ISOMORPHISMS OF HILBERT C*-MODULES AND *-ISOMORPHISMS OF RELATED OPERATOR C*-ALGEBRAS ## MICHAEL FRANK ## Abstract. Let \mathscr{M} be a Banach C*-module over a C*-algebra A carrying two A-valued inner products $\langle ., . \rangle_1$, $\langle ., . \rangle_2$ which induce norms on \mathscr{M} equivalent to the given one. Then the appropriate unital C*-algebras of adjointable bounded A-linear operators on the Hilbert A-modules $\{\mathscr{M}, \langle ., . \rangle_1\}$ and $\{\mathscr{M}, \langle ., . \rangle_2\}$ are shown to be *-isomorphic if and only if there exists a bounded A-linear isomorphism S of these two Hilbert A-modules satisfying the identity $\langle ., . \rangle_2 \equiv \langle S(.), S(.) \rangle_1$. This result extends other equivalent descriptions due to L. G. Brown, H. Lin and E. C. Lance. An example of two non-isomorphic Hilbert C*-modules with *-isomorphic C*-algebras of "compact"/adjointable bounded module operators is indicated. Investigations in operator and C*-theory make often use of C*-modules as a tool for proving, especially of Banach and Hilbert C*-modules. Impressing examples of such applications are G. G. Kasparov's approach to K- and KK-theory of C*-algebras [7,18] or the investigations of M. Baillet, Y. Denizeau and J.-F. Havet [1] and of Y. Watatani [17] on (normal) conditional expectations of finite index on W*-algebras and C*-algebras. In addition, the theory of Hilbert C*-modules is interesting in its own. Our standard sources of reference to Hilbert C*-module theory are the papers [13,9,5,6], chapters in [7,18] and the book of E. C. Lance [11]. We make the convention that all C*-modules of the present paper are left modules by definition. A pre-Hilbert A-module over a C*-algebra A is an A-module \mathcal{M} equipped with an A-valued mapping $\langle .,. \rangle : \mathcal{M} \times \mathcal{M} \to A$ which is A-linear in the first argument and has the properties: $$\langle x,y\rangle = \langle y,x\rangle^* \ , \ \langle x,x\rangle \geq 0 \quad \text{with equality iff} \quad x=0 \, .$$ The mapping $\langle .,. \rangle$ is called *the A-valued inner product on M*. A pre-Hilbert A-module $\{M, \langle .,. \rangle\}$ is *Hilbert* if and only if it is complete with respect to the norm $\|.\| = \|\langle .,. \rangle\|_A^{1/2}$. We always assume that the linear structures of A and M are compatible. One of the key problems of Hilbert C*-module theory is the question of isomorphism of Hilbert C*-modules. First of all, they can be isomorphic as Banach A-modules. But there is another natural definition: Two Hilbert Amodules $\{\mathcal{M}_1, \langle ., . \rangle_1\}$, $\{\mathcal{M}_2, \langle ., . \rangle_2\}$ over a fixed C*-algebra A are isomorphic as Hilbert C*-modules if and only if there exists a bijective bounded A-linear mapping $S: \mathcal{M}_1 \to \mathcal{M}_2$ such that the identity $\langle ., . \rangle_1 \equiv \langle S(.), S(.) \rangle_2$ is valid on $\mathcal{M}_1 \times \mathcal{M}_1$. In 1985 L. G. Brown presented two examples of Hilbert C*modules which are isomorphic as Banach C*-modules but which are nonisomorphic as Hilbert C*-modules, cf. [2,12,6]. This result was very surprising since Hilbert space theory, the classical investigations on Hilbert C*modules like [13,9], G. G. Kasparov's approach to KK-theory of C*-algebras relying on countably generated Hilbert C*-modules and other wellknown investigations in this field did not give any indication of such a serious obstacle in the general theory of Hilbert C*-modules. L. G. Brown obtained his examples from the theory of different kinds of multipliers of C*algebras without identity. Furthermore, making use of the results of the Ph.D. thesis of Nien-Tsu Shen [15] he proved the following: For a Banach C*-module \mathcal{M} over a C*-algebra A carrying two A-valued inner products $\langle .,. \rangle_1$, $\langle .,. \rangle_2$ which induce norms on \mathcal{M} equivalent to the given one the appropriate C*-algebras of "compact" bounded A-linear operators on the Hilbert A-modules $\{\mathcal{M}, \langle ., . \rangle_1\}$ and $\{\mathcal{M}, \langle ., . \rangle_2\}$ are *-isomorphic if and only if there exists a bounded A-linear isomorphism S of these two Hilbert A-modules satisfying $\langle .,. \rangle_2 \equiv \langle S(.), S(.) \rangle_1$, cf. [2, Thm. 4.2, Prop. 4.4] together with [6, Prop. 2.3], ([4]). By definition, the set of "compact" operators $K_A(\mathcal{M})$ on a Hilbert A-module $\{\mathcal{M}, \langle ., . \rangle\}$ is defined as the norm-closure of the set $K_{\mathcal{A}}^{0}(\mathcal{M})$ of all finite linear combinations of the operators $$\{\theta_{x,y}: \theta_{x,y}(z) = \langle z, x \rangle y \text{ for every } x, y, z \in \mathcal{M}\}.$$ It is a C*-subalgebra and a two-sided ideal of $\operatorname{End}_A^*(\mathcal{M})$, the set of all adjointable bounded A-linear operators on $\{\mathcal{M}, \langle ., . \rangle\}$, what is the multiplier C*-algebra of $K_A(\mathcal{M})$ by [9, Thm. 1]. Note, that in difference to the well-known situation for Hilbert spaces, the properties of an operator to be "compact" or to possess an adjoint depend heavily on the choice of the A-valued inner product on \mathcal{M} . These properties are not invariant even up to isomorphic Hilbert structures on \mathcal{M} , in general, cf. [6]. We make the convention that operators T which are "compact"/adjointable with respect to some A-valued inner product $\langle ., . \rangle_i$ will be marked $T^{(i)}$ to note where this property arises from. The same will be done for sets of such operators. In 1994 E. C. Lance showed that two Hilbert C*-modules are isomorphic as Hilbert C*-modules if and only if they are isometrically isomorphic as Banach C*-modules ([10]) opening the geometrical background of this func- tional-analytical problem and extending a central result for C*-algebras: C*-algebras are isometrically multiplicatively isomorphic if and only if they are *-isomorphic, [8, Thm. 7, Lemma 8]. At the contrary, non-isomorphic Hilbert structures on a given Hilbert A-module \mathcal{M} over a C*-algebra A can not appear at all if \mathcal{M} is self-dual, i. e. every bounded module map $r: \mathcal{M} \to A$ is of the form $\langle ., a_r \rangle$ for some element $a_r \in \mathcal{M}$ (cf. [5, Prop. 2.2,Cor. 2.3]), or if A is unital and \mathcal{M} is countably generated, i. e. there exists a countably set of generators inside \mathcal{M} such that the set of all finite A-linear combinations of generators is norm-dense in \mathcal{M} (cf. [2, Cor. 4.8, Thm. 4.9] together with [7, Cor. 1.1.25] and [6, Prop. 2.3]). Now, we come to the goal of the present paper: Whether for a Banach C*-module \mathcal{M} over a C*-algebra A carrying two A-valued inner products $\langle \cdot, \cdot \rangle_1$, $\langle \cdot, \cdot \rangle_2$ which induce norms on \mathcal{M} equivalent to the given one the appropriate C*-algebras $\operatorname{End}_A^{(1,*)}(\mathcal{M})$ and $\operatorname{End}_A^{(2,*)}(\mathcal{M})$ of all adjointable bounded A-linear operators on \mathcal{M} are *-isomorphic, or not? This question is non-trivial since even non-*-isomorphic non-unital C*-algebras can possess a common multiplier C*-algebra: Consider the commutative AW*-algebra $A = L^{\infty}([0,1]) \oplus D([0,1])$, where $L^{\infty}([0,1])$ is the W*-algebra of all Lebesgue-measurable, essentially bounded functions on [0,1] factorized by the subset of those functions which equal to zero outside a set of measure zero, and where D([0,1]) is the Dixmier algebra of all Borel functions on [0,1] factorized by the subset of all those functions which equal to zero outside a meager set. By the Gel'fand theorem the commutative AW*-algebra A can be described as the set of continuous functions on the disjoint union of two compact Hausdorff spaces: K_1 -- a hyperstonean one, K_2 -- a stonean one without any non-trivial normal measure and with a dense subset of first category, (cf. [16, III,Thm. 1.17]). Both these compact spaces possess accumulation points $x_1 \in K_1$, $x_2 \in K_2$. Set $$B_1 = \{ f \in A : f(x_1) = 0 \}$$, $B_2 = \{ f \in A : f(x_2) = 0 \}$. The sets B_1 and B_2 are two-sided norm-closed ideals of A with trivial orthogonal complements. Since A is an AW*-algebra their multiplier C*-algebras are injectively embedded in A as C*-subalgebras and coincide with their sets of two-sided multipliers estimated with respect to A, [14]. Consequently, $M(B_1) \equiv M(B_2) \equiv A$, whereas B_1 is not *-isomorphic to B_2 by the Stone-Weierstraß theorem and by the very different properties of the compact spaces K_1 , K_2 . (Note, that there are topological reasons for this phenomenon which are of separate interest.) At the contrary, if one of two non-unital C*-algebras with *-isomorphic multiplier C*-algebras is separable then the initial C*-algebras are *-iso- morphic by [3], what fits with the result on countably generated Hilbert C*-modules by [7, Cor. 1.1.25]. That is, additional arguments are needed to describe the relation between the multiplier C*-algebras of non-*-isomorphic C*-algebras of "compact" operators on some Banach C*-modules carrying non-isomorphic C*-valued inner products. One quickly realizes that the techniques of multiplier theory are not suitable to shed some more light on this general situation. One has to turn back to C*-theory and to the properties of *-isomorphisms, as well as to the theory of Hilbert C*-modules. THEOREM. Let A be a C*-algebra and \mathcal{M} be a Banach A-module carrying two A-valued inner products $\langle .,. \rangle_1$, $\langle .,. \rangle_2$ which induce norms equivalent to the given one. Then the following conditions are equivalent: - (i) The Hilbert A-modules $\{\mathcal{M}, \langle ., . \rangle_1\}$ and $\{\mathcal{M}, \langle ., . \rangle_2\}$ are isomorphic as Hilbert C*-modules. - (ii) The Hilbert A-modules $\{\mathcal{M}, \langle .,. \rangle_1\}$ and $\{\mathcal{M}, \langle .,. \rangle_2\}$ are isometrically isomorphic as Banach A-modules. - (iii) The C*-algebras $K_A^{(1)}(\mathcal{M})$ and $K_A^{(2)}(\mathcal{M})$ of all "compact" bounded A-linear operators on both these Hilbert C*-modules, respectively, are *-isomorphic. - (iv) The unital C^* -algebras $\operatorname{End}_A^{(1,*)}(\mathcal{M})$ and $\operatorname{End}_A^{(2,*)}(\mathcal{M})$ of all adjointable bounded A-linear operators on both these Hilbert C^* -modules, respectively, are *-isomorphic. Further equivalent conditions in terms of positive invertible quasi-multipliers of $K_A^{(1)}(\mathcal{M})$ can be found in [6]. PROOF. The equivalence of (i) and (ii) was shown by E. C. Lance [10], and the equivalence of (i) and (iii) turns out from a result for C*-algebras of L. G. Brown [2, Thm. 4.2, Prop. 4.4] in combination with [6, Prop. 2.3]. Referring to G. G. Kasparov [9, Thm. 1] the implication (iii)→(iv) yields naturally. Now, suppose the unital C*-algebras $\operatorname{End}_A^{(1,*)}(\mathcal{M})$ and $\operatorname{End}_A^{(2,*)}(\mathcal{M})$ are *-isomorphic. Denote this *-isomorphism by ω . One quickly checks that the formula $$x \in \mathcal{M} \to \langle x, x \rangle_{1, O_{\mathcal{D}}} = \theta_{x, x}^{(1)} \in \mathrm{K}_{\mathcal{A}}^{(1)}(\mathcal{M})$$ defines a $K_A^{(1)}(\mathcal{M})$ -valued inner product on the Hilbert A-module \mathcal{M} regarding it as a right $K_A^{(1)}(\mathcal{M})$ -module. Moreover, the set $\{K(x): x \in \mathcal{M}, K \in K_A^{(1)}(\mathcal{M})\}$ is norm-dense inside \mathcal{M} since the limit equality $$x = \|.\|_{\mathcal{M}} - \lim_{n \to \infty} (\theta_{x,x}^{(1)}(\theta_{x,x}^{(1)} + n^{-1})^{-1})(x)$$ holds for every $x \in \mathcal{M}$. As a first step we consider the intersection of the two C*-subalgebras and two-sided ideals $\omega(K_A^{(1)}(\mathscr{M}))$ and $K_A^{(2)}(\mathscr{M})$ inside the unital C*-algebra $\operatorname{End}_A^{(2,*)}(\mathscr{M})$. The intersection of them is a C*-subalgebra and two-sided ideal of $\operatorname{End}_A^{(2,*)}(\mathscr{M})$ again. It contains the operators $$\theta_{x,y}^{(2)} \cdot \omega(\theta_{z,t}^{(1)}) = \theta_{\omega(\theta_{z,t}^{(1)})^*(x),y}^{(2)} = \theta_{\omega(\theta_{t,z}^{(1)})(x),y}^{(2)}$$ for every $x,y,z,t\in\mathcal{M}$. Since the set of all finite linear combinations of special operators $\{\theta_{z,t}^{(1)}:z,t\in\mathcal{M}\}$ is norm-dense inside $K_A^{(1)}(\mathcal{M})$ by definition the intersection of $\omega(K_A^{(1)}(\mathcal{M}))$ and $K_A^{(2)}(\mathcal{M})$ contains the set $$\{\theta^{(2)}_{\omega(K^{(1)})(x),y}: K^{(1)} \in \mathcal{K}^{(1)}_{A}(\mathcal{M}), x, y \in \mathcal{M}\}.$$ Because of the limit equality $$x = \|.\|_{\mathscr{M}} - \lim_{n \to \infty} \omega(\theta_{x,x}^{(1)}(\theta_{x,x}^{(1)} + n^{-1})^{-1})(x)$$ = $\|.\|_{\mathscr{M}} - \lim_{n \to \infty} \omega(\theta_{x,x}^{(1)})\omega((\theta_{x,x}(1) + n^{-1})^{-1})(x)$ the set $\{\omega(K^{(1)})(x): K^{(1)} \in \mathrm{K}_A^{(1)}(\mathcal{M}), x \in \mathcal{M}\}$ is norm-dense inside \mathcal{M} . Consequently, the intersection of $\omega(\mathrm{K}_A^{(1)}(\mathcal{M}))$ and $\mathrm{K}_A^{(2)}(\mathcal{M})$ inside the unital C*-algebra $\mathrm{End}_A^{(2,*)}(\mathcal{M})$ contains the set of "compact" operators $\{\theta_{x,y}^{(2)}: x,y \in \mathcal{M}\}$ generating one of the intersecting sets, $\mathrm{K}_A^{(2)}(\mathcal{M})$, completely, and the inclusion relation $\mathrm{K}_A^{(2)}(\mathcal{M}) \subseteq \omega(\mathrm{K}_A^{(1)}(\mathcal{M}))$ holds. Secondly, by the symmetry of the situation and of the arguments the inclusion relation $K_A^{(1)}(\mathcal{M}) \subseteq \omega^{-1}(K_A^{(2)}(\mathcal{M}))$ holds, too, inside the unital C*-algebra $\operatorname{End}_A^{(1,*)}(\mathcal{M})$. Both inclusions together prove that ω realizes a *-isomorphism of the C*-algebras $K_A^{(1)}(\mathcal{M})$ and $K_A^{(2)}(\mathcal{M})$ automatically, what implies (iii) and hence, (i). Whether the *-isomorphism of the C*-algebras of "compact" bounded A-linear operators of two different Hilbert A-modules $\mathcal M$ and $\mathcal N$ over some C*-algebras A implies their isomorphism as Hilbert C*-modules, or not? The answer is negative, even in the quite well-behaved cases. Counterexamples appear because of nontrivial K_0 -groups of A, for instance. Let A be the hyperfinite type II₁ W*-factor. Set $\mathcal M=A$ and $\mathcal N=A^2$ with the usual A-valued inner products. Both these Hilbert A-modules are self-dual and finitely generated. Obviously, $K_A(\mathcal M)$ and $K_A(\mathcal N)$ are *-isomorphic to A as C*-algebras. Nevertheless, $\mathcal M$ and $\mathcal N$ are not isomorphic as Banach A-modules because of the non-existence of non-unitary isometries for the identity caused by the existence of a faithful trace functional on A. The K_0 -group of A equals R, i. e., it is non-trivial, and $A \cong A \otimes M_2(C)$. In general, one could search for some special unital C*-algebra A with non-trivial K_0 -group, a natural number $n \ge 1$ and two projections $p, q \in M_n(A)$ such that for every $N \ge n$ the finitely generated Hilbert A-modules $A^N p$ and $A^N q$ are non-isomorphic (i. e., $[p] \ne [q] \in K_0(A)$), but the C*-algebras $pM_n(A)p$ and $qM_n(A)q$ are *-isomorphic. Closing, we pose the problem whether for a Banach C*-module \mathcal{M} over a C*-algebra A carrying two A-valued inner products $\langle .,. \rangle_1$, $\langle .,. \rangle_2$ which induce norms on \mathcal{M} equivalent to the given one the appropriate Banach algebras of all (not necessarily adjointable) bounded A-linear operators on \mathcal{M} are isometrically multiplicatively isomorphic, or not, especially in the case of non-isomorphic Hilbert structures. Those properties of all these kinds of operator algebras which are preserved switching from one A-valued inner product on \mathcal{M} to another have to be investigated in the future extending results for the "compact" case of [4,6]. ACKNOWLEDGEMENT. The author thanks the referee for his valuable comments which led to an improved motivating example. The counter-example was suggested by V.M. Manuilov during discussions. ## REFERENCES - M. Baillet, Y. Denizeau, J.-F. Havet, Indice d'une esperance conditionelle, Compositio Math. 66(1988), 199--236. - L. G. Brown, Close hereditary C*-subalgebras and the structure of quasi-multipliers, MSRI preprint # 11211--85, Purdue University, West Lafayette, USA, 1985. - L. G. Brown, Determination of A from M(A) and related matters, C. R. Math. Acad. Sci., Soc. R. Canada 10(1988), 273--278. - L. G. Brown, J. A. Mingo, Nien-Tsu Shen, Quasi-multipliers and embeddings of Hilbert C*bimodules, Canad. J. Math. 46(1994), 1150--1174. - 5. M. Frank, Self-duality and C*-reflexivity of Hilbert C*-modules, Z. Anal. Anwendungen 9(1990), 165--176. - M. Frank, Geometrical aspects of Hilbert C*-modules, preprint 22/1993, University of Copenhagen, Denmark, 1993. - K. K. Jensen, K. Thomsen, Elements of KK-Theory, (Series: Mathematics: Theory & Applications), Birkhäuser, Boston-Basel-Berlin, 1991. - 8. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54(1951), 325--338. - 9. G. G. Kasparov, Hilbert C*-modules: The theorems of Stinespring and Voiculescu, J. Operator Theory 4(1980), 133--150. - E. C. Lance, Unitary operators on Hilbert C*-modules, Bull. London Math. Soc. 26(1994), 363--366. - 11. E. C. Lance, Hilbert C*-modules a toolkit for operator algebraists, London Math. Soc. Lecture Note Ser. 210, 1995. - 12. H. Lin, Injective Hilbert C*-modules, Pacific J. Math. 154(1992), 131--164. - 13. W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182(1973), 443-468 - 14. G. K. Pedersen, Multipliers in AW*-algebras, Math. Z. 187(1984), 23--24. - Nien-Tsu Shen, Embeddings of Hilbert bimodules, Ph.D., Purdue University, West Lafayette, USA, 1982. - 16. M. Takesaki, Theory of Operator Algebras, I, Springer-Verlag, New York, 1979. - 17. Y. Watatani, Index for C*-subalgebras, Mem. Amer. Math. Soc. 424(1990). - 18. N. E. Wegge-Olsen, K-theory and C*-algebras a friendly approach, Oxford University Press, Oxford, 1993. UNIVERSITAT LEIPZIG FB MATHEMATIK/INFORMATIK MATHEMATISCHES INSTITUT AUGUSTUSPLATZ 10 D-04109 LEIPZIG email: frank@mathematik.uni-leipzig.de