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APPROXIMATION AND CONVEX DECOMPOSITION
BY EXTREMALS IN A C*-ALGEBRA

LAWRENCE G. BROWN and GERT K. PEDERSEN

0. Introduction.

For a unital C*-algebra 2 with unit ball 2, the set € of extreme points in 2A;
consists of elements V in 2, necessarily partial isometries, such that

(I—VVHAT - V*'V) =0,

cf. [15] or [21, 1.4.7]. In [8] we defined the set of quasi-invertible elements in
A as

ot =aeu!

and showed that this is an appropriate concept for infinite C*-algebras, re-
placing to a certain extent the group A" of invertible elements. In particular
we studied the class of extremally rich C*-algebras, i.e. C*-algebras A for
which ‘2[;' is dense, as an analogue of Rieffel’s stable rank one algebras.

In this paper we use the distance function

ay(T) = dist (T, "), T €,

to extend the theory (from [16], [19] and [30]) of regular approximation and
unitary decomposition, where now quasi-invertibles and extreme points re-
place invertibles and unitaries. In particular we complete the study of the A-
function in C*-algebras, begun in [23].
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1. Quasi—Invertibility.

For the convenience of the reader we recall here the main facts from [8]
about the set ‘l[;‘ of quasi-invertible elements. For this we need the function
m on A, defined by

m(T) = inf{||Tx|| | x € H, |Ix]| =1}
=m(|T|) =sup{e 20| el < [T},
where A C B(9) is any faithful non-degenerate representation of 2.

1.1. THEOREM ([8, Theorem 1.1]). For an element T in A the following
conditions are equivalent.

() Teu'eu".

(ii) There is an orthogonal pair of closed ideals #, ¢ of W, such that T + .
is left invertible in /.9 and T + ¢ is right invertible in W/ ¢.

(iii) There is an orthogonal pair of closed ideals .#, ¢ of W and € > 0, such
that m(T + ) > e and m(T* + #) > e in /.S and W/ ¢, respectively.

(iv) There is an € > 0 such that

m(m(T)) Vm(n(T")) > €

for every irreducible representation (m,9) of U.

(v) T (thus also T*) has closed range, and the kernel projections of T and T*
are centrally orthogonal in U.

(i) If T = V|T| is the polar decomposition of T then V € € and 0 is an
isolated point in sp(|T)).

(vii) T e G "

The somewhat simpler condition

(viii) For each irreducible representation (m,9) of U, the operator w(T) is
either left or right invertible,

is equivalent to (i)—(vii) in Theorem 1.1 if the primitive ideal space of U is a
Hausdorff space, [8, Prop. 1.2], but not in general, [8, Ex. 1.3]. Nevertheless
we have

1.2. PROPOSITION. If T € (W )"\ UA!, then for some irreducible re-
presentation (m,9) of W, the operator (T) is neither left nor right invertible.
In particular,

oA c o).

PrOOF. If T ¢ A" then either T*T¢ A~ or TT*¢ A", In the first case
there is a pure state ¢ of A with p(7T*T) = 0 (cf. [21, 4.3.10]), which implies
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that T is not invertible in the irreducible representation (m, $) associated
with . In the second case we have p(TT*) = 0 for some ¢, and then 7(T*) is
not invertible in B($); but then neither is «(T).

Now choose 7T, in ' such that 7, —» 7, and define E,=
(T, Y||\n(T,; D). Thus all the E,’s belong to the unit sphere of 7(2), and
since 7(T) is not invertible we must have E,n(T) — 0 and =(T)E, — 0. But
then n(T), being a topological zero-divisor, can be neither left nor right in-
vertible in B(9).

It follows from condition (iv) in Theorem 1.1 that T¢QI , but since
A ¢ A ! we can conclude that T e (u, h= \Q[ , as clalmed

Two functions, m, and a4, will be important for the following results. If
Te QI;I we define

my(T) = max{e > 0[]0,e[Nsp(|T]) = &}
= inf{m(n(T)) Vm(n(T*)) | (w, ) irreducible},

cf. (vi) and (iv) in Theorem 1.1. If T¢ A" we set m,(T) = 0. Most of the
useful properties of m, follow from the fact, [8, Prop. 1.5], that

my(T) = dist (T, A\ A, ").
The other function, a4, is defined straightforwardly as a distance function:
ay(T) = dist (T, ").

Thus the two functions both measure the distance of an element to the
boundary 9(U 1) of A ! _ one from the inside, the other from the outside —
and in many formulae mq(T) replaces —a,(7'), when T moves from A\ A !
into Ay ! Strlkmg examples are Theorems 2.3 & 3.7.

If T € QIq we define the canonical quasi-inverse as the unique element
T-!in 2, such that T~!7 and TT~! are the projections on the support and
the range of T, respectively. Thus, in particular, T77-'T =T and

T-'TT-! = T~!; equations that are also sometimes linked with the termi-
nology quasi-inverse, although our notion is much stronger. If T = V|T] is
the polar decomposition of T, so that V € €, then

L= (IT|+1=VV) W = v (T + T - VP!

with “honest” inverses in the last two expressions, cf. condition (vii) in
Theorem 1.1. Note that with this definition 7-! € ! with (T-)™' =T
and (T*)™' = (T-1)".

It is well known that a left invertible operator may have several left in-
verses. Indeed, the uniqueness of the (two-sided) inverse of an invertible
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elements rests on the fact that each left inverse must equal every right in-
verse. We do not, therefore expect elements in Ay ! to have unique quasi-
inverses. Since ‘l[ is not a group we can also not expect formulae like

(%) (rs)' =s7'1!

for the canonical quasi-inverses. Even in the case where, say, S € 2 ! and
T € A~! (so that TS € AL 1), the formula () need not hold. Take e. g S to
be the unilateral shift on 2 in the C*-algebra A = B(¢2); and let T be a po-
sitive, invertible operator, not commuting with SS*. Then for quasi-inverses
we have S~! = S*, but
(18)™' = (§*T28)7's*T # S T,

With the same operators, form R=S87T. Then R?e ‘21;', but
(R # (R

In topological respects, however, the canonical quasi-inverse behaves ni-

cely: If T, — T inside A, ! then T7'— T
Although, as mentloned ‘21 is not a group, it is power stable:

1.3. PROPOSITION. If Ve, then V" € € for every n in N. Similarly, if
T € ', then T" € A" with my(T") > (my(T))".

Proor. If V € € and W = V" then since

n—1
I—-ww=> v -vrk
k=0

(and similarly for WW™*), it follows that
I=VVYUT-V'V)=0=> T - WWHAI - W'W) =0,

so that We€C If T € QI;' with € = my(T), then for every irreducible re-
presentation (7, $) of A we have

m(r(T")) = m(n(T))m(x(T""")) >
> (m(n(T)))",

and similarly for 7*". By Theorem 1.1 (iv) it follows that 7" € QI;I with
my(T") > €.

For each element T in A we define the quasi-spectrum of T as
gsp(T) ={A e C| M -T¢q '}

Since QI;' is an open set containing A~', it is clear that gsp(T) is a closed
subset of C contained in the ordinary spectrum, sp(T), of T.
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1.4. THEOREM. For every T in W the quasi-spectrum qsp(T) is a non-empty
compact subset of sp(T) containing the boundary of sp(T) in its boundary.

Moreover, qsp(T*) = qsp(T), and if [ is a complex function, holomorphic on
some open neighbourhood of sp(T), then

(%) f(asp(T)) C asp(f(T))-

PrOOF. If A € O(sp(T)) then M — T € H(U™"), whence A\ — T € 9(U,")
by Proposition 1.2, so that A € gsp(7T’). Of the remaining claims, only the
holomorphic function calculus is non-obvious.

If f(A\) ¢ asp(f(T)) for some X in C, there is by Theorem 1.1 a pair .#, ¢ of
closed, orthogonal ideals of A, such that if 4 denotes the canonical quasi-
inverse of f(A\)I — f(T), then

AFA) (1) -Tes, (N -f(T)A-1T€ .

Let I" denote a suitable choice of a finite number of (smooth or piecewise-
linear) closed, oriented curves in the domain of f, encircling sp(7T’), so that

£y = @iy [ a1 =1 e
r
Note that we may assume that A lies off I, since otherwise

A e C\sp(T) c C\gsp(T).

Define therefore the element

B = (2mi)”"! /r(zl Ty Nz =N (2)dz
and check that it satisfies the equations
(A=T)B=B\-T)=f(\I—-f(T).
It follows that
(A=T)BA—-1I€ ¢,
ABA-T)-1¢€ 5,
so that M/ — T' € A" by Theorem 1.1 (i), whence A¢ gsp(7).

1.5. REMARKS. We can not, in general, expect the spectral formula, i.e.
equality in the formula (x) above, to hold for the quasi-spectrum. To see
this, let S be a non-unitary isometry, e.g. the unilateral shift on ¢2, and define

_(S-1 0 . _ 2 o g2
T—( 0 I—S*) in A=B @)
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(or a suitably large separable C*-subalgebra, like the C*-algebra generated
by T and the compact operators on ¢> @ £). We have

2-S 0 S 0
I-T= , I+T= :
0o s 0 2I-8*

I_T2:<S 0)(21-5 0 )
0 s 0 2-s

Both 27 — S and 21 — S* are invertible (in B(¢?)), so I — T is right invertible
and I + T is left invertible in A. However, I — T2 is neither left nor right
invertible in A, because this is so for the first factor, while the second is in-
vertible. It follows that even with f(z)=z> we can have

f(asp(T)) # asp(f(T)).
If T is invertible, so is T~!, and by Theorem 1.4 we see that
(%) asp(T™") = {A7" | A € asp(T)}.

However, if T is only quasi-invertible, and if 7~' denotes the canonical
quasi-inverse, then the formula (x) may fail. It suffices to set

_ S 0 . _ 2 2
T_<0 21—S> in A=B @),

where S as above denotes the unilateral shift. Here the canonical quasi-in-
verses of T and of 21 — T are

T = (% @ —OS)“>’ -1y = ((21 _OS)_I *g>

so that 2¢ qsp(T'). However, 27! € qsp(T~!), because

lr-s 0
li-1-1= >

which is neither left nor right invertible.

Since a holomorphic function is an open map we see from the (ordinary)
spectral mapping theorem that d(sp(f(7T))) C f(9(sp(T))). It follows from
Theorem 1.4 that

A(sp(f(T))) € f(9(asp(T))),

and it can be shown, using [8, Theorem 1.8] that

0(asp(f(T))) C f(0 (asp(T))).
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1.6. ProPOSITION. For S and T in W we have

qsp(ST) \ {0} = asp(7'S) \ {0}.

PROOF. Assume that A # 0 and A¢qsp(ST). Thus M — ST =4 € A",
and we can define the canonical quasi-inverse 47!, Put

B=X'(I+T47'S).

Let # and ¢ be the closed orthogonal ideals modulo which 4 is left and
right invertible, respectively. Direct computation shows that

BA-TS)—I€ %, A—TS)B-I€ ¢,

whence M — TS € " with my(\ — TS) > ||B|~". Thus A¢ qsp(TS). It fol-
lows that qsp(7S) \ {0} C gsp(ST) \ {0}, and by symmetry we get equality.

1.7. PropoOSITION. If 'V € €, but V is not unitary, then its quasi-spectrum is
the unit circle, whereas its spectrum is the whole unit disk.

PROOF. Suppose that A¢sp(¥),but |A\| < 1. Thus V =M =Ac A If V
is an isometry, this gives V*4 =1 — AV* € A, since ||\V*|| < 1. Conse-
quently V* and V are invertible, i.e. V is unitary. Similarly V' becomes uni-
tary if it is a co-isometry, because now AV* =1 — AV*. Since these argu-
ments hold also for quotient images of V, we conclude that «(V) is unitary
in every irreducible representation (, ) of 2. But then V itself is unitary,
contradicting our original assumption. It follows that X\ € sp(¥) for all A
with |A| < 1, hence for the whole unit disk.

From Theorem 1.4 we see that the quasi-spectrum of V' is contained in the
unit disk and contains the unit circle — its boundary. But if |A| < 1 then
V- e QI;', because m, (V') = 1. Thus gsp(V) is precisely the unit circle.

1.8. LEMMA. Every normal element in ‘21;1 is invertible.

ProoF. If T € " with T*T = TT*, then |T| = |T*, and by condition (V)
in Theorem 1.1 we see that 7 must be invertible.

1.9. CoroLLARY. If T is normal in N, then
asp(T) = sp(T).

2. Distance to the Extremals.

In this section and the next we show how the theory of regular approxima-
tion and unitary decomposition for elements in a unital C*-algebra U ex-
tends. Surprisingly enough, every single result from the old theory has an
exact analogue, where € and ‘2[;' replace U (the unitary group) and At
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The first results generalize a theorem proved by Olsen [18, 2.3], to the ef-
fect that the spectrum of each product U*T, with T in 2 and U in U, con-
tains a solid disk D(r) in C with center 0 and radius r not smaller than
dist (T,27!). Actually, two generalizations are possible, each using the fact
that UGU = €. The first, whose easy proof is left to the reader, uses the
quasi-spectrum but retains the unitary group, and states that if 7¢ ‘21;' then

D(ay(T)) C asp(U*T) = qsp(TU")
for every U in U. The second is slightly more delicate.
2.1. LemMA. If T € A\ U, " and W € €, then
D(ay(T)) Csp(W*T) =sp(TW™).

PrOOF. If W*T € A~! then, in particular, 7 is left invertible, in contra-
diction with T'¢ ‘21;'. Similarly, TW* € A~ would make T right invertible,
which is also a contradiction. Thus 0 € sp(W*T) and 0 € sp(TW*).

Assume now that A # 0 and A¢sp(W*T). Then A¢sp(TW*), as well.
Thus G=\X — W*T and H = A — TW* are invertible elements in 2,
whence m(G*) > € and m(H) > ¢ for some ¢ > 0. Let (, ) be an irreducible
representation of A. If 7(W) is a co-isometry we calculate

m(r(AW* — T*)) = m(n((\ — T*W)W™))
=m(n(G"W*)) > em(n(W*)) =e.
If 7(W) is an isometry we similarly have
m(n(AW —T)) = m(w((M — TW*)W))
=m(r(HW)) > em(m(W)) = e.

From condition (iv) in Theorem 1.1 it follows that A\W — T ¢ *)I;l. Since
[W] =1 this immediately shows that |\ > a,(7). We conclude that
A € sp(W*T) whenever || < ay(T).

2.2. ProposiTION If T € A\ A, then

[ sp(W*T) = D(ay(T)).
We€
Proor. The inclusion D follows from Lemma 2.1. To prove the other,

note that since € is rotation-invariant, so is the intersection of all spectra of
w*T, We€ Thus it suffices to take (> a,(7) and show that
—B¢sp(W*T) for some W in €. Toward this end, choose 4 in “21;', of the
form 4 = W|A| with W in €, such that ||T — A|| < 8. Then W*T + 8l € A~
by [8, Proposition 1.7], as desired.
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2.3. TueoreM cf. [22, 10] & [30, 2.7]. Consider an element T in . If
T € " then
dist(7T, €) = max{1 —my(T), ||T| — 1}.
~1
If T¢ A~ then
dist(7T, €) = max{1 + a,(T), ||T|| — 1}.

Proor. If T € *2[;1 it has a polar decomposition 7 = V|T| with V in €.
By elementary spectral theory we get

IT=VI=ITI=VV|=max{||T| = 1, 1 —my(T)}.
In the converse direction we always have
IT-w[=|T| -1
for any W in €. Moreover,
my(T) =mg(W — (W =T)) 21— [|W-T]|,

whence also ||T'— W|| > 1 — my(T), completing the proof of the first case.

If T¢ ‘l[;' we still have ||T — W|| > ||T|| — 1 for every W in €. Moreover,
if |T — W < B we first note that 3 > 1, because T ¢ QI;I. Then, applying m,
as a distance function again, we calculate

my((B =W +T) 2 my(BW) - |W =T| =p—|W-TI| >0,

whence (B—1)W + T € “ll;l. But this implies that 3 —12> qu(T), ie.
B> 1+ ay(T). We have thus established the inequality

max{l + a4(T), ||T| — 1} < dist(T, ).

To obtain the reverse inequality, take 6 > a,(7T'). By [8, Theorem 2.2] there is
an extreme partial isometry U in €, such that UE; = VEs, where T = V|T| is
the polar decomposition and E; denotes the spectral projection of |T| corre-
sponding to the interval ]é, co[, whereas F; is the corresponding projection
for |T*|. Thus

T — Ul = |(VIT| - U)(Es + 1 — Es)|
= ||FsV(|T| = DEs + (I — Fs)(V|T| - U)(I - Ej)|l,

where we use also that F;U = FsV. The two summands in the last line have
orthogonal supports and orthogonal ranges, so the norm of the sum is the
maximum of the norms of the summands. Clearly

IEsV(T| = DEs|| < (ITN = 1) v (1 = 6).
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For the other summand, note that |T|(f — Es) < éI. Thus
(I = Fs)(VIT| - U)I - Ep)|| <6+ 1.
Combining the estimates we get
(%) IT - Ull < max{||T|| -1, 1+ 6},
and since § is arbitrarily close to a,(7T'), the desired inequality follows.

2.4, CorOLLARY. If ||T|| < 2 then
dist(T,€) < 1 & T e A"

2.5. REMARK. From the proof of Theorem 2.3 it follows that when
T e ‘II;’ it has an extremal approximant, i.e. there is a V in € (arising from
the polar decomposition 7' = V|T|) such that

IT — V| = dist(T, €).

When T'¢ QI;‘ there is, in general, no extremal approximant. The existence
of approximants is closely related to the possibility of (extremal) polar de-
compositions. Thus, if 2 is a von Neumann algebra, each 7 in U has a de-
composition T = W|T| with W in € (but probably ker W # ker T'); and then
W is an extremal approximant for 7T in €, see [23, Theorem 4.2].

The following result shows when one of the bounds in the formula for
dist(T,€) can be obtained. It will later play a key role for the main result in
the next section, Theorem 3.3.

2.6. ProposiTION. If T €U with ||T| > ay(T)+2, then |T-U| =
IT)| — 1 for some U in €.

ProOF. Choose 6 such that |T|| —2 > 6 > a,(T). With T = V|T| the po-
lar decomposition and Ejs, Fs as in the proof of Theorem 2.3 we can, again
by [8, Theorem 2.2] find U in € such that UEs = FsU = VEjs. From the proof
(see (x)) of Theorem 2.3 it follows that

IT - Ull <max{||T|| -1, 1+6}=|IT] - 1.

By Theorem 2.3 we therefore have the equality |7 — U|| = ||T|| — 1.
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3. Convex Decompositions and the A-Function.

3.1. THEOREM. If T € A", [|T|| < 1, and § < X < L(1+my(T)), there are
extreme partial isometries U, W in €, such that

T=\U+(1-MNW.

If X > 1 (1 + my(T)) we can not even have a convex combination
T =AU+ (1-M\B,

with U in € and B in ;.

ProoOF. By Theorem 1.1 we have a polar decomposition T = V|T| with V'
in € and ]0,m,(T)[ Nsp(|T|) = . Thus with

H=I|T|+1-V*V

we have an invertible element with sp(H) C [m,(T),1]. By [16, Lemma 6]
there are unitaries U;, U, in the C*-algebra generated by H, such that
H =AU + (1 = A\)U,, whenever §< X <1(14my(T)). Setting U = VU,
and W = VU, we obtain the desired decomposition

T=\U+(1-\W.

If we had a convex combination T =AU + (1 — A\)B with U in € and
1Bl <1, then

|7 = Ull = (1=XN)[B- Ul <2(1 - A).
By Theorem 2.3 this means that
1= my(T) <2(1 - ¥,
ie. X <314+ my(T)).

3.2. ProrosITION. If W € € and B € Uy, then for all a,3,v,6 in Ry with
a>0 a+B8=v+96 7,6 € B,q], there are extreme partial isometries U, V
in € such that

aW + B =~U+6V.

ProoF. Since m,(W) =1 it follows that the element T =aW + 3B €
‘2[;‘, with my(T) > o — 3. Thus, assuming that § < -y, we can apply Theorem
3.1to (a+ B)'T, taking A = (a + ﬁ)"v, which is legitimate since

A=(@+B8) 'y <(@+B)la=i1+(a+ B (a-p)).

We get extreme partial isometries U, ¥ in € such that
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(a+B)7'T=(a+B) "YU+ (a+p) "6V,
and multiplying with a + 8 (= v + 6) this reads
aW + B =~U+ 6V,
as desired.

3.3. THEOREM. If T € W, but ay(T) < 1, there are for each convex combi-
nation (A1, Ay, ..., \n), such that A <% (1 — oy(T)) for all k, extreme partial
isometries Uy, U,, ..., U, in € such that

T=MU+XU,+ -+ N\U,.

PrROOF. Assume first that \; > A forall k # 1, and put 8 = A\{1. If || 7| < 1
we have

dist(8T, €) = max{B| ]| ~ 1, foy(T) + 1} < f 1

by Theorem 2.3, since 3(1 — a,(T)) > 2. We can therefore find W in €, such
that ||6T — W| < B—1.If ||T|| = 1 we have

18T || = B > aq(BT) +2

for the same reason as above. By Proposition 2.6 we can therefore find W in
€ such that |87 — W||=38-1.
In any case we have W in € with ||8T — W| <3 —1, and we define
B=(8-1)""(8T — W). Then ||B|| < 1, and
BT =W+ (B-1)B=W+ X+ +\)B.
Since fA; < 1 we have
W+ BX\B =V, + XU,

for some V,, U, in € by Proposition 3.2. Repeating the argument we find
V3, Us in € such that

Va4 BB = Vi + fAUs ;

and after n—1 steps we have found extreme partial isometries
Uy, Us,...,U,, Uy in € (where U; = V, in the induction argument), such
that

BT = B\ Uy + BA3Us + - - 4 AU, + Uy

Multiplying with A; we get the desired expression.
In the general case we can, of course, assume that A; > ) for all k. Put
A=A +¢ and X, =X —¢ for ¢ sufficiently small, so that 0 < X, and
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M <$(1 = ay(T)). Then we can use the argument above to obtain an ex-
tremal decomposition

T = XU+ MUy + MUz + -+ M\U,.

Now use Proposition 3.2 on the element X\ U; + X,U} to obtain extreme
partial isometries U, U in €, such that

)‘/l U{ + )\leé = (A + E)U; + (A — E)Ué =\U + \U,.
Inserting this in the decomposition above we have the desired expression.

3.4. CorOLLARY. If T € Uy and oy(T) < 1 take the natural number n such
that

n—1<2(1-a,T))" <n

Then for any X such that n=' < X\ <1(1— ag(T)), there are extreme partial
isometries Uy, Uy, ..., U, in €, such that

T=\U+AUr+ -+ AU + (1 = (n— DN U,.

3.5. ProposiTION. If T € A, \‘2[;‘ and
T=MU+(1-)\B

with 0<A<1l, Ue€ and BeW,, then o4T)<1 and moreover
A <31 = ay(T)). Thus if

T=MU+XMU+ -+ \U,

for some convex combination (\y,...,\,) and Uy,..., U, in €, then necessarily
n>2(1—a,(T) "

PrROOF. If T = AU + (1 — )\)B, then
IT— Ul = (1= N)|B - UJl <2(1 - A).
By Theorem 2.3 this means that
1+ oy(T) <2(1 = N).

This proves the first half of the proposition. For the second, note that since
Me < 3(1 = ay(T)) we get 1 <1(1 — ay(T))n, as claimed.

3.6. ProPOSITION. If W is a C*-algebra such that ay,(T) > 0 for some T
in A, then ay(Ty) =1 for some Ty in W with ||To|| = 1. In particular,
Ty ¢ conv (€).

PrOOF. We may as well assume that ||T|| = 1. Let T = V|T| be the polar
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decomposition of T in A” and put Ty = Vf(|T|), where f (1) = a,(T) 't A 1.
Note that if v < 1, the spectral projection of |Tj| corresponding to the in-
terval ]vy,00[ is precisely Ej (relative to |T'|) with é = ay(T)y. If therefore
a4(Tp) < 1, we could by [8, Theorem 2.2] find U in € such that

VEs = UEs = FsU

for some 6 with a,( T)~'6 < 1. But this contradicts [8, Theorem 2.2], when
applied to T. Thus oy (7y) = 1.

For any Banach space 2 with unit ball %; and € the set of extreme points
of the convex set 2, consider for each T in 2; the possible convex combi-
nations

T =V +(1-\B,

where V € € and B € A;. The supremum of all X’s appearing in such de-
compositions is denoted by A(7") by Aron and Lohman, and this defines the
A-function X : Ay — [0,1], see [2]. The space A is said to have the M-
property if A(T) > 0 for each T in A;, and A has the uniform A-property if
AMT)>e>0 for all T in ;.

In [23] the second author began an investigation of the properties of the A-
function in C*-algebras. A complete characterization was obtained for von
Neumann algebras, finite C*-algebras and prime C*-algebras. With the aid
of the class QI;] of quasi-invertible elements the program can now be com-
pleted.

3.7. THEOREM. The A-function on the unit ball W, of a C*-algebra W is gi-
ven by the following formulae:

NT)=3(14+my(T)) if Teu';
NT)=1(1—-ayT)) if TgA"

In particular, W has the A-property if and only if it has the uniform A-property
with X(T) > 1 for all T in W,, whence

T=1(1-e)U+i(1-¢e)Ur+eU;
for any givene >0 (¢ < %) and some Uy, Uy, U; in .

Proor. The formulae for the A-function follow from Theorem 3.1, Theo-
rem 3.3 and Proposition 3.5. The last statement follows from Proposition 3.6
followed by an application with n = 3 of Corollary 3.4.



APPROXIMATION AND CONVEX DECOMPOSITION... 83

3.8. COROLLARY. If T € N, then
TeU' o NT)>1.

3.9. REMARK. If we replace U with PAQ for some projections P and Q in
A, we obtain a Banach space whose unit ball has extreme points U, char-
acterized (by Sakai, cf. [21, 1.4.8]) as being partial isometries such that

(P— UU"A(Q - U*U) =0.

Even though 2 is unital, the set €(PAQ) of extreme points in the unit ball of
PAQ may be empty. Assuming, however, that €(PAQ) # F, the results
from Sections 1, 2 and 3 carry over with minor modifications. Thus, if
T € PAQ with polar decomposition T = V|T|, then the spectral resolutions
{Es} and {F;s} for |T| and |T*|, used in the proof of Theorem 2.3, lie in the
enveloping von Neumann algebras for QUQ and PUP, respectively. The
statements in Propositions 2.1 and 2.2 remain true, even though PAQ is not
a *-algebra, because W*T € QUQ and TU* € PAP. (This is the reason why
the formulae were stated with adjoints.) Of course, the distance functions m,
and a, are defined on PAQ relative to the set of quasi-invertible elements

(PAQ)," = (PUAP)”'E(PAQ)(QUAQ) ™.

With this modification all the remaining results from Sections 2 and 3 carry
over verbatim. As a sample we obtain a Russo-Dye theorem for such spaces
(i.e. also for Hilbert bimodules, see the discussion in [8, §4]).

3.10. PrROPOSITION. Let P and Q be projections in a C*-algebra W such that

P, Q contains an extreme point. Then the open unit ball of PUQ is contained
in conv (E(PAQ)).

Proor. Direct application of Theorem 3.3, because o, (T) < ||T|| <1 for
every T in the open unit ball of PUQ.

3.11. REMARK. If U is a unital C*-algebra and U € € with defect pro-
jections Py =1 — UyU; and Qo =1 — UjUp, then every element T in the
open unit ball of A has a convex decomposition

T=> N
with U; in €, such that I — U;U;} ~ Py and I — U} U; ~ Qo for all i (Murray-
von Neumann equivalence). This can be proved by examining the key
proofs, notably those of theorems [8, 2.2], 2.3 and 3.3, together with ele-
mentary arguments well-known in semi-Fredholm index theory. Obviously
the same conclusion does not hold if ||T|| = 1, even if QI;’ is dense in A (A
is extremally rich). As with the main results of Sections 1, 2 and 3, this
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observation is also valid for spaces of the form PAQ, where now
Py=P—UyU; and Qy = Q — Uj U, cf. Remark 3.9.

As a possible generalization of our theory, we could therefore put special
restrictions on the equivalence classes of the defect projections (or on the
ideals they generate) of the extreme partial isometries or on the quasi-in-
vertibles, and define a modified distance function «, (as long as there is at
least one extremal partial isometry satisfying the restrictions). All of the
theory will go through with «, substituted for «,. Of course, if U is an ex-
treme partial isometry not satisfying the restrictions we will get o, (U) = 1.
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