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THE PERIODIC PARABOLIC EIGENVALUE
PROBLEM WITH L* WEIGHT

T. GODOY,' E. LAMI DOZO? and S. PACZKA®?

1. Abstract.

In this paper we study existence, uniqueness and simplicity of the principal eigenvalue for the
Neumann and the Dirichlet periodic parabolic eigenvalue problem with a bounded, possibly
discontinuous, weight and suitable regularity conditions on the coefficients.

1. Introduction.

Let 2 be a bounded domain in R" with C?*? boundary, 0 <8 < 1, let
{aik(x, )} <inens {a(x,0)}1<j<, bE two families of (6,6/2) Holder continuous
functions on 2 x R. Suppose a;x(x,t), a;j(x,t) are T-periodic functions in ¢,
satisfying the symmetry condition a;x = ax; and such that for some ¢ >0
and all (x,t) € 2 x R, (£1,&,..6,) € R”

Z aik(x,1)6& = ¢ z &.
ik i
We consider the periodic parabolic boundary eigenvalue problem

Ou/ot — Zai,k(x, 1D gu — Zaj(x, t)Dju = Am(x, t)u
(L.1) Bu=0
u(x,t) = u(x,t+ T) for (x,f) € 2 x R

where Bu = ujpoxr or Bu = 0u/dv along 012 x R. (v the exterior normal to
7). The case m € C%/2(2 x R), m(x,t) T-periodic in ¢, is solved, for
Bu = uj0r by Beltramo-Hess in and for general boundary conditions (that
includes the Neumann condition), in [3] by Beltramo. They find necessary
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and sufficient conditions for the existence, uniqueness and simplicity of the
principal eigenvalue. In [3], the key for existence result is that

T
(1.2) / supm(x, t)dt > 0

0 xefl
1mpl|es the existence of a Holder continuous function ¢ : [0, 7] — R such that
fo f)dt >0 and such that in a suitable tubular subregion of
0 x [O T)m(x,t) > c(t). In this paper, we show that, under the additional
assumption D;a;; € C(£2 x R) these results can be extended for an arbitrary
T-periodic function m € L>*(f2 x R). The main difficulty is that such a ¢ may
not exist. However we prove that (1.2) is equivalent to have m with positive
integral in a suitable tubular subregion of 2 x R. This is sufficient to obtain
the desired results.

2. Notation and Preliminaries.

We set, for u € C>1(£2 x R), Lu = 0u/0t + A(x, t, D)u, where
A(x,t,D) = Za,kxt)Dku—Zaj(xtDu

Let a(x,t), f(x,t) be two T-periodic in ¢ functions belonging to
C%2(2 x R), 0 < # < 1. We start recalling some well known facts concern-
ing the existence of solutions for the parabolic boundary problem

(L+al)u=fin 2 xR
Bu=20
u(x,0) = up(x)
with Bu = 614/01/ OI' Bu = UpNxR-
For p > 1, let W27(2) = {f € W2P(£2) : Bf = 0}. Let E be a vector space

of functions on 2x R, we set Er={f € E:f(x,t)=f(x,t+T) ae.
(x,t) e 2 xR} and Ep={f € ENnDom(B):Bf =0}. The norm on

. 1/p
L(£2 x R) will be the norm ﬂf[l,_:_;_(mm = (f_()x(()j‘) V|p>

We fix, for the whole paper, n +2 < p < co. Let X = L?(§2). We consider
A1) : WEP(02) C X — X, t € R, given by

-——Za,\k(., ,ku—Za, 1)Dju + a(., t)u.

Each A4,(t) is a closed, linear and densely defined operator, with domain
independent of z. Moreover for k large enough, say k > 1 + ||a|| ., we set
A = A,4(0). For 0 < a < 1 let A* be defined as in [7]. Let X,, be the domain
of 4%. For x € X, we set ||x||, = [|4*x|| (). Provided with this norm X, is a
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Banach space. Let || ||,; denotes the norm in the space of the bounded linear
operators from X, into X3, 0 < a, 3 < 1. Then we have

X CXgfor0<f<a<l,Xo=L(02),X =W (Q)

and for # < a the inclusion i, : X, — X} is a compact operator. Moreover
for 1/2+n/(2p) < a < 1 we have X, C C5""(£2) for some 0 < y = () < 1
where Cl“(Q) denotes the subspace of the elements in C!'*7(£2) satisfying
the boundary condition and thls inclusion is compact. [Cf. [2], p. 16; [7], p.
33].

The inhomogeneous linear evolution equation

dt

d
{ Tt Aar(u(t) = () £ € C(0.T+w],X), 0<0<1
u(0) = uy u e X

has an unique solution u satisfying

ue C([0,T+w,X)NCY((0, T +w], X foruye X
ueCl([O,T+w],X) if uy € Xj.

Moreover, for 0 < ¢t < T + w, u(t) is given by

@) ) = Uaealt, 000+ [ Vst ()

where U,k € B(X), 0 <7 <t < T+ w, is the associated evolution operator.

We denote A= {(¢t,7) € [0, T +w]x[0,T4+w]:0<7<t<T+w} and
we consider U,(t,7) = &= U, (¢, 7). Known properties of U, s (see [2],
lemma 2.1) imply, for ( ,7) €A ={(t,7) € A: T < 1}, that

(2.2) Ua(t,)lgp < (a0, 8,7)(t=7) " for0<a<f<l,f-a<y<l
Andfor0<a<f<1,0<v<fB-a,and (t,7),(s,7) € A
(2.3) [1Ua(t,7) = Ua(s, Tllpa < (0, 8,7t = 5"

We put, for 271+ (2p) ' n < a < 1, Kua = Ua(T,0) y, : Xo — Xo.

REMARK 2.1. We observe that f € L/(f2), f >0 and (¢,7) € A imply
U,(t,7)f belongs to the interior of the positive cone in CH”( 2), ([7], lemma
13.4).
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3. Auxiliary Lemmas.

For A > 0 in R it is natural to have a generalized solution operator
(L+MN)7": 5(2 x R) = L5(2 x R)

compact and positive. Moreover the restriction to C4*/*(£2 x R) coincides
with the classical solution operator. Our aim is to prove that the same result
holds for (L+a)™' with a(x,1) € LP(£2 x R) such that 0 <6 < a(x,?) <
d < oo, for some 8, d € R.

Since p>n+2, we can fix, from now on, 0 <a <1 such that

n
1 ,
s+s-<a<land <p<a.

1
2p l -«
We will need the following

LEMMA  3.1. Suppose as above Bu=0u/Ov or Bu=ujyo.r. Let
ac CY2(Q2 xR),0<6<1,a(x,t) T-periodic in t satisfying

a>0anda Z0 if Bu= 814/81/|0_an
a Z 0if Bu= ulalz.

Let Xy = LP(2) and X, = Wé"' (§2) in the preceding construction. Then there
exists 0 < v < 1 such that the operator

Sa: L5 (2% R) — C([0, T +w], Xa)
defined by

Sa(g)t = Uy(t,0)[I — K, ( /0 ' U (T, T)g(T)dT> + / ’ U,(t,7)g(r)dr

is an injective, positive, and bounded operator.

Proor. We fix B such that 1 > 8> aand 1/(1 — ) < p, also we fix § such
that 0 < < 8—a, and v/, 1 >+ > §, such that p > 1/(1 — 7). We set

Su(e)0) = | U1, T)g(r)dr
T
Su2(8)(1) = Ua(t,0)[1 — K] ( [ wr. r)gmdr)

We note that the integrals exist in the Bochner sense. The strong continuity
of the evolution operator implies the measurability of the application from
[0, T + w] into X,, given by 7 — U,(t, 7)g(7). (2.2) and Hdlder inequality give
us
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sup / U, g ladT < cllgll iz axn-

1€[0,T+w)

Also, for0<s<t<T+w
1(S2,18)(1) = (Sa18)(l, < /OS 1[Ua(t,5) = Uals, $)]lla, sl Uals, T}l sllg(T) lodT

+ [ 105l 7 o

A straightforward computation using (2.2) and (2.3) shows that, for some
c>0,e>0

[1(S2,18)(2) = (Sa18) ()l < clt — s ||gHL" (2xR)

K, : X, — X, is a compact, and strongly positive operator with spectral ra-
dius 0 < o(Ks) <1 ([7], Remark 14.1 and Lemma 14.2), so
(I -K,)™": X, — X, is bounded, then (S,,g)(¢) is well defined. We have

1(Sa28)(1) = (Sa28)(s)]l
<N Ua(t,0) = Uals, 0l 17~ Ka) 55 /O AT, ollg (o
<elt = s lgll 7 -
Also
1(S028) ()l < 11(Sa28)(2) — (Sa28) ()]s + 1 (Sag) O,

then

sup |[(Sa28) (Dl < cllgllzz (oxr)-
1€(0,7+w)
So, for some v € (0,1), S, : L5(2 x R) — C([0, T + w], X,) is bounded.
The positivity assertion follows from remark 2.1.
To prove the injectivity we note that for g € L (.Q X R) S ( ) =0 implies
Sa(g)(1) = 0in C(R2) for all ¢, t = 0 gives (I — K,) fo g(r)dr) =
and so [y U,(t,7)g(r)dT =0 for 0 < t < Tw. Thenfors<t
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t
0=/ U,(t,7)g(m)dT
S t
= U(,(z,s)/ Ua(S,T)g(T)dT—F/ U,(t,7)g(r)dT
0 K}
t
z/ U,(t,7)g(r)dT = 0.

So U,(t,7)g(t) =0ae.7€[0,¢],forall 0 <t < T + w, then g =0.

We note that, for g € C‘%Wz(ﬁ x R) and t € (0,w), S,(g)(t +w) = S.(g)(¢)
and so, by density, the same holds for g € L%.(£2 x R). So S,(g) has an un-
ique T-periodic extension to {2 x R, we will denote this extension also by

Su(8).

COROLLARY  3.2. Under the assumption of the Lemma 3.1
Sa: L5(2 x R) = L(£2 x R) is a compact operator. Moreover, there exists
7', 0 <" < 1, such that

Sa: Crg (2 x R) = Cy " (2 x R)
is a compact operator.

PrOOF. 1/2+n/(2p) < o < 1 implies that there exists 0 < o < 1 such that
X, C C'*7(£2). Moreover, for some 0 < 7 < 1 we have

CH(R, X,) € Cr'y (€2 x R) C L5(2 x R)

with continuous inclusions and the last inclusion is a compact operator by
Ascoli Arzela theorem.

REMARK 3.3. We set ¥ = Cp') 7 (2 x R). Then S, : I}(2x R) — Y is a
strongly positive operator. Indeed, for a positive g in L7.(2 x R), S,g be-
longs to Y, moreover for ¢ € R remark 2.1 and the definition of S, imply
that, for the Neumann boundary condition, S,(g)() is a never zero function
in C(2), so S,(g) belongs to the interior of the positive cone in C(£2 x R).
For the Dirichlet boundary condition, we note that S,(g)(¢) belongs to the
interior of the positive cone in C;”(TZ) and 9(S,(g)/0v is a continuos and
never zero function on 9f2 x R, so S,(g) belongs to the interior of the posi-
tive cone in Cy'y 7 (2 x R).

In the sequel Krein Rutman Theorem refers to the version stated in [1],
Th. 3.2.

REMARK 3.4. Under the hypothesis of the Lemma 3.1 the spectral radius
of the operator S, : L-(£2 x R) — L%.(2 x R) agrees with the spectral radius
of its restriction S, : Y — Y.
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Indeed, the spectrum of S, : L7.(£2 x R) — L%(£2 x R) is the point spec-
trum (except by the zero element), and every eigenfunction belongs to Y, so
both spectra agree (except perhaps by the zero element).

Krein Rutman theorem, corollary 3.2 and remark 3.3 imply that these
spectral radius agree with a positive eigenvalue and no other eigenvalue has
positive eigenfunction.

REMARK 3.5. Let A be a positive real number; for a = A we consider the
bounded operator S\ L5 (2xR) - Y. We observe that
W = S)\(L5(£2 x R)) is independent of \. Moreover, for \,u € R”* we have
St =M =S."—pulon W.

DEFINITION 3.6. We define L : W — L5.(2 x R) by
L=S;' =AM, A>0.

L is an extension of the differential operator L, such that
L+ A: W — L(£2x R) is a bijective operator with positive inverse. We
consider W endowed with the Y-topology. It follows that
L: W — L%(£2 x R) is a closed operator.

Let P be the positive cone in Y and let T, T, be operators on Y, we say
Ty < Ty if (T, - Th)(P) € (P)°.

LeEmMMA 3.7. Suppose a € Ly (12 x R) satisfies 6 < a(x,t) < d for some po-
sitive constants 0 < 6 < d and W, Y as in remarks 3.6 and 3.3 respectively.
Then

(1) L+a: W — L%(22 x R) is a bijection with continuous inverse.

2 (L+ a)" : Y — Y is a strongly positive and compact operator with po-
sitive spectral radius r.

(3) (L+a)™" : I5(2xR) = L5(2xR) is a compact operator and its
spectral radius agrees with r.

(4) This spectral radius is an eigenvalue with positive eigenfunction and no
other eigenvalue has positive eigenfunction.

PrOOF. We choose 1 € R, n > d and we set

T;: L(2 x R) — L5(22 x R), i=1,2,3

given by
T = (’I] - d)S
T, = SnO(TI - a)
T3=(n- 6)S,

where n — a denotes the operator multiplication by n — a. Each T; is a posi-
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tive and compact operator, then the spectrum o(7;) is the point spectrum
(except perhaps by the zero element). For i =1,2,3 T;(L%(£2 x R)) is con-
tained in Y, then the spectrum o(7;) agrees with the spectrum of the re-
striction Ty : ¥ — Y (except perhaps by the zero element). Also, we note
that these restrictions are strongly positive operators. Let r; denotes the
spectral radius of 7;. Now 0 <n—d <n—a <n— 6 and then, as operators
on Y, T, «T,<Ts;. Suppose the Neumann condition, since
(L+n)(1) = nl, the Krein Rutman thorem says that 1/n is the spectral ra-
dius of S,. The same theorem gives us r; <r; <r3, and so 0 <r, < 1. For
the Dirichlet condition, let Ao, uy be the principal eigenvalue and the positive
eigenfunction associated, respectively for L, i.e. (L+ n)up = (n+ Xo)uo. So
1/(n+ Ao) is the spectral radius of S, then 0 < r, < 1. From this we obtain,
in both cases

(Lta) ' = -(L+n) ' (m-a) ' (L+n)"
which implies (1)--(4).
Suppose a as in Lemma 3.7. We set
Se=(L+a)": [5(2 xR) — L5(2 x R)

Note that, for a € C?*%/2(£2 x R), S, agrees with the operator defined in the
statement of the Lemma 3.1.

REMARK 3.8. Suppose the Neumann boundary condition. We consider
(L+ 1) I5(2 x R) — L5(2 x R)
The Krein Rutman theorem implies that
(L+1)7": 22 x R) — L(2 x R)

has a positive eigenvector ¥ with eigenvalue 1. We normalize ¥ such
that(¥,1) = 1.

REMARK 3.9. Let m(x,t) be a T-periodic in ¢ function in L¥(§2 x R) sa-
tisfying ||m||, < 1/2. Suppose A € R>°, then (by Lemma 3.7)

S/\(I—m) : L?(.Q X R) — LI;(.Q X R)

is a compact and positive operator with positive spectral radius p,()). We
define : RZ® - R by pn(A) = pm(A) ™" = A for A >0 and p,(0) = 0. It is
known that, for a Holder continuous m, pu,, is a concave function. Now we
extend this result to a bounded m.
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LemMa 3.10. Let m be a function in LF(£2 x R). Then ., is a concave
Sunction on [0,00) and p,y, is analytic on (0, 00).

Proor. Without loss of generality we can suppose ||m||., < 1/2. We con-
sider the following norm on W.

Ve = W s pepry + 1L+ D7 ligonn)
W), is a Banach space. We consider Tp : W) — L7(£2 x R) given by
To =L+ A1 —m),

To is Dbijective and bicontinuous. Let K be the inclusion
K : Wy, = L7(2 x R). K is compact, so To — (um(X) + MK is a compact
perturbation of an isomorphism and then it is a Fredholm operator with
zero index. Lemma 3.7 and the Krein Rutman theorem imply that dim
Ker(Ty) — (pm(A) + M)K) =1 and if wuy is a generator of Ker(Tp—
(tm(A) + A)K) then ug ¢ R(To — (1um(A) + A\)K). The Crandall Rabinowitz
lemma (see [S], Lemma 1.3, p. 163) implies that pu,,(A) is a real analytic
function of A for A > 0.

We choose {m;} .y a sequence in C*(£2 x R), with supp(m;) C K; x R, for
some compact subset K; of {2, and satisfying ||m;||,, < 1/2 and such that m;
converges to m in the L7 sense. Each p,, is a concave function on [0, c0), ([7]
lemma 15.2). We set T; : Wy — L7.(£2 x R) given by

so T; — Tp tends to zero in B(W;, — L7(2x R). Now Toug = (pm(A) +
A)uy. The Crandall Rabinowitz lemma implies that there exists o;(\) and u;
satisfying Tju; = a;j(M)u; and such that u; —uo in W), and o;(\) —
m(A) + X as j tends to oo, so u; > 0 for a large enough j. By the Krein
Rutman theorem o;(A) = pm, (A) = +X. So 1m0 i, (A) = pm(A), for
A > 0. Also pim, (0) = m(0). Then p,(X) is a concave function on [0, 00).

RemMarRk 3.11. The Crandall Rabinowitz lemma implies that for
A >0 u,(A)+ X is a K-simple eigenvalue of the operator L+ (1 —m).
Now, for ue W Lu— A mu— pu(Nu = Tou — (m(X) + A)Ku. Suppose
um(X) =0, let M be the operator M : W — L5.(£2 x R) given by Mu = mu.
Then, as in [4], lemma 3.7, A is an M-simple eigenvalue of L.
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4. Main results.

In this section we will assume that the coefficients a;;, 1 < i, j < n belongs to
C'(2 x R). Let m be a function in L*(f2 x [a, b]) such that ||m||. < 1. We
set m~ : [a,b] — R defined by m™(t) = esssupm(x, t).

xef?

Let m denote the projection 7:R" xR — R given by =(x,7) =t For
BCR"! and r € R we put B, = {x € R": (x,1) € B}. Also we set, for a do-
main {2 and for § > 0 25, = {x € 2: dist(x,092) > é}. .

LEMMA 4.1. Let m be a function in L>*(§2 x (a,b)). Suppose ¢ € R such that

b
/ m™(t)dt > c.

Given & > 0 such that 25 # 0, there exists a finite disjoint set {Q,},.,.n 0f
congruent open cubes in R"™"" with edges of length ¢ and parallel to ‘the co-
ordinates axis satisfying

(1) £<6/2(n+1)), Q, C 255 x [a,b], 1 <r < N.

(2) {m(Qr)} i< <y Is disjoint.
(3) ZlgrSN |m(Q)] =b—a.

4 /LNJQ m(x, t)dxdt > cf".

r=1

Proor. Without lost of generality we assume that ||m|, < 1. For k € N

we define i (t) = esssupm(x, t). Each m} is a measurable function on [a, b].
X€8 4
We have m;(¢) < m7,(t) and _,IL’?O m; (1) = m™(1). So
b

jlirglo ; m7(1)dt > ¢

We fix k € N large enough such that j: my (t)dt > ¢ and k > 1/6. Let
E(n) = {(x,1) € 21 px[a,b] : m(x, 1) > my (1) —n}. Also we set (E(n)’ =
{(x,1) € E : (x,1) is a density point of E, }.

We fix a € (0,1/2). Then we consider for r € the set E(n)(') of the points
in (E(n))? such that |Q N E(n)|/|Q] > 1 — a for each open cube Q containing
(x,t) with diameter less than 1/r and edges parallel to the coordinate axis. It
is easy to see that E(n)" is a measurable set. Also E(n)" C E(n)"”) for r < s
and (E(n)) C Uren E(n)"). Moreover, we have |(E(n)),| # 0 a.e. t € [a,b], s0
(E(m®),|#0 ae telab] and then |m(E(n))|=b—-a So
iMoo [T(E(m)™)| > |7(E(n)?)| = b — a. Then lim,_, [7(E(n)")| = b — a.

Given ¢ >0, we fix r> 2k such that |7(E(n)")|>b—a—e¢, then we
choose ¢, 0 < ¢ < 1/(r(n+1)) such that N¢ =b —a for some N € N. Let
{ti}o<icy be the partition of [a,b] given by ti=a+il, 1 <i<N. For
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1 <i< N, we take a cube Q; with edges parallel to the coordinate axis and
of length ¢, chosen as follows: If the strip R" x (#;_1, ¢;) meets E(n) " we take
0 such that Q;NE(n)" # 0 and 7(Q;) = (1i-1,1). In the other cases, we
choose Q; such that Q; N2, #0. Since E(n )( ) C 21 and diam (Q))
< 1/(2kvn+1) we have Q,g\Ql/(zk)X (t, l,t,) 1<i<N. Let
I={i:1<i<N and (R"x (ti.,;)) N E(n)" # 0} and let I° be its com-
plement. Since |7(E(n)")| > b —a — ¢, I satisfies Yier(ti—ticy) <e.
We have, forie I

/m(x, t)a’xdt:/ m(x, t)dxdt+/ m(x, t)dxdt.
1 O.NE(n) QNE(n)

Now

/ m(x, dxdt > / ni (t)dxdt — |@, 1 E)]
Q.NE(n)

Q.NE(n)

= [z i@ N Em)I - (@),

-1
4

+ [ w0l e =i Egn

> [ j’lu(Q,- A Em)) - 100, e

+ ¢ /tl‘ my (8)dt — et

— 10N EI - 101+ [ mi(0ds = e
> —af™! — et g [ ' myy (1)dt

on the other hand

/ m(x, dxdi] < 100V ES| = Q4] — Qi 1 E()|
Q:ﬂE(ﬂ)‘

<121 = (1 = a)) = a™!
So

/ (x, t)dxdt > E"Z/ my (t)dt — #(I€)ol"™ — #(Inet!
iel '

iel

where #(I) means cardinal of I and, since ¢#(I°) <e
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>

iel

m(x, t)dxdt
Q

S #(It')en-i'l < e

Hence

N
Z / m(x, t)dxdt
i=1 1

> = 200N —et" = >

i€l

L
/ my (t)dt| —
t-1

b
>0 / my (t)dt — 200" ' N — 2e0" — (b — a)¢"

b
#(Dne"t! + 0 f my (t)dt

Finally Z,_ [, m o m(x, t)dxdt > c£" for a,n and e small enough.

REMARK 4.2. By the absolute continuity of the indefinite integral, in
Lemma 4.1, Q) and Qp can be chosen with the same projection on R". Also
for 6 small enough, we can replace each Q; by QF where Q7 is the paralle-
lepiped with the same basis as Q; and such that 7r(Q,-N) = (ti-1 + 6,8 = 9).

Let A4, B two sets, we will denote with AAB their symmetric difference
(A—-B)U(B—A).

REMARK 4.3. Suppose 2. connected, let {Q,-}f\; , be a family of congruent
open cubes in R""! with edges of length ¢ < €/2n and parallel to the co-
ordinates axis satisfying |J;;cy Qi g 2. x [a,b] and J,;<y II(Qi) = [a, b],
then there exists a tube B = {(y(t) + 2,1),0 <t < T} C 2 x [a,b] with
v € C*([0, T)), YV (0) = AY)(T) for dll], and 2y a domain with C* bound-

ary such that |(U, <<y Qi) AB| < 6.

LEMMA 4.4. Let m be a function in L*(2 x R), m(x,t) T-periodic in t,
suppose

T

P(m) = / esssupm(x, t)dt > 0.
0 x€N

Then there exist v € C*(R, £2) a periodic curve in 2 and a domain (2 in R"

with C*® boundary such that the tube B = {(y(t) +z,t):z€ §2), 0 <t < T}

satisfies: B C 2 x [0,T] and [y m(x, t)dxdt > 0.

PrOOF. We can assume ||m||,, < 1. Since {2 has regular boundary, there
exists € > 0 such that (2, is a non empty and connected set. Let {Q;}", be
the family of cubes with edges of length ¢, provided by lemma 4.1 such that
>N Jo, m(x, t)dxdt > £"P(m)/2, for this family and § = 4~'¢"P(m) we con-
sider the tube B, provided by remark 4.3. Then
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l/m(x t)dxdt — /mxtdxdt BA( U Q,)
1<i<N

So [y m(x,t)dxdt > Z, 1 Jo, m(x, )dxdt — 470" P(m) > 47 £"P(m) > 0

<2 < 471" P(m).

THEOREM 4.5. Let m be a T-periodic function in L*(§2 x R).
(a) Suppose P(m) > 0 and (¥,m) < 0. Then there exist A >0, and w > 0,
weC llfT” (82 x R) solution of the periodic Neumann eigenvalue problem

Lw = dmw
ow/0vpoxr = 0.

(b) Suppose P(m)>0. Then there exist A>0, and w>0,
we Cgy 'H s (12 x R) solution of the periodic Dirichlet eigenvalue problem

Lw = dmw

Wigoxr = 0

Proor. First, we treat the case Dirichlet boundary condition. We take
m; € C*(£2 x R), T-periodic with supp(m;) C K; x R for some compact
K; C 2, and such that limj,m; =m in L%(£2x R). We may suppose
|lm||, <1/2. If the tube B provided by lemma 4.4 is a cylinder
C = 2 x [0, T] the function Hy, (A) defined by

(4.1) Luj — dmjui = py, (M)u; on (2 x R

uf € C¥' (2 x R), a0, r =0
u; >0in (2 x R and T- periodic

is such that uf,,,(n) < 0 for some 7 > 0 independent of j. This holds because
from [.m(x,1)dxdt >0 (lemma 4.4), there exists ¢ € C®(£), ¢ >0,
Je#*(x)dx =1 and ¢ >0 such that [.m;(x,t)?(x)dxdt > ¢ >0 for all j.
Also Dia;; € Cr(2 x R), so we can apply Prop. 3.1 in [6], p. 110, to obtain
that the principal eigenvalues A, given by

(4.2) Lyv; = Xj(mj)m;v; in £ x R

V; € Cz'l (ﬁ() X R), V;IBQ()XR = 0
V5 > 0in 2y x R and T-periodic

are uniformly bounded above by 7, and from the concavity of ;zfn/()\) we
obtain y;, (n) <0 for all j. We normalize v{ by [|{|| ;«(c) = 1. From (4.2) and
the compactness of (L+1)"" it follows that there exist (modulo a sub-
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sequence) v = limj_. v{ in L7(C) and p5,(n) = lim;o iy, (1) V¢ is a solution
of a Dirichlet problem in C of the type (4.1) with weigth m‘ = m|c and ei-
genvalue y;, (). We denote v; and v the extensions of v and v respectively,
by zero to f§2xR. From the maximun principle applied to
wi = (L +n)"" (1 + m;)v; (7], p. 43) we obtain

(4.3) n(L+n)""((1+m)v) > v

Let S, : ¥ — Y be the operator defined by S,u = n(L +n)~'((1 + m)u), and
let p, u, be its spectral radius and a positive eigenfunction associated re-
spectively. So, by (4.3) and the Krein Rutman theorem, p > 1. Since
Syuy = pu, we have (L+A"(1—m)) 'u, = (2070~ n)_lu,,, where
X~ = p~!n and s0 pum(A\~) =np~' — 7 < 0. Also un(0) > 0. Then we have a
solution u? € W, AP > 0 of the Dirichlet problem

L(u?) = Mmu® in 2 x R
uP > 0in £ x R and T-periodic, ulli)me =0.

If the tube B is not a cylinder, by the change of coordinates
iy, 1) = ®(x,t) = (x — ¥(t),t) we have a similar problem to (4.1) in a cylinder
C with a new operator L* and a new weigth m® with [.m®(x, t)dxdt > 0.
We denote v; and v, defined on B, extended by 0 to {2 x R corresponding to
the functions v{ and v* defined in the cylinder C = ®(B) = 2 x R. So we
obtain (4.3) on £2 x R and we get the solution #? in {2 x R. We may remark
that py, (A) < py, (n) (the supra index N,D refers to the Neumann or Di-
richlet condition). So we have u,’xj(n) < 0 for all j. This gives that p2(n) <0,
but 4 (0) = 0. Now the condition (¥,m) < 0 gives duy /dX\,— >0 which
gives uN(e) > 0 for small enough e > 0. Existence and uniqueness of the
principal eigenvalues A? > AV > 0 follows from the concavity of u¥()\) and
TMONE

THEOREM 4.6. Under the hypothesis of the theorem 4.1 the principal eigen-
value is an M-simple eigenvalue.

Proor. Follows from remark 3.11.

REMARK 4.7. Since for a T-periodic function m € L*(§2 x R), p is real
analytic and concave, with the same proof give for the case
m e C/2(2 x R), 8 > 0 (see , Theorems 16.1 and 16.3) the following results
holds.

Let m be a T-periodic function, m € L*(f2x R) and let m(t) =
essinf m(x, t), m(t) = esssupm(x, t). Suppose that there exists a positive ei-
genvalue A with a positive eigenfunction u) € Dom(L) associated, solution of
the periodic parabolic boundary eigenvalue problem Lu = Amu, Bu =0.
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Then if the boundary condition is the Dirichlet condition we have P(m) > 0,
and for the Neumann condition we have

(1) m # m in L>(R) implies P(m) > 0 and (¥, m) < 0.
(2) m =m in L°(R) (i.e. m is function of ¢ alone) implies

T
/ m(t)dt = 0.
0
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