MATH. SCAND. 81 (1997), 35-68

L7 MAXIMAL ESTIMATES FOR SOLUTIONS TO THE
SCHRODINGER EQUATION

PER SJIOLIN

Abstract.

L7 maximal estimates are considered for solutions to an initial value problem for the Schro-
dinger equation.

1. Introduction.

Let f belong to the Schwartz space S(R") and set

Sif(x) = u(x,1) = (21) ™" / e¥Eeef(6)de,  xeR" 1€R,
J

where a > 1. Here f denotes the Fourier transform of f, defined by

Je) = / ¢ 5 (x) d.

R”

It then follows that u(x,0) = f(x) and in the case @ = 2 u is a solution to the
Schrodinger equation idu/0t = Au.
We shall here consider the maximal function

S°f(x) =sup|S; f(x)|,  xeR"

O<r<l

We also introduce Sobolev spaces H; by setting

Hy={fe S5\ fln<oo}, seR

where

1/2
1 f o, = ( / (1+ ) V(e)r"ds) :
Rn
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We shall here study the local estimate

(1) I1S°f ey < Co |l f |1,
where B is an arbitrary ball in R”, and the global estimate
(2) 1S lzarry < C LS |la, -

Here 1 < g < 0o and s € R. These inequalities have implications for the ex-
istence almost everywhere of lin& u(x,t) for solutions u to the Schrodinger
11—

equation.

The estimates (1) and (2) and related questions have been studied in sev-
eral papers, e.g. L. Carleson [4], A. Carbery [3], M. Cowling [5],
B.E.J. Dahlberg and C.E. Kenig [6], C.E. Kenig and A. Ruiz [9], L. Vega
[19], [20], P. Sjolin [15], [16], [17], P. Sjogren and P. Sjolin [13], C.E. Kenig,
G. Ponce and L. Vega [7], [8], E. Prestini [12] and J. Bourgain [2]. We men-
tion some known results.

For n = 1 the local estimate

1/2
3) ( / IS*f(X)izdx) <Cs|f ln
B

holds for s = 1/4 and 1/4 can not be replaced by a smaller number. In the
case n =2 (3) holds with s = 1/2 and in the special case n =2, a =2, (3) is
also known to hold for some s < 1/2.

If n > 3 then (3) has been proved for s > 1/2.

In the case n = 1 one has the global estimate

1/4
» (/ 'S*f("”“dx) < C IS o
R

It is also known that in the case n = 1 the global estimate

1/2
( / |S*f<x>|2dx) <Clfln
R

holds for s > a/4 and does not hold for s < a/4.
We shall here consider the case n = 1 and the case » > 2 and f radial. We
have the following results.

THEOREM 1. Assume n = 1.
If s < 1/4 then (1) holds for no q.
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If 1/4 < s < 1/2 then (1) holds if and only if ¢ < 2/(1 — 2s).
If s = 1/2 then (1) holds if and only if q < cc.
If s > 1/2 then (1) holds for all q.

THEOREM 2. Assume n = 1. Assume that the conditions in Theorem 1 hold
and that ¢ > 4(a—1)/(4s+a —2) for s > 1/4 and also that q > 2. Then the
global estimate (2) holds. If the condition in Theorem 1 does not hold or if
g<4(a—1)/(4s+a—2)orif q<?2, then (2) does not hold.

Theorem 2 implies that we have decided for which pairs (s,q) the global
estimate (2) holds, except in the case g=4(a—1)/(4s+a—2),
1/4 < s<al4

THEOREM 3. Assume n > 2 and f radial.

If s < 1/4 then (1) holds for no q.

If 1/4 <s < n/2 then (1) holds if and only if g < 2n/(n — 2s).
If s = n/2 then (1) holds if and only if ¢ < cc.

If s > n/2 then (1) holds for all q.

THEOREM 4. Assume n > 2 and f radial. Assume that the conditions in
Theorem 3 hold and that ¢ > 4(a — 1)n/(4s + a(2n — 1) — 2n) for s > 1/4 and
also that q > 2. Then the global estimate (2) holds. If the condition in Theorem
3 does not hold or if g <4(a—1)n/(4s+a(2n — 1) — 2n) or if q < 2, then (2)
does not hold.

Theorem 4 means that we have decided for which pairs (s,q) the global
estimate (2) holds, except in the case g =4(a — 1)n/(4s + a(2n — 1) — 2n),
1/4 <s<a/4.

THEOREM 5. Assume n > 2, a = 2 and that the local estimate (1) holds for
arbitrary f € & (not necessarily radial). Then

n—1

4 X
4) s+ 2

2

S

In particular if s = 1/4 then q < 2.

It follows from Theorem 5 that the estimates for radial functions in
Theorems 3 and 4 do not hold for general functions.

2. Proofs.

PrOOF OF THEOREM 1. We shall first prove that if 1/4 <s<1/2 and
q =2/(1 — 2s) then the global estimate (2) holds. The sufficiency of the con-
ditions in Theorem 1 then follows from this fact.

Let #(x) denote a measurable function on R with 0 < #(x) < 1 and set
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Ri() = [ eI Fede,  fes.
R

It is then sufficient to prove that

(5) IRf llg< C I f Il2,

where the norms are taken over R.
Let p € C°(R) be real-valued and assume that p(x) =1, |x| <1, and
p(x) =0, |x| > 2. Set py(x) = p(x/N) and

Ryf(x) = p(x) / e [y () (€)dE, N > 2.

R

To prove (5) it then suffices to prove that

(6) [RNS Mg C IS Mly N >2.
On the other hand (6) follows from the inequality

(7) IRV o< C NI f lly N >2

where R}, denotes the adjoint of Ry and 1/g+1/¢ = 1.
To prove (7) we first observe that it follows from P. Sjolin [15], pp. 707--
709, that

®  [iRewPax<2n [ [ K020 g(e)ldves
R R

where

Kn(y,2) = pn(»)on(2) / GOy (€)1 de,
R

and p = p?, py(€) = p(&/N).
We shall prove that

9) |Kn(y,2)| < Cly — 2|72,

We set d = 1(z) — t(y) and may assume 0 < d < 1. Performing a change of
variable n = d'/%¢ we obtain

(10)  Kn(y,2) = pxn(»)on(2) / ) | ==/ Lydn d /4

where v = d~'/%(z — y) and L = Nd'/°.
Now let



LP MAXIMAL ESTIMATES FOR SOLUTIONS TO THE ... 39

m(n) =€ n ¥, neR,

and write m = m; + m,, where m; = m,my = mp and ¢ = 1 — p. Also define
kernels K, K; and K, by setting K = m, K| = m; and K, = m,.
It is proved in A. Miyachi [10] that K; € C*°(R) and

IKl (u)l S Clul(2s—l+a/2)/(l—a)’ |u| > 1.
It follows from the inequalities @ > 1 and s > 1/4 that

2s—14a/2

>1—
P >1-2s

and we therefore conclude that
Ki(w)] < Clul~72), Jul > 1.
We have
iy (u) = / e~ (e —1)|n|~> p(n)dn + / e~ 0| p(n)dn = G(u) + H (u).

Introducing an auxiliary function v(x) = 1/(1 + x?), x € R, it is easy to see
that

(11) / "0 (x — wdu < Clx[ "1
R

(cf. [15], pp. 711--712). Using (11) and the fact that Inl_zs has Fourier trans-
form C|x|”""*) we conclude that

Hw)| < Clu ™.
To estimate G(u) we observe that
G(u) = lim G, (u),
e—0
where
Get) = [ e il ppptafeldn, e >o.
An integration by parts shows that

2

1 a—1-2s 1
G.(u)] < C——/ dn < C—
Gl < ¢ [ 1 i

and hence
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Gw)| < Clu ™", Jul > 1.

It therefore follows that |Ky(u)| < C, |u| <1, and |Kz(u)| < Clu|"'7,
lu] > 1.
It follows that

|K(u)] < Clu~"7)

and invoking (10) and (11) we obtain

[Kn(p,2)] < Cd 2D/

/ K(v+u)Li(Lu)du

— Cd(Zs—l)/a

/K(u)Lﬂ(Lu — Lv)du

< Cd(zs‘l)/a/ u|"""%) Ly(Lv — Lu)du

— Cd(Zs—l)/a/ |t|_(l_25)’)’(LV _ t)dtLl—Zv
< Cd(2s—1)/aL1—2.vILvl—(l—2s)
— Cd(Zs—l)/aId—l/a(Z _y)l—-(l—ZS) _ Cly _ Z!—(l—Zs).

Hence (9) is proved and using (8) we conclude that
IRglB < C [ [Iy=2 g0l gty s

< / g0 (gD 0)dy < C ligllyll (gl I
< C gl

where I,; denotes the Riesz potential operator of order 2s. Here we used the
fact that

q9 4

We have now proved that the global estimate (2) holds for 1/4 < s < 1/2
and g = 2/(1 — 2s). The sufficiency of the conditions in Theorem 1 follows if
we also invoke the trivial inequality

1S NS CNLS N, s> 1/2.

It remains to prove that the conditions in Theorem 1 are also necessary. It
is well-known that there is no local estimate for s < 1/4. This follows from
the proof of Theorem 4 in P. Sj6lin [15].

We shall then prove that if 1/4 < s < 1/2 and the local estimate holds then
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q<2/(1-2s). Let ¢ € C(R) be even and non-negative. Assume that
supp ¢ C {& 1 < [€] < 2} and that (§) = 1 for 5/4 < || < 7/4. Then choose
S so that f(§) = p(§/N), N > 1. We have

Ilf H%—l‘s C / N2sd€ < CN1+2s

N<|§|<2N

and

|| f |, < NS,

Setting 7, = (27)™" one also has

S/ ) =m1 [ Eole/Nde = m [ p(adn = mNG(N)
R R

It follows that
S*f(x) > coN

for |x| < 6/N, where é is a small positive number.
If the local estimate holds we therefore necessarily have

1/q
Nidx| < CN'V**s
|x|<é/N

and hence
Nl—l/q < CN1/2+S.

Letting N tend to infinity we conclude that 1 — 1/¢ < 1/2 + s, which implies
that ¢ <2/(1 — 2s).
It now remains only to observe that the estimate

(12) 1S f ey < Co LS Ny,
does not hold, and this follows from the well-known fact that the estimate
| f e < Co Lf 1y,

is not valid.
The proof of Theorem 1 is complete.

PrROOF OF THEOREM 2. In the proof of Theorem 1 we proved that the
global estimate (2) holds for s = 1/4, ¢ = 4, and in C.E. Kenig, G. Ponce and
L. Vega [8] and P. Sjolin [17] it is proved that (2) holds for s = b/4, g = 2, if
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b > a. Interpolation (J. Bergh and J. Lofstrom [1], pp. 152--153) between
these results shows that (2) holds for the pair (s,¢q) if 0 < 0 < 1,
s=(1-0)/4+6b/4
and
l/g=(1-6)/4+6/2.
We obtain § = (4s — 1)/(b — 1) and
1=£+ 4s — 1 :4s+b—2.
g 4 4b-1) 4b-1)
Using the condition b > a we can conclude that (2) holds for 1/4 < s < a/4
and

4s+a—2_ (s)<l<4s—+—a—2
a1 WSy aa-1

where e(s) > 0 is small. Combining this with the global estimates in the
proof of Theorem 1 we obtain the sufficiency part of Theorem 2.

We shall then prove the necessity part of Theorem 2. We shall first prove
that if 1/4 < s < a/4 and (2) holds then ¢ > 4(a —1)/(4s +a — 2). Using a
counter-example from P. Sjolin [17] we first define f by setting

) = (N> e+ N2, N>1,

where ¢ € Ci°(R) and supp ¢ C (—1,1). Following [17], pp. 112--113, we
obtain

1S < CN*H1 /22l

and the estimate
S*f(x) > eN'=9/2, (1-e)N“ T <x <N,

where € > 0 is small.
It follows that

| S lly 2 eN'-e/2Nte=V,
and if (2) holds one obtains
Nl—a/2+(a—l)/q < CNs+1/2—a/4.

Letting N — oo we conclude that
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a—1 1 a
q 2 4
and
a—1<s l+a
- 2 4

The inequality ¢ > 4(a — 1)/(4s + a — 2) now follows.

It remains to prove that we can never have ¢ < 2 in the global estimate
(2). To see this we construct a function f in the following way. Let
1 € C*°(R) and assume that ¢(x) =0, x <2, and (x) =1, x > 3. Set
f(x) =0, x <2, and

S(x) = Px),  x>2.

x!/21og x

Then f € H, for every s but f¢L9 if ¢ <2, and f can be used to give a
counter-example.

The necessity part of Theorem 2 now follows if we combine the above two
counter-examples with the necessary conditions in Theorem 1.

This completes the proof of Theorem 2.

PROOF OF THEOREM 3. Assume n > 2. We shall first prove that the global
estimate (2) holds for radial functions if 1/4 <s < n/2 and ¢ = 2n/(n — 2s).
Let #(x) be measurable and radial, 0 < #(x) < I, and set

Tf(x) = Squf (), [ €.

It suffices to study T instead of S*.
If f is radial we have

Tf (u) = cou'™"/? / Jujrr (r)e ™™ £ (r)"2dr,  u >0,
0

where J,/,_; denotes a Bessel function (see E.M. Stein and G. Weiss [18], p
155). Here we write Tf (1) = Tf (x) if u = |x| and f(r) = f(€) if r = |¢].
We have to show that

1/q 00 1/2
(/ITf )| u' 'du) <c(/ (1477 r"'dr) :

0
One has
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oo

Tf(u)u(n—l)/q :Cnun/q—l/q+l—n/2/Jn/z_l(ru)eir(u)r“j(r)rnﬂdr

0
00
_ Cnun/q—l/q+l—n/2 / Jn/z_](ru)eit(u)r"g(r)(l + rz)’s/zr'/zdr,
0
where g(r) = f(r)(1 + r2)*¥#=D/2_ and setting
Pg(u) = yMa-1/a+1-n/2 / J,,/z_,(ru)ei’(“)"'g(r)(l + r2)~s/2r1/2dr
0

we conclude that
Tf (u)u" D/ = cnPyg(u).

We therefore have to prove that

0 1/q 0 1/2
(13) ( / in(unqdu) sc(/ rg<r)|2dr) |
0 0

Now set

00
P*g(r) — (1 + rZ)—s/Zrl/Z/Jn/2_1(ru)e~it(u)r"un/q—l/q+l—n/Zg(u)du’
0

r>0, geCg0,00).
Then

/ Pf (u)g(u)du = / £ P(dr,
0 0

if g€ CX(0,00) and f € L*(0,00) and f has suitable decay at infinity. To
prove (13) it is therefore sufficient to prove that

(14) [Pgls Cligll,, g€ C°(0,00),

where 1/p + 1/g = 1 and the norms are taken over the interval (0, 0o).
We shall write
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o0
Pg(r) = (1+2) 72 /(W)l/zfn/zq(W)e_"(")rﬂ“ﬂg(“)du,
0

where v = (n - 1)(1/2 — 1/q).
We choose an auxiliary non-negative and even function ¢ € C°(R) so that
supp » C {&1/2 < €] < 2} and

Y et =1,  &£#£0,

and set

o0

eo(§) =1-Y p(27¢)

1

and

P(E) = i p(274¢).
1

We then have ¢y € C°(R) and @o + 9 = 1.
It follows from the properties of Bessel functions (see [18]) that

12001 (1) = @o(DO(*12) + (1) (bre" + bae™ + 0(1/1)), >0,
where b; and b, denote constants. Hence
P*g(r) = S(r) + Bi(r) + Ba(r) + C(r),
where

2/r
IS(9)] < C(1 + )" / (ru)"> V24 g )
Bi(r) = b1+

Y(ru)e™e "Iy g (u)du,

By(r) = by(1 + rz)'s/2 w(ru)e_"’“e""(“)'ﬂu‘”g(u)du

o\8 0\8 <

and
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C()| < C(1+ )~ / (re)~ g ()
1/r

We shall first study S(r) for 0 < r < 1. Invoking Ho6lder’s inequality one
has

2/r
IS()] < €12 / 22 g (1) d
0

2/r

1/q
< C,J‘/Z—l/z(/ u("/2—'/2'”"du> il -

0

Now n/2—-1/2—-~=(n—-1)/q and therefore the integral in the above
right hand side is majorized by

2/r
/ W du= Cr.
0

Hence,
IS(r)| < Cr/2t 2l g, 0<r<1,
and one obtains

1 1/2 1 1/2
</|S(r)|2dr> < C(/r"““z”/"dr> legl,< Cliglly
0 0

since g > 2.
For r > 1 we have

2/r
IS(’)| < Cr—-s+n/2—1/2/ un/Z—l/Z—'ylg(u)Idu.
0

Setting
M(t)=%S(%>, 0<t<2,

one has
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M) <C 2412 un/z /2% g ()| dut = C M| (w)|d
g\ujjau = (—stnj2+172 18\M)|au.

We then choose a number « so that & > 0 and s — n/2 +1/2<a<1/2. 1t
then follows that —s+n/2 — 1/2 4+ a > 0 and

Y <c n/2 1/2— 1
MO < C | —mmiaiia s 8()ldu

0
t

1 S—y—« Y-«
<€ [ G lgtwldu < L lgl)(),
0

Here we set g(u) = 0 for < 0.
Using Plancherel’s formula we get

2
/ M (1)t < C / Lo (7 g]) Pt = € / €721 g) ).
0

We now invoke Pitt’s inequality for Fourier transforms (see for instance
B. Muckenhoupt [11]), which states that

172 1/p
(15) ( / 1f<e)|2|s|‘2"ds) sc( / lf(X)l”IxI“‘”dx) ,
R R

ifor=a+1/2-1/p,

(16) 0<a<l-1/p
and
(17) 0<a<l1/2

Here we have chosen p as above and we also choose « as above. Then (17)
holds and (16) is equivalent to 1/p — 1/2 < o < 1/2. Choosing « close to 1/2
we may assume that this inequality holds.

Using (15) we then obtain
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(/OO IS(r)lzdr)l/z ) C(/(uj-—'y——algl)Puulpdu)l/p
1

1/
C(/ |g(u)|Pusp—w—apuﬂp+p/2—ldu> ’
1/p
= C(/ |g(u)|”u"’”7”"+1’/2du)

1
sp—*yp-—l+p/2=sqz1—(n—1)<———>—q——1+ q

However, we have

and thus

0o 1/2
( / |S<r>|2dr) < Clglh
1

and we have proved that

(18) S22 Cllgllp -
We shall then study C(r). One has
n<crs / u|g(u)|du = Cr1-* / w7 \g|du.
1/r 1/r
Setting

we have || C||>=|| M |2 and

o0

\M(1)] < CF / w1 gldu < C / 1 gldu

_C/

< CL(w%g])(0),

o0

1

t
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where « is chosen as above. We can then use the above argument to con-
clude that

(19) ICll< Cliglly -

It remains to estimate B; and B,. We set
o0
A() = (1 + &)™ / P(€u)e e M = g (1) du, £€R,
0

and shall prove that

1/2
(20) ( / |A<s>|2ds) <Cllgly
R

from which the required estimates for B; and B, follow.
We write

A(8) = po(§)A(E) + P(£)A(E) = Ao(&) + 41(§)
and shall first study 4. We have

40(6) = (&)1 + )2 / P(Eu)e e O g ()
0

and changing the order of integration we obtain

[ 1aoteia = [ [ 1t g
0 0

R

where

I(u,v) = / == —tONIE o (£2(1 + €2) *(Eu)ih(&v)de.

R

It follows from the definition of the functions ¢y and ¢ that I(u,v) = 0 if
0<u<1/20r0<v<1/2 Hence

o]

l4o|2 < C / / 1T (u,) lg(w)| [g(v) du

12 12

since vy > 0.
It is clear that |I(u,v)| < C and an integration by parts also shows that
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1

<(——r — .
|1(u,v)|_C|u_v‘, [u—v|>1

Here we use the fact that

[ us(ewiag < c.

We set
1
K(u) = I—L—"I‘IT, ue R,
and Rf = K = f. Since
K(u) < Gy L
Ju] ™

for every a with 0 < a < 1, we have

IR llg < CNLSlp -
We have proved that |/(u,v)| < CK(u — v) and it follows that

o0

(21) HAoH%SC/ K(u—v)lg(u)| |g(v)|dudv
0 0

= C/R(Igl)(u)lg(u)ldu < ClIR(ghllllgl,< Cligl -

It now remains to prove that
(22) 412 < Clligllp,

where
A1(6) = p(&)(1 + €)™ / W(Eu)eS e MWL =g (u)du.
0

We have

41(0)] < c(fj w(z-ks)r’“)

1

/ ¢(§u)ei£ue—it(u)léla u"g(u)du
0

and set
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N
Ai() = c(Z ¢(2‘k6)2"‘“>
1

N =1,2,3,.... It follows that

)

/1,Z)(§u)ei5“e"i’(“)|‘flau_7g(u)du
0

2

N o0
IAI,N<£>|25C<Zso<2""£)2~2"-‘> / D(Eu)e e Ky g (u)du| .
, .
0

Changing the order of integration and performing a change of variable we
obtain

/ A1 (6)2de
R

N o0
< C/(Z <p(2_k§)2‘2k" /w(gu)e’fl‘e—"(u)lfl“u—vg(u)du
RO\ 0
0

oo 00 N
cf (22‘”“ / e"““‘”“‘“(“)“’””‘f"‘]so(rks)w(fu)w(fv)df)
00

N 00 o0
=C Z 2~2ks2k / / / ei[(u—v)2k71~(t(u)~t(v))2""|n|"]w(n)w(zknu)w(zknv)dn
! 0 0

R

g(u)v " g(v) u NV dudy,

LT

where we let « = max(1/4,s/n).
The inner integral vanishes if u < 27%~! or v < 27%~! and since a < s we
may therefore use the inequalities

u®=s < C(2—k)a—s — C2ks—ka
and
s < Czks—knz

in the above integral. We obtain
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N oo 00
< Csz(l—%/) / /
! 0 0
W g (W) g (v)|du v,
where we have set d = t(u) — #(v).
Letting N — oo we obtain

oo 00

413 < C//(ka>“s_”_"lg(u)IV"‘”‘”lg(V)Idudv,
1

0 0

where

Jj = 2k(1-20)

/ e E= ) o () op (2 ) ap 25y .
R

We claim that

= 1

(23) > J< Cm-

1 vl

We first assume that (23) holds and complete the estimate of || 4; ||>. One
has

41113 < C//l i v W g ()| g(v)|du dv

= € [ 1l le e gl
= ¢ [ 187 le @) e
We now invoke Pitt’s inequality (15) again. We obtain

1/p
(24) 412 < C(/(us'7f°|g|)l’uumdu>

R

o0 1/p
= C(/ Ig(u)l"u”"””“*”/zdu) =C gl
0
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where a; = 1/2 — 1/p + a, provided we can show that

(25) 0<a<1/2
and
(26) 0<a;<1-1/p.

The inequality (25) holds by the definition of a. Since o < 1/2 it is clear that
a; < 1 —1/p and using the fact that 1/p = 1/2 + s/n we also obtain
1 1 :

ap=a——+-=a—
p

s
2>
2 n_O’

which completes the proof of (26).
Hence (22) is proved and combining this with (18), (19) and (21) we obtain
(14).

It now remains to prove the claim (23). To do this we shall invoke the
following two lemmas (see P. Sjolin [14] and the references in that paper).

LEMMA 1. Let {2 denote an open set in R" and let ¢ € C3°(§2). Assume that
Y € C®(£2), ¢ is real-valued and that | det(0*/0x;0xi)| > ¢ > 0 in £2. Then

i0d

< C(1+[¢))™? ¢eR" CeR.

LEMMA 2. Let I denote an open interval in R, let g € C°(I), F € C*(I) and
assume that F is real-valued and F' = 0. If k is a positive integer then

/eiF(")g(x)dx = /e’F(")hk(x)dx,

1 1

where hy is a linear combination of functions of the form
g("')(F/)_k_r HF(I},)
g=1

with0<s<k, 0<r<kand2<j,<k+1
To prove (23) we may assume 0 < d < 1. We shall study three cases.

Case 1. [u—v| < Cd'/e.
First assume 2K < d~1/4. Then we use the estimate J; < C2¢(!=2%) and ob-
tain
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Z Ji < Cd (1-2a)/a < C|u l (1— 2(1)

2k<d 1/a

In the case 28 > d~'/% we have d2k* > 1 and we use Lemma 1 to conclude

that

Ji < Czk(l—Za)(d 2ka)—|/2.

Since a > 1/4 we then obtain

Z Ji < Cd—|/2 Z 2k(l—2(1—a/2)

2ksd-1/a

2%k >d-1/a

< Cd——l/Zd (1-2a-a/2)/a =Cd (1-2a)/
< Clu— v|7(1729),

Case 2. Cd'a <|u—v| < 1.
It follows that 1/|u—v| < cd /%< c(ju—v|/d)"“™. First assume
2k < 1/|u — v|. One obtains for these k

> g <022 < Clu— v,

Then assume 1/|u —v| < 2% < ¢(Ju — v|/d)"/“"V. One has d 2% < ¢2k|u — v|
and using Lemma 2 one obtains

ZJk<CZ2kI 2a)|u N2 —kN
— C|u _ vI—N sz( N+l—2(l)

< C|u _ vl_Nlu _ le—H—Z(l — C|u _ V|_(l-2a),

where N denotes a large integer.

We then assume 2% > c¢(|u —

v|/d)"/“D Using Lemma 1 we obtain

ij < cd'\? Z ok(1-2a-a/2)

< Cd—l/Z(lu _ Vl/d)(l—Za—a/2)/(a-l)

=Clu— v‘(l—2a—a/2)/(a—l)d—1/2+(2a+a/2—1)/(a—1)
=Clu - ,(I—Za~a/2)/(a—l)d(za-l/z)/(a_1)

< C|u I (1-2a-a/2)/(a— )Iu _ v'a(Za—l/Z)/(a—l)
= Clu— |72,

Case 3. lu—v| > 1.

First assume 2% < c(|u

Lemma 2 one obtains

—v|/d)" @D Then d2k¢ < ¢2*ju — v| and using
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D S < CY 2Ky NN < Ol — | TN < Clu— w02,
Finally we assume 2* > ¢(|u — v|/d)"/“~". We then have
Jp < C2k(1-20) g=1/29ka/2
and
ij <Ccqd'i sz(l—Zn—a/Z)
< Cd™V(|u — v) jd) 12/ (a1,
Arguing as in Case 2 we get
ij < Clu— v|(l—Za—a/2)/(a—l)d(zu—l/z)/(a-l).

We have d < |u — v|* and as in Case 2 we obtain

ij < C|u —(1- 2(r

The claim (23) has now been proved.

We remark that in the above applications of Lemmas 1 and 2 we have
used the fact that the derivative of every order of the function
©(&)Y(2kué)p(2kv€) is uniformly bounded in &, u and v. This follows from
the definition of the functions ¢ and . This property of the derivatives gives
uniformly bounded constants in the estimates.

We have now proved that the global estimate (2) holds for radial functions
if 1/4 <s<n/2and q =2n/(n - 2s).

We shall then prove that there is no local estimate for S*f if s < 1/4. It
suffices to prove that there is no inequality

00 1/2
(27) /|Tf W ldu < C (/ 2(1 4 ) ldr) ,

0

for s < 1/4, where
Tf(u) = (’nul—n/Z / Jn/z_l(ru)e"’(")'"f(r)r”/zdr.
0

We let ¢ € C°(R) with suppp C (—1,1) and choose f* such that
j‘(r) — N—]/Zw(_N—l/zr_*_ N]/Z)rl/2—-n/2'
It follows that f(r) vanishes outside the interval [N — N'/2, N + N'/?] and
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N+NI/2
If=C [ NN = oN,
N-N2

Hence

LS s, < C NV

and || f ||g,— 0as N - oo if s < 1/4.

We shall study Tf(u) for £ < u < 2e, where ¢ > 0 is small. Using the esti-
mate

(28) 120,51 (1) = bre + bye™ + O(min(1,1/1))

we obtain

Tf (u) = > | Tuaoi(ru) (ru)' 2™ £ (r)r/2=1 2y

1/2-n/2

= cqu (bre™ + bye™™ + O(1 /ru))e" " N=!/2

[
[

- o(=N"12r + NYV2)dr = b\ B (u) + by By (1) + C(u),

where
0
Bi(u) = c,,ul/z"’/z/ eir"ei'(“)'uN“/zgo(—N"/2r+N1/2)dr7
0
00
B(u) = cpu!/*"/? / et =125 N=1/2p - NV/2) gy
0
and
0
Cu) = Cnul/Z—n/Z/ O(1/r)N=Y2p(—= N~ 4+ N'2)dr.
0
We have

Bz(u) — cnul/Z—n/Z'/eiuneit(u)|7;|”]v-—l/2cp(lv—l/2n_‘_‘)\/l/Z)d,,7

and setting £ = N~'/2n + N'/2 we obtain
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Ba(u) = 2012 [ (NN 0NN ) g

_ c',,u'/z‘”/z/eipcpdf,
where
F(€) = N'ug — Nu+ t(u)N°(1 — N~'/%¢)
= N'2ug — Nu+ t(u)N* (1 —aN~'P¢ 4 ————“(“2_ Dy-1g 4 CO(N'3/2))

= t(u)N° — Nu+ N"V2u¢ — t(u)a N“~'/%¢

-1
+a(a2 )t(u)N(Hl&Z —|—C()(Z(ll)Na_3/2).
We now choose
u
tu) = ——
(u) aN(l—l

and it follows that

|Ba(u)] = /2

/ e'pde ‘

lugz + O(N~'/?).

where

a
G =5

It is then easy to prove that
(29) |By(u)| > cu!/?? > ¢, e <u<2e,

if ¢ is suitably chosen.

We shall prove that B;(u) and C(u) are small compared to B,(u). It then
follows that the left hand side of (27) is bounded from below and therefore
(27) can not hold for s < 1/4.

We shall first estimate C(u). We obtain

N+N'2
|C(u)| < C / rINTV24r < C

N-N72

1
N

and it remains to study Bj(u). Arguing as above with B, we obtain

Bl(u) =c,,u'/2“”/2/e’rg0d§
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where
F(€) = —N"2ug + Nu + t(u)(N — N'/2¢)“.

Integrating by parts we have

iF e [ Fiml (¢ pF”
0 /e S‘”’15‘/8 ‘F iF'dg"/e (F’ (F')2>d£'

Now

F'(¢) = —N"u— t(u)a(N — N'/%¢)*"'N'/2
and it follows that
|F'| > ¢N'/2.
Also
F'(¢) = tw)a(a — 1) (N — N'/2¢)* N
and
|F"| < CN'"*N°"2N = C.
We therefore conclude from (30) that

'/e’rcpd{l < CN~'/2,
Hence

|Bi(u)] < CN~1/2

and we have proved that also B; is small compared to B,.

Thus we have proved that there is no local estimate for S*f if s < 1/4. We
shall then assume 1/4 < s < n/2 and prove that ¢ < 2n/(n — 2s) is a neces-
sary condition for the local estimate (1).

First let ¢ € C°R" be radial and non-negative. Assume that
supp ¢ C {&1 < |€] <2} and that ¢(¢) =1 for 5/4 < |£| <7/4. We then
choose f so that f(&) = p(¢/N), where N > 1. It is then easy to see that

If o, < CN™25.
One also has
Sof (x) = T N"O(Nx)

and it follows that
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S*f(x) > cN”
for |x| < 6/N, where ¢ is a small constant. If (1) holds we obtain
1/q

/ qudx S CNn/2+S
|x|<6/N

and hence
Nn—n/q < CNn/2+A"

Letting N — oo we then conclude that

n-S<lis
g2 "

and it follows that ¢ < 2n/(n — 2s).

To complete the proof of Theorem 3 it now only remains to prove that (1)
does not hold in the case s = n/2, ¢ = oo, and this can be proved as in the
case n = 1.

The proof of Theorem 3 is complete.

ProoF oF THEOREM 4. We shall first prove that the global inequality (2)
holds for radial functions in the case g = 2, s > a/4. We set

Pg(u) = u'/? / Tujpo1 (ru)e™ @ g(r) (1 + 1)~ 2dy
0

and have to prove that

00 1/2 00 1/2
(31) ( / |Pg(u>|2du> < c( / |g<r>|2dr)
0 0

if s > a/4 (compare the proof of Theorem 3).
Invoking (28) one has

Pg(u) = b /e”"e”( g1 +r3)" 52 gy

+ by / el o (r) (1 + r2) ™ dr + A(u) + B(u)

0
Dy (u) + baDy(u) + A(u) + B(u),
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where
1/u
A < [ 1e0)lar
0
and
Bl <c [ Ligolar=ct [ Lgo
Wl<C [ —lg0)ldr = [ Slgrldr
1/u 1/u
for u > 0.
We set

and then have

t
M0 < [ leldr < gl
0

where Mg denotes Hardy-Littlewood’s maximal function for g. It follows
that

4]l < Cllgl2

for s > 0.
We have |B(u)| < CQ(u), where

We set

and then have
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o]

L]l = su / Lt
F[/\Iz 1
0

—sup [ ( /oo ‘ |dr) o
0 !
OOO ( /f(t)dt)dr

< sup / 180 [MF (r)dr < sup || 12| MF |12 < C gLz
0

sup

It follows that

1Bl < Cllgl

for s > 0.
To estimate D and D, we use the global estimate in P. Sj6lin [17], which
was mentioned in the proof of Theorem 2. One obtains

00 1/2
[1Dill2 < C(/ lg(nP(1+7)7(1+ Vz)"'dr) =Cllgl2
0

if s > a/4. Thus (31) is proved for s > a/4.
For

Tf (u) = e 2 / J,,/z_l(ru)ei’(“)'af(r)r”/zdr
0

we have proved the estimate

00 1/q9 00 12
2 (/ s (“>|"u"“du) < c( / u‘f<r>|2<1+r2>°'rn—ldr)
0

0

in the two cases ¢ =4n/(2n—1), s =1/4, and ¢ =2, s = b/4, where b > a.
Interpolating between these results (J. Bergh and J. Lofstrom [1], pp. 120--
121) we obtain (32) with

1 2n — 1 1

and
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1 b

where 0 < 6 < 1. Hence § = (4s — 1)/(b — 1) and

1 2n-1 1
= 0

and it follows that
1 2n-1 4s—1  4s+b(2n—1)—2n

7" T h-Ddn aB-1m

We conclude that the global estimate (2) holds for radial functions if
(2n—1)/4n < 1/q < 1/2 and

1 4s+a2n—1)—2n

q< 4(a—1)n

The sufficiency part of Theorem 4 now follows.
To prove the necessity part we first assume that 1/4 < s < a/4 and that
(32) holds. We shall prove that then

4(a— 1)n

> .
(33) 1= 45 ¥an—1)-2n

First let ¢ € C§°(R) with supp ¢ C (—1,1) and choose f such that
j(r) — (F(__Na/2—lr+ Na/2)r1/2——n/2_

It is then easy to see that f”(r) vanishes outside the interval
[N — N'=9/2 N + N'-%/?] and it follows that

(34) LS |, < CNHal8,

We choose u so that (1 —)N*! <u < N~!, where € > 0 is a small number.
We then have
Tf (u) = Cnul/z""/z/.ln/z—l(m) (ru) 20" (ry 271 2y
0

and invoking (28) we obtain
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o0
. ; 1 .
Tf(u) — cnul/2~n/2/(bletru + byeirv +@(E>>en(u)r"¢(_Nu/2—lr+Na/2)dr
0

= b1B1(u) + b2 By (u) + C(u),

where
0
Bi(u) = Cnun/z—n/z/ e o NO2y | NI gy,
0
Bz(u) - cnu'/z‘"/z/e_i’“ei’(“)’acp(—N“/z“r+N"/2)dr
0
and
o0
Cu) = cnul/2—n/2/ (9<rl_u><p(_Na/z—1r+ N)dr.,
0
We have

Bz(u) — cnul/an/2/eirueit(u)|r|"Lp(Na/2—-lr+ Na/z)dr

and it is proved in [17] that if we choose

u
) = oy

then
(35) |Bz(u)| > Cul/Z—n/ZNl—a/Z > CN(a—l)(l/Z—n/Z)Nl—a/Z — an/Z—an/2+l/2

(with a suitable choice of ).
We shall prove that B;(u) and C(u) are small compared to B,(u). We have

N+N'-/2
1
|C(u)| < Cul/>"/2 / N dr < Cu'/?-"2N1-a/2N-a
N—N1-a/2

and therefore C(u) is much smaller than B,(u).
We shall then study B;. We have

B, (u)‘: cnul/Z—n/Z/e—iuneil(u)|n|“so(Na/2—1n+Na/2)dn

and setting ¢ = N%/2~15 4 N%/2 we obtain
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B (1) = N1l [ NN ) g
— cnu'/z“”/zN""/Z/eipcpdéeiN“,

where

F(&) = =N""%2u¢ + t(u)(N — N'-4/%¢)“.

Integrating by parts we have

iF _ TS VS ﬂ_SOF”
(36) /e <pd§—/e lFiF,df—l/e (F/ (F’)2>d§'

Now

F'(€) = =N""%u — t(u)a(N — N'~2¢f ' N'1=22
and it follows that
|F'| > e N'-al2ja=1 o ya-In1=a/2 — o Na/2,
Also
|F"(&)] = t(w)a(a — 1) (N — N'-e/2¢)* 2 N2-a
and
IF'| < C.

We therefore conclude from (36) that

‘/etipdﬁ‘ < CN™2,
Hence
By (u)| < Cul/>-/2N1-a/2 a2
and comparing this with the lower bound (35) for B,(u) we obtain
|Tf ()| > ¢|By(u)| > ¢ N"/>-n/2+1/2
for (1 —)Ne! <u < N ! If the estimate (32) holds we therefore get
N?2-an/241/2 pa=1) (n=1)/a pr(a=1)/q < © s+1/2-a/4
and it follows that

n an 1 (a—1)n 1
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and

(a—l)n<s‘ a an n_ 4s—a+2an—2n
qg ~ 4 2 2 4 )

The inequality (33) now follows.

To complete the proof of Theorem 4 it is now sufficient to observe that the
global estimate (2) can not hold for radial functions if ¢ < 2. This can be
proved as in the case n = | in Theorem 2.

PROOF OF THEOREM 5. We choose ¢ € C°(R) so that [¢(§)d€ #0 and
supp ¢ C (—1,1). We shall first carry out the proof for n = 2. We choose fy,
N > 1, so that

Jw() = N7'P2p(N=12¢ 4+ N')NTW2p(N7'26, + N'P2).

then
= [ (P ln(eide < CNNEN? = e
N2,
<-N4N1/2
and
(37) I fwll, < CN12,

We also have

Sfv(x) =m [ & NTIp(N"V26) + NY2) (N2, + N'2)de

ei.\'|§|el‘lflzN—l/2<p(N~l/2§l +N1/2)d£

=7‘r2

P R

'/ei.\’zfzeilE%N—l/Zgo(N——l/2€2+N1/2)d§2
R
= 71'21[()(])1[()(2).

Setting n = N~'/2¢; + N'/2 we obtain

L(x) = / NN it N'Pn=N)? ) i — / e'F pdn,

where

F(n) = N'2x;n — Nx, + INp* + (N> — 2N/,
It follows that
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1) = | [
where
G(n) = N'2x1m — 2tN*?y + NP

We now choose ¢ = #(x;) = x; /2N and then obtain

1
G(n) =§xmz-

Hence

()| = ’/eix"’z/st(n)dn‘

and we conclude that |,(x;)] > ¢ > 0 for x| € I, where I is a small interval
around the origin.
With ¢t = #(x;) = x;/2N we also obtain

11 ()] = 1 / efﬂ¢dn],
where
1
H(n) = N'2xyn = 2 N*n + Nof = N'2xan = N'2xn + S

1
= N"(x; — x1)n +§X17)2-

It follows that |I;(x;)| > ¢ > 0if x; € I and |x; — x;| < SN~!/2, where 6 is a
small positive number. Hence |S/fy(x)|>c¢ for x; €I and |x; — x| <
SN~'/2. Thus |Sify(x)| is bounded from below on a set of measure > ¢cN~'/2,
If B = {x € R |x| < 1} we then obtain

1/q
(/ IS*lequ) >cN~VA,

B

Assuming that the local estimate (1) holds and using (37) we then obtain
N—I/Zq < CNs—l/2
and
1< CNS+I/(2q)_l/2.

We conclude that
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N -

1
s+ % 2
in the case n = 2.
In the case n > 3 we set
Fn(€) = N"V2p(N~12¢, 4 NV2)N-V25(N-V2, + NV ...
CNTV2p(N-V2¢, 4+ NV,
Then
I f . < CN"ANP N2 = ¢ N—n/4
and
Syn(x) = mudi(x1)11(x2) . . . I (xn).

We choose ¢ = t(x;) = x; /2N as above and then |I;(x;)| > ¢ for x; € I. Also
[I(x;)| > ¢ for |xi—x;| <6N~Y2i=2,3,...,n and hence [Syfy(x)| is
bounded from below on a set of measure > N~=1/2_ 1t follows that

1/q
/IS*f{qu > e N~=1/2
B

(where we have chosen B as above) and if (1) holds then we obtain
N—(n—l)/Zq < CNs‘n/4
and

n—1_n
2g — 4

s+

The proof of Theorem 5 is complete.
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