B(0,1p), W) sense. The maximum principle implies

. M
lu(é)] < 1-¢

Since u,/4(§) — 1, as £ — 0, £ € Dy, it follows that u(§) — 0, as £ — 0,
&€ Dy, ie. u(x',x,) — 0, as x, — 00, x € Gy \ F. Thus, infinity is regular for
the Zaremba problem in L(l)‘z(Go,F, w).

2. Assume that the origin is an irregular point of Dy and find p > 0 such
that the capacitary potential u,(§) of the set B(0, p) \ Do does not tend to 1,
as £ — 0, £ € Dy. Let ¢ be a piecewise linear cut-off function on Gy such that

spt C G, and ¢ = 1 on Gy, where t = —x "' log p. Put for x € Gy,
u(x) = (1 — u,(Tx))p(x).

Then u € L(')‘Z(GO,F, w) and u(x', x,) does not tend to 0, as x, — oo. Since
div(%(€)Vu,(£)) = 0 in the H'*(D,w) sense and u, = u, o P, we have

(l — u,,/4(£)) for all £ € Dy N B(O,%p)

| @@9u(©.9v)ds =0
T(Go)

for all ve H&'Z(D, w). The definition of u and the Holder inequality now
imply that u« is a weak solution of the Zaremba problem
div(e/(x)Vu(x)) = @ for some bounded linear functional on L(])’Z(G(),F,W)
with compact support. Thus, infinity is not regular for the Zaremba problem
12

in Ly*(Go, F,w).

The following criterion of regularity for degenerate elliptic equations was
given in Fabes-Jerison—Kenig [2], Theorem 5.1.

THEOREM 4.3 (Wiener test). Let 0 < § < 1. Then the origin 0 is a regular
point of Dy if and only if one of the following conditions holds

b pr dp
(a) /0 SO 2 < o
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REMARKS. 1. Theorem 4.3 differs slightly from the formulation in Fabes—
Jerison-Kenig [2], but the proof is essentially the same.

2. The conditions (a) and (b) in Theorem 4.3 are mutually exclusive and
(a) is equivalent to capgz({0}) > 0 (see the properties (i)—(iv) in the in-
troduction of Fabes—Jerison—Kenig [2]).

The Wiener test, together with Theorem 4.2, provides us with a necessary
and sufficient condition for the regularity at infinity for the Zaremba pro-
blem in L(l,’z(Go,F ,w). To obtain a criterion of regularity in terms of F and

w, we need to estimate capg (B(0, p) \ Do) and w(B(0, p)).
DEFINITION 4.4. Let E C Gy be a Borel set. Put
capp(E)=}capg(T(E) U PT(E)).

REMARK. It follows from the definition of capy and Theorem 3.6 that for
a compact subset of Gy,

capp(K) = inf/G (o (x)Vv(x), Vv(x)) dx,

where the infimum is taken over all v € °(Gy), such that 1Vl 212Gy ) < 005
v>1on K and v=0on w x {0}.

THEOREM 4.5. Infinity is regular for the Zaremba problem in L(‘)‘z(Go, F,w)
if and only if one of the following conditions holds

(a) /Oo w (G- \ G dt < o0,
0
(b) /loo wH(G_1 \ G;) capp(F,) dt = .

Proor. Corollary 2.2, part (b), shows that

W(B(0, ) =~ / w(x)e P dx = e (w G,y \ G))
G,
where t = —k~!log p. Thus, with § < 1 fixed, the condition (a) in Theorem
4.3 is equivalent to the condition (a) in Theorem 4.5.
On the other hand, if (a) in Theorem 4.3 fails, i.e. if capz({0}) = 0, then
capg(B(0, p) \ D) = 2capp(F;), which inserted into the condition (b) in
Theorem 4.3 gives the condition (b) in Theorem 4.5.

REMARK. Note that by Lemma 2.1, the integrals in Theorem 4.5 can be
replaced by infinite sums, i.e. (a) is equivalent to w™!(Gy) < oco.
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We now turn our attention to the regularity at infinity for the Zaremba
problem in L'"?(Gy, F,w). Put for p > 0, F, = (T(F) U PT(F)) N B(0, p).

THEOREM 4.6. Assume that there exists C > 0 such that

capy(F,) > Ccapg({0}) forall p > 0.

Then v € H(;‘z(D, w) if and only if v € H&'2(DUB(O,p),W) SJor all p>0. In
particular, this holds whenever cap 4({0}) = 0.

ProoF. Clearly, v e Hy?(D,w) implies v € Hy*(DU B(0,p),w) for all
p > 0. Conversely, let v e Hy*(D U B(0, p),w) for all p > 0. Multiplying v by
a smooth compactly supported cut-off function, equal to 1 in some neigh-
bourhood of the origin, we may assume that sptv C B(0,1). By Theorem
4.14 in Heinonen-Kilpeldinen-Martio [5], we may assume that v is quasi-
continuous, i.e. for every € >0 there exists an open set U such that
capyz(U) < € and the restriction of v to R"\ U is continuous. By Theorem
4.5 in Heinonen-Kilpeldinen—Martio [5], a quasicontinuous function belongs
to H(;'Z(.Q, w) if and only if it vanishes g.e. on 92. It follows that v vanishes
g.e. on T(F) U PT(F). We shall distinguish two cases.

1. If capgz({0}) = 0, then v vanishes q.e. on 9D, and consequently, v be-
longs to H(;'Z(D, w) (by Theorem 4.5 in Heinonen-Kilpeldinen-Martio [5]).

2. Assume that capy({0}) >0 and find an open set U such that
capy(U) < cap%(F,,) for all p > 0, and the restriction of v to R"\ U is con-
tinuous. Then 0 ¢ U and there exist ¢ € (T(F)U PT(F))\ U such that
v(¢)=0and & — 0, as j — oo. It follows that v(0) = 0 and by Theorem 4.5
in Heinonen—Kilpeldinen—Martio [5], v € H(;‘Z(D, w).

REMARK. Theorems 4.5 and 4.14 in Heinonen—Kilpeldinen-Martio [5] are
stated in terms of the so called Sobolev capacity. Nevertheless, by Theorem
2.38 in Heinonen—Kilpeldinen-Martio [5], if £ C B(0,}), then the Sobolev
capacity of E is comparable to capgz(E).

COROLLARY 4.7. If w™!(Gy) = oo or capp(F,) > C > 0 for all t, then
Ly*(Go, F,w) = L'*(Go, F, w).
THEOREM 4.8. Assume that w='(Gy) < oo and that cap(F,) — 0, as t — oc.

Then infinity is not regular for the Zaremba problem in L'*(Gy, F,w).

ProoF. Consider the capacitary potentials u,. of the sets 77,, \ B(0,¢).
With p > 0 fixed and 0 < € < p, the functions u,. form a bounded subset of
HS’Z(B(O, 1),w) and as e — 0, u,, converge pointwise to
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U, = Sup Up.
O<e<p
By Theorem 1.32 in Heinonen—Kilpeldinen—-Martio [5], @, € Hé’z(B(O, 1), w)
and both u,, — #, and Vu,. — Vi, weakly in L?(B(0,1),w).
Using the weak convergence of Vu,., we obtain that u, is a solution of
div(%(£)Vu(€)) = 0 in the H'2(D, ) sense. Indeed, if v € Hy*(D, W), then
Bw~'Vv € L*(B(0,1),w) and consequently,

[ @OV, Tt~ [ @OV, THONdE ase -0,
JB(0,1) B(0,1)

Consider a quasicontinuous representative of i,. If i,(0) # 0, then by
Corollary 4.13 in Heinonen-Kilpeldinen-Martio [5], the function ,/i,(0) is
admissible for the Sobolev capacity C,;({0}), see the remark after
Theorem 4.6 here. The weighted Sobolev embedding theorem, Theorem 1.3
in Fabes—Kenig-Serapioni [3], now yields

©) Co({03) < Nt/ i1y (0) 3125 s IVl 72500

C
"009 = o)
At the same time, |]Vu,,,5|liz(3(0,l ) capy(F, \ B(0,¢)) < capy(F,), and the
weak convergence of Vu,. in L*(B(0, 1), w) yields

(10) ||V’~4p||i2 BO,1),i) = Ccap%(ﬁp).

The assumption w™!(Gy) < oo 1mp11es C2,4({0}) =~ cap,4({0}) > 0 and it fol-
lows from (9) and (10) that |&,(0 )P < Ccap,(F) which is trivially true if
,(0) = 0.

Since capg,(i’,,) = 2capp(F;), where t = —k~"log p, there exists p > 0 such
that ,(0) < 1. Since @, is quasicontinuous and capg({0}) > 0, ,(¢) cannot
tend to 1, as £ — 0. The construction in the second part of the proof of
Theorem 4.2, with u, replaced by u,, provides us with a weak solution
u € L'?(Gy, F,w) of the Zaremba problem div(.s/(x)Vu(x)) = & for some
bounded linear functional on L(l)’2(GO, F,w) with bounded support. Since u(x)
does not tend to zero, as x, — oo, infinity is not regular for the Zaremba
problem in L'?(Gy, F,w).

5. The capacity cap.

In this section, we obtain a characterization of capp in terms of the Neu-
mann function for the operator — div(#/(x)Vu(x)) in Gy. We also give a
two-sided estimate for the Neumann function.

Let g(-, -) be the Green function for the operator — div(#(§)Vu(¢)) in
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B(0,1), as defined in Section 2 in Fabes-Jerison—Kenig [2], i.e. the unique
function satisfying

(1) / g(6,m)W(€) de = SU(n),
B(0,1)

for all n € B(0,1) and all ¥ such that ¥/w is essentially bounded. Here, S¥ is
the unique solution of — div(#(£)Vu(€)) = w(€) in the H'*(B(0,1), W) sense,
belonging to H(;‘Z(B(O, 1),w).

LEMMA 5.1. Let &,n € B(0,1). Then g(PE, Pn) = g(&,n).

PrOOF. We have
/ g(PE, Pr) () de = / g(€, P)(W o P)(€) dé = S(V o P)(Pn).
JB(0.1)

At the same time, P# (&) P = #(P¢) implies that S(¥ o P) o P is a solution of
—div(B(6)Vu(€)) = (¢) in the H'2(B(0,1),w) sense, and hence by unique-
ness, S(¥ o P)(Pn) = S¥(n). Thus, g(P-, Pn) satisfies the integral identity
(11) for all admissible ¥. The uniqueness of g and its continuity (Proposition
2.6 in Fabes-Jerison-Kenig [2]), imply g(P& Pn) =g(&n) for all
&mne B(0,1).

Theorem 4.10 in Fabes-Jerison-Kenig [2] provides us with the following
equivalent definition of capy. Let K C B(0, 1) be compact. Then

capy(K) = sup v(K),

where the supremum is taken over all positive measures v such that

(12) /g(f, n)dv(n) <1 forall (e K.

DEFINITION 5.2. Let x,y € Gy and put I'(x,y)=g(Tx, Ty) + g(Tx, PTy).

REMARK. I is the Neumann function for the operator — div(./(x)Vu(x)),
i.e. the solution (in a weak sense) of the equation

—divy (A (x)VL(x,¥)) = 6(x —y), x € Gy,

I'(,y) =oonwx {0}, NI'(-,y) = 0 on dw x (0,00) (6 is the Dirac distribu-
tion).

THEOREM 5.3. Let E C G, be a Borel set. Then
capp(E) = sup pu(E),

where the supremum is taken over all positive measures p with compact support
in E such that
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/F(x,y) du(y) <1 forall xeE.

PrOOF. Denote the supremum in the statement of the theorem by S.
1. Fix € > 0 and choose a compact K C T(E) U PT(E) such that

capg(K) > capy(T(E) U PT(E)) — 2e.

By Theorem 4.6 in Fabes-Jerison—Kenig [2], there exists a positive
measure v supported on K such that v(K) = capg(K) and the inequality in
(12) holds for all £ € B(0,1). Put for A C Gy,

u(A) = (T (4) U PT(4)).

Then p is a positive measure with compact support in £ and

1 1
[ rxndut) =3 [eremavin +5 [ et v <1,
since by Lemma 5.1, the last integrand is equal to g(PTx,n). It follows that
§ > p(E) = W(K) > Leap,(T(E) U PT(E)) — & = cap(E) — e.

Letting € — 0 yields capp(E) < S.
2. Conversely, let 1 be a measure admissible for the supremum S. Put for
A C B(0,1),

v(A) = W(T(ANT(Go))) + u(T~ (P(4) N T(Gp))).

Then v is a positive measure with compact support in T(E) U PT(E) and

/ g(.m) dv(n) = / (86, T) + g(6, PTy)) du(y) < 1,

for all £ € T(E) U PT(E). Hence v is admissible for capg(spt v) and
w(E) = v(sptv) < lcapg(sptv) < icapy(T(E) U PT(E)) = capp(E).
Taking supremum over all admissible u yields S < capp(E).

The size of the Green function is estimated in Theorem 3.3 in Fabes-Jer-
ison—-Kenig [2],

1 2 d
(13) g(g’")z/;g_nﬁw/()‘é—,p))f) for ¢,m € B(0,1).

We shall get a similar formula for the function I'. Together with
Theorem 5.3, it can be used to calculate capp. Fix R > 2 diam(Gy \ Gy).

DEFINITION 5.4. Put for x,y € G,
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/R r -y <R
A (x,y) = -y W(B(x, ) NG) r =7
0 otherwise.

REMARK. Note that if |x — y| < r < R, then by the local doubling property
of w, w(B(x,r) N G) ~ w(B(y,r) N G), and hence A (x,y) ~ A (y, x).

DEFINITION 5.5. Put for ¢ > 0,

To(t) = /0’ w ' (G,_1 \ G,)dr.

REMARK. Lemma 2.1, part (a), yields I'o(t) ~ w™'(Go \ G,) for ¢ > 1, but
for the time being, it is more convenient to work with the integral re-
presentation of I'.

LEMMA 5.6. Let0 < p; < pp < %p; and let v be a positive function defined on
[p1, p3] such that v(p') ~ ~(p") holds for all p\ < p,p" < 2p,. Then

p3 P3
/ Y(p)dp = / v(p) dp.
14 P2

ProoFr. Elementary.

THEOREM 5.7. There exists ¢* such that if x,y € G-, then
I'(x,y) ~ A (x,y) + Fo(min(x,, yn))-

ProoF. If we choose ¢* sufficiently large, so that |Tx| <1 for all x € G-,
then the approximate formula (13) and |Tx — PTy| > |Tx — Ty| yield

0 < g(Tx, PTy) < Cg(Tx, Ty).

Since I'(x,y) = g(Tx, Ty) + g(Tx, PTy), it suffices to estimate g(Tx, Ty). By
Proposition 2.8 in Fabes-Jerison-Kenig [2], g(Tx, Ty) = g(Ty, Tx), and since
A (x,y) ~ A (y,x), we may assume that x, < y,. We have from (13),

1 2
P dp
g(Tx, Ty 'z/ —_—
(T | T BT p

We shall distinguish two cases.
1. Let |x — y| > R, then y, > x, + 2 and §|Tx| < |Tx — Ty| < 2|Tx|, where
§=1-¢2>0. Thus if p > |Tx — Ty|, then

B(Tx,p) C B(0,(1+6")p) C B(Tx,(1+26")p),
and the doubling property of w, together with Corollary 2.2, part (b), implies
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W(B(Tx, p)) =~ w(B(0,p)) = e (w™(Gi-1\ G))) ™"
Lemma 5.6 then yields

1 2

P dp R
Tx, T 2/ ~—————:/ w (G- \ Gy dt = Ty(xp).
& Y) | Tx| w(B(0,p)) p 0 (Gi-1\ G) o)

2. Let |x—y| < R. Then by Lemma 3.2, |Tx — Ty| ~e "*|x —y| and
Lemma 5.6 yields

A P> dp
“””*LWHMMMMp’
provided that max(|Tx — Ty|,e™"*|x — y|) <1 Choose r* so that this holds
for all x,y € G satisfying |x — y| < R.

The last integral splits into two integrals with limits e™*%|x — y|, e R
and e " R, 1, respectively. The latter is estimated in the same way as the
integral in the first part of the proof and is comparable to I'y(x,).

As for the former, consider p < e™** R and put r = ¢"*p. Then

B*(Tx, Cp) C T(B(x,r)NG) C B*(Tx, C'p),

where BY(-,-)={£€ B(-,-):& >0}. The doubling property of w now
yields

w(B(Tx, p)) ~ w(T(B(x,r) N G)) ~ e~ **w(B(x,r) N G),

which results in
e~"" R b} R 2
p dp r dr
/ :77—‘“”/ WBN NG 7 )
e~nn|x—y| W( ( X, p)) P [x=y| W( (x’ r) n ) r

6. The capacity cap,, .

In this section, we estimate cap, by means of a new capacity on G, cap .
Compared with capp, the capacity cap, has the advantage that it is qua-
siadditive with respect to the partition {F;\ FjH}ﬁf_O of F and hence, the
Wiener test can be rewritten in terms of the relatively compact sets F; \ Fjy,
rather than the unbounded sets Fj. As a corollary, we obtain a new proof of
Theorem 1.1. Also, the criterion for L(l)'z(Go,F, w) = L'"*(Gy, F,w) from
Corollary 4.7 can be simplified using cap .

DEFINITION 6.1. Put for a Borel set E C G,

capy (E) = sup pu(E),
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where the supremum is taken over all positive measures u with compact
support in E, satisfying

/,%"(x,y) du(y) <1 forallxeG.

LEmMmA 6.2. (Generalized maximum principle for % -potentials). There
exists C such that if y is a positive measure with support in G and

/J{,/'(x,y) du(y) < M for all x € spt y,
then
/Ji"(x,y) du(y) < CM forall x € G.

Proor. If dist(x,sptu) > R, then #'(x,y) =0 for all y € sptu and the
claim follows.

Assume that dist(x, spt ) < R. The ball B(x, R) can be covered by N balls
B; with radii 1R. Let x’ be the point of B; Nspt u, which is closest to x, and
y € Binsptp. Then |y — ¥| < |y — x| + |x — ¥/| < 2|y — x| and hence

R r2 dr R r? dr
H(x,y) ~ A (v, x :/ —_—_—_</ __r &
=AW= | BN T = s WBGFAG) 7

The local doubling property of w and Lemma 5.6 imply

R 2 dr /R r dr , -
— e~ —— = (y, ¥ ) = A (X, ).
/W WBON NG T = ) wBrANG) ¢ )= A (X)

This yields

/%”xy duly <CZ/ A (¥, y)du(y) < CNM.
LEMMA 6.3. Fort >0,

capy (Fy) =~ anpr Frij \ Frijir).
j=0

ProoF. The inequality “<” is easy. To prove the other inequality, fix t > 0
and ¢ > 0. We may, for simplicity, assume that ¢ is an integer. Let u;,
Jj=0,1,..., be measures admissible for cap, (F; \ Fj;1), such that

1i(F; \ Fy1) > capy(F; \ Fjy) = 27
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Let M > R+ 1 be a fixed integer. For m =1,..., M, let I,, denote the set of
all j > ¢ such that j =m mod M. Let x € F; \ Fiy1, k € I,. Then

/Ji’xy d(y) = /%’xyduk()<1
Elm

By Lemma 6.2, restrictions of the measure C~! > je1, M to compact sets are
admissible in the definition of cap 4 (F;) and hence,

> wi(Fj\ Fy1) < Ceapy (F).

JEIm
Since ;(F;\ Fj41) 2 capy(F;\ Fj41) —277e, we get summing up over all
m,
e8]
anpx'(Fj \ Fjs1) — 26 < CM capy (F)).
=t
Letting £ — 0 finishes the proof.
Let fors>0,G ={x€ G: I'y(x,) >s}and F* ={x € F: I'y(x,) > s}.
THEOREM 6.4. Let E C G5, s > I'o(t*), be a Borel set. Then
capr(E) < Cmin(s”l,ca.p), (E)).
If moreover E C G*\ G, then capp(E) ~ min(s~!, cap 4 (E)).

PrROOF. 1. Let u be a measure admissible for cap,(E) and x € E C G*. By
Theorem 5.7,

/fwwWMS/ﬁme—ammmnmwwsc—wwy

By Lemma 6.2, the measure C'(C — su(E))™' 1 is admissible in the definition
of cap, (E), which leads to

Ccapy (E)

< in(s™! +(E)).
T+ scapy (E) = Cmin(s™",capy(E))

WE) <

Taking supremum over all 1 admissible in the definition of cap(E) finishes
the first part of the proof.

2. Conversely, for E C G*\ G, let 1 be a measure admissible in the defi-
nition of cap, (E), and x € E. By Theorem 5.7,

/'uw@ /wwm+mmm%mmmu<umwww)

i.e. the measure C(1 4 2scap (E))™' i is admissible for cap,(E). Hence,
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capp(E) > 1 + 2scapy (E) 2 max(1,scapy (E))

Taking supremum over all i admissible in the definition of cap, (E) yields
capp(E) > Cmin(s™!, cap 4 (E)).

ExAMPLE 6.5. We show that at least in the unweighted case w = 1, the
assumption E C G*\ G* is necessary. We have I'y(f) ~ ¢ and the proof of
Corollary 6.10 below reveals that capy (E)~cap(E), provided
diam(E) < iR (cap is the Newtonian capacity in R"). Fix 0 < r, <iR and
t; > t*. By Theorem 6.4,

capp(B((0,41),r1) U B((0,2),72)) < C(cap(B((0,11),r1)) + £51).

Letting r; — 0 and #, — oo, the right-hand side can be made arbitrarily
small, while #; and cap(B((0,1),r) U B((0,15),r2)) > cap(B((0,t2),r2)) > 0
are fixed.

We conclude this section by further simplifying the criterion of regularity
for the operator div(«/(x)Vu(x)). We need two lemmas, in which we assume

(14) I'y(t) —» oo, as t — oo and capp(F¥)ds < oo.
To(1)
LEMMA 6.6. Let (14) hold. Then there exists so such that for all s > s,
cap,y (F\ F¥) < 7!,
i.e. capp(F*\ F%) ~ cap (F* \ F%).

PrOOF. Suppose that there exists an infinite sequence s; — oo of indices
such that cap - (F¥ \ F*) > s;! for all j 2 0. By throwing away some s, we
may assume that s; > 2s;_; and s; > I'g(r*). Then,

oo o]
/ capp(F*)ds > Z(sj — s5j_1) capp(F7 \ F?).
To(1) j=1

By Theorem 6.4, capp(F% \ F*) ~ s/.“, and since s; — s5;_1 > 1s;, the series
diverges, which contradicts the assumption (14).

LEMMA 6.7. Let (14) hold. Then there exists ty such that for all t > to,
capp(F;) ~ capy (F)).

Proor. The inequality “<” follows from Theorem 6.4. Conversely, let so
be as in Lemma 6.6 and define ¢y by I'o(%) = so. Let ¢t = ¢y be arbitrary and
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put s = I'o(2). Let u be a measure admissible in the definition of cap 4 (F;).
Estimate the I'-potential of p at x € F, = F*. By Theorem 5.7,

(15) / F(x,y) du(y) = / (o () + To(minGon yn))) du(y)

o0
ST+ ) PP\ F2'y.
j=0

By Lemma 6.6,

B\ F25) < capy (F2 \ F¥™) o= capp(F¥ \ F2™).
Next, forj > 1,

s
Y scapp(F25\ F?™%) < 2%'scapp(F?%) < 4/ capy(F7)do
V-ls
and by (14), the series in (15) converges. It follows that the measure C~'y is
admissible for capp(F;) and taking supremum over all x admissible for
capy (F;) yields capy (Fy) < Ccapp(F).

THEOREM 6.8. Infinity is regular for the Zaremba problem in L'*(Gy, F,w)
if and only if

(16) S w(Go \ G) cap (B} \ Fyo) =
=1

PrROOF. 1. Assume first that w™!(Gy) = co. By Corollary 4.7, the spaces
Ly*(Go, F,w) and L'2(Gy, F,w) coincide. Theorem 4.5 now implies that in-
finity is regular for the Zaremba problem in L'?(Gy, F,w) if and only if

(17) S W (G \ G eapr(F) =

~.

By Theorem 6.4, cap, in (23) can be replaced by cap, and the series still
diverges. Lemma 6.3 then shows that (17) implies (16).

Conversely, if (17) fails, then (14) holds. Lemma 6.7 implies
capp(Fy) ~ cap (F;) for large ¢. Hence

S (Gt \ G) capy (F) < oo,
j=1

~.

and by Lemma 6.3, (16) fails.
2. Assume that w™!(Gy) < oo. Then by Theorem 4.5, infinity is regular for
the Zaremba problem in L(l)’z(Go, F,w). As for the regularity in L'?(Go, F, w),
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the condition (16) is equivalent to

(18) anpx‘(Fj \ Fj11) = oo.
=1

By Lemma 6.3, cap, (F;) = oo for all ¢t > 0. Since F, C GTo()\ G201 for
large 1, Theorem 6.4 yields capp(F;) ~ I'o(1)™" > C(w™(Go))™' >0 for
large ¢. It then follows from Corollary 4.7 that L'2(Gy, F,w) = Ly*(Go, F,w)
and hence, infinity is regular for the Zaremba problem in L!?(Gy, F,w).

On the other hand, if (18) fails, then cap, (F;) — 0, as ¢ — oo, and
Theorem 6.4 yields cap(F;) — 0, as ¢t — oo. By Theorem 4.8, infinity is not
regular for the Zaremba problem in L'?(Gy, F,w).

COROLLARY 6.9. The spaces L(l)’z(Go,F, w) and L'2(Gy, F,w) differ if and
only if w™(Gp) < 0o and cap 4 (F) < oco. In this case, infinity is regular for the
Zaremba problem in Ly*(Go, F,w) but not in L'(Gy, F,w).

PrOOF. See Corollary 4.7 and the proof of Theorem 6.8.
COROLLARY 6.10 (Theorem 1.1). For w = 1, infinity is regular for the Zar-
emba problem in Ly*(Go, F,w) = L"(Go, F,w) if and only if
chap(F, \ F}'—H) = 00,
=1

where cap is the Newtonian capacity in R".

ProOF. Insert w =1 in Theorem 6.8, then w™!(Go \ G;) ~ . For x,y € G
satisfying |x — y| < iR, the kernel #'(x,y) is comparable to

Ix —y*™" if n>3,
k(x,y) =

The kernel k(x,y) generates the Newtonian capacity in R”, see e.g. Section
III in Carleson [1] or Definition 7.1 in Wermer [10]. Since
diam(F; \ Fj41) < 4R, we have cap, (Fj \ Fjy1) =~ cap(Fj \ Fjp1).
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