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DISCRETE GROUP ACTIONS AND THE MINIMAL
PRIMAL IDEAL SPACE

FERDINAND BECKHOFF

Abstract.

In this paper the minimal primal ideal space of a C*-algebra 4 and of a crossed product C*-al-
gebra 4 x, G is investigated. The question is, under what circumstances is it possible to tell
whether Min-Primal(4 x, G) is closed in the space of all proper two-sided closed ideals with the
Fell-topology? Positive answers are achieved in a certain class of liminal C*-algebras with group
actions that are implemented by essentially inner unitaries.

1. Introduction.

Given a C*-algebra 4 and a group action a : G — Aut(4) it is in general a
difficult task to describe the ideal structure of the crossed product C*-alge-
bra 4 x, G. A part of the main result of [OR] states if that if 4 is a con-
tinuous trace C*-algebra and G an abelian locally compact group acting
pointwise inner on A then the space Prim(4 x, G) of the primitive ideals in
the crossed product is again a Hausdorff space. Among other things it is
shown that if = x U is an irreducible representation of 4 X, G, then 7 is an
irreducible representation of 4, and the map

Res : Prim(4 x, G) — Prim(4), ker(m x U) — ker(n),

is a well-defined continuous G-map where the dual group G acts as usual on
A %, G (hence on Prim(4 x4 G)) and trivially on Prim(4).

Pointwise inner automorphisms 3 are 7-inner [El], and it can be shown,
that such automorphisms on type 1 C*-algebras are essentially inner, i.e.
there is an essential ideal I C 4 and a unitary element u € M(I)(M(I) de-
notes the multiplier algebra; recall / C 4 C M(A4) C M(I) in a natural way)
such that 3(x) = uxu* for all x € 4.

In this paper we consider essentially inner group actions (i.e. all auto-
morphisms «; are implemented by a unitary in M(I), where I C A4 is an es-
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sential ideal) of discrete groups on certain classes of liminal C*-algebras
which do not necessarily have a Hausdorff primitive ideal space.

Let Id(A4) be the space of all closed and two-sided ideals of the C*-algebra
A. If G is a discrete group acting on 4 C 4 X, G identifying a € 4 with
a- 6 € A X4 G, 0 being the identity element in G, then

Res : Id(4 xo G) — 1d(4), I~1N 4,

defines a map between ideal spaces. Each ideal is the kernel of some re-
presentation 7 x U (integrated form of some covariant representation) and
we have 7 x U|, = 7, hence Res(ker(w x U)) = ker(m). So this generalizes
the above mentioned Res.

The first difficulty arrising is the observation that Res in general neither
maps Prim(4 x, G) to Prim(4) nor is Prim(4) contained in the image of
Res. Things are different, if Prim(4) is replaced by Min-Primal(A4), the space
of minimal primal ideals (see [A] or next section). An important property
that a C*-algebra can have is the closedness of Min-Primal(A4) with respect
to the Fell-topology in 1d(4)A4} (see [AS1]). The main question in this paper
is:

What can be said about the space Min-Primal(4 x, G) in terms of A, G and
a? Under what circumstances has Min-Primal(4 X, G) the above mentioned
closedness property?

In the case of a continuous trace the restriction map Res between the
spaces of primitive ideals (which coincide with the minimal primal ideals) is
always open since it is a G-map (see [OR] or [PR] for this). In the context
considered here the openness of Res as a map between space of minimal
primal ideals turns out to be equivalent to the G-map property, and this is
not necessarily the case. But if this is the case and Min-Primal(4) is closed
then so is Min-Primal(4 x4 G).

The minimal primal ideal space of the crossed product algebra is not al-
ways closed (even if Min-Primal(A4) is). But there is a stronger property than
the closedness of the primal ideal space (called (EM)), and this property will
be inherited from 4 to 4 x, G under suitable assumptions. As a consequence
we have a sufficient condition for the minimal primal ideal space to be
closed.

2. Primal Ideals.

Let A be a C*-algebra. Id(A4) carries at least two useful topologies:
1) The Jacobson-topology or weak topology 7,,. A basis of 7, is given by
the sets

UL,... L) ={Ie€ld: I3 1,....15I}
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where Iy,...,I, € Id(4). The restriction of 7, to Prim(A4) is the Jacobson-
topology usually considered on the spectrum Prim(A4) ([Dx2], 3.1). The set
of primal ideals, denoted by Primal(A4), is defined to be the 7,-closure of
Prim(A4) in Id(4). If I< A (i.e. I is a closed and two-sided ideal in 4), then
the following are equivalent

(1) [Iis primal

(i) If neN, 5L,...,I,a4, I1n...NI,={0}, then I; CI for some
je{l,...,n}.

(iii) There is a net (P;) in Prim(4) such that Nlm((P;)) C I (here
lim((P;)) denotes the set of limits of the net).

An application of Zorn’s lemma shows, that each primal ideal contains a
minimal primal ideal; the set of all these ideals will be denoted by Min-
Primal(A4). A good reference for all this is [A].

2) The Fell-topology or strong topology 7y is the weakest topology mak-
ing continuous all maps

Id(4) - R, I~ ||x+ 1], x € A.

This topology has been introduced by Fell [F1] describing a topological
base. 7, is always Hausdorff and compact. 7,, and 7, coincide when restricted
to Min-Primal(4) ([A], cor, 4.3). This makes Min-Primal(4) an interesting
space. It can be regarded as a substitute for Prim(4) if (Prim(4),,) is not
Hausdorff, and in fact (Prim(4),7,) is Hausdorff iff Prim(4) =
Min-Primal(4). Applications of the minimal primal ideal space in this sense
can be found in [Bel], [Be2], [Be3], [Be4].

If we translate ([Sch], Th. 2.2) to ideals, then we get

2.1. PrROPOSITION Let (I;) be a net in1d(A4) \ {A} and let I; — P € Prim(A4)
with respect to T,,. T he2 there are a subnet (I;,) and primitive ideals P;, D I
for all k such that Py — P with respect to .

Using this together with ([Dx2], 3.3.) or by the discussion in ([AS2], page
84) we get I, — I with respect to 7, iff ||x+ || < lim inf;||x; 4 I|| for all
x € A.. This useful characterization again shows 7, C 7.

Now let us characterize minimal primal ideals. The equivalence (i) < (iv)
is related to ([A], prop. 4.5).

2.2. Proposition. For an ideal I € Primal(A) the following are equivalent:

(1) Iis a minimal primal ideal.

(ii) id: (Primal(4),7,) — (Primal(A4), 7;) is continuous at 1.

(iii) If the net (P;) in Prim(A) is 7,-convergent to I then it also is Ty-con-
vergent to I.

(iv) I € sep(Primal(4),7,)), i.e. I is a separated point in the topological
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space (Primal(4),r,) (i.e.: if J € Primal(A),J 2 I then there are disjoint open
sets Uy and U, in Primal(A) such that I € Uy,J € U,).

Proor. “(i) & (ii)” is ([A], 4.2) and ““(ii) = (iii)” is trivial.

“(ili) = (1)”: Let Iy C I be a minimal primal ideal. Since Primal(A4) is the
Tw-closure of Prim(4) there is a net (P;) of primitive ideals converging to I,
and by (iil) we know that this is 7;-convergence. So we have for all x € 4

[Pe + 1| = lim|]x + Pi]| > ||x + L.

This implies I C Iy, hence I = I is minimal primal.

In order to prove “(ii) = (iv)” let J be a primal ideal not containing 1.
Then there is an x in J\J and e:=}||x+J|[>0. The set
U, = {P € Primal(4);||x + P|| > €} is open and contains J. By (ii) there is
an open neighbourhood U; of I such that ||x + P|| < € for all P € Uj.

“(iv) = (ii)”’: Let (I;) be a net in Primal(4) which is 7,-convergent to I.
We must show that each subset (;) has a subnet 7;-convergent to /. By 7;-
compactness there is 7;-convergent subnet /; — J and we have

llx + JII = lim [x + &, || > liminf ||x + L] > [|x +1]]

for all elements x € A4, hence J C I. So we must show I C J. But if this were
not the case, then by (iv) we would have two disjoint open subsets U; and U,
containing I and J respectively, and this is impossible since /; — J and
I;, — I with respect to 7,.

Let us say that 4 has property (E) if all irreducible representations of A
are finite dimensional, and that A4 has property (Eb) if the dimensions of the
irreducible representations are bounded by a fixed finite constant. If A4 is
liminal and P< A is a primitive ideal then we can define dim(P) to be the
dimension of any irreducible representation with kernel P. Moreover we may
extend the dim-function to Id(4) by the formula

dim(I):= ) dim(P).

Pesupp(])

The next lemma will have the consequence, that dim(7) is finite for all
primal ideals if 4 has the property (Eb).

2.3. LEMMA. Let A be a liminal C*-algebra and let (P;) be a net in Prim(A4).
If P; 2 I, then dim(I) < lim sup; dim(Py).

Proor. Since dim(4) = 0 we may assume I # A4. It is enough to consider
the case lim sup; dim(P;) < oo and restricting to a subnet we may assume
dim(P;) = n for all j. Let P; = ker(m;) for some irreducible representation
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mj: A — M, = L(C"). Moreover let ¢, be the pth basic vector in C" and de-
fine

f;’»%j = <7T](')ep?eq> p$q= 17""n

which are elements of the unit ball of 4. By Alaoglu’s theorem we can as-

sume that (f,, ;) is w*-convergent for all p an ¢ in {1,...,n}, and by linearity
we get

Vaec A:VY¢ne C": 3lim(m;(a),n).
J
In M, the weak operator topology and the norm-topology coincide, hence
Va € A:3o(a) :=limmj(a) € M,.

Obviously 0 : A — M, is a representation which is a finite sum of irreducible
representations (finite dimensional case), say c = o1 @ ... @ oy, and we have
S i dim(ker(ox)) < n. Therefore it is sufficient to prove that
supp(Z) C {ker(o1),...,ker(om)}.

Assume the contrary and consider Q € supp(/) which is different from the
ideals ker(ox). As primitive ideals are maximal and prime, there must be an
element a in (), ker(ox)\ Q. Of course we have that (P;) ,,-converges to Q
and therefore we conclude

0<la+Qll < lim infla+ 7| = lim inf||;(a)]|
J

= llo(@)ll = max |lox(@|| =0.

This contradiction finishes the proof.
We conclude that if 4 is liminal then
Prim(4), := {P € Prim(4);dim(P) < n}

is closed in Prim(A4). This is true for all C*-algebras but requires other
techniques ([Dx2}], 3.6).

2.4. PROPOSITION. Let A be a C*-algebra with property (E). Then the set
int(sep(prim(A4), 7)) is 7,-dense in Prim(A4) (hence in Primal(A4)) and is con-
tained and 7,-dense in Min-Primal(4).

PrOOF. Let us show , that each non-empty relatively 7,-open subset U in
the primitive ideal space contains a non-empty relatively 7,-open subset W
which entirely consists of separated points. This will prove the 7,-density.

Since U is a Baire space ([Dx2], 3.4.13) and U = J,-, U NPrim(4),
is countable union of closed sets, there is an integer »n such that
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int (UNPrim(4)) = U Nint(Prim(4),) is non-empty. If we choose n mini-
mal with this property, then

U Nint(Prim(4),) ¢ Prim(4),_,
= W;= U Nint(Prim(4),)\Prim(4),_, # 0,

which is an open set in Prim(4). We want to show that all P € W are sepa-
rated. Let R be a minimal primal ideal and let (P;) be a net of primitive
ideals which converges to R. Then also P; — P(7,), hence P; € W for large j
and this implies dim(P;) =n for large j. From lemma 2.3 we know
> oesupp(r) 4im(Q) < n. Since P is in supp(R) and dim(P) = n we must have
supp(R) = {P}, i.e. P=R. So P is minimal primal, hence separated in
(Primal(4), ,,) by prop. 2.2, in particular separated in Prim(A). This proves
the asserted 7,,-density.

First int(sep(Prim(4))) C min-Primal(4) is clear by 2.2. Moreover we
have

Min-Primal(4) C Primal(4) = int(sep(Prim(4))) "

So for all minimal primal ideals I there is a net in int(sep(Prim(4))) con-
verging to I, and this is automatically 7,-convergence by prop. 2.2. This
completes the proof.

This generalizes ([Dx1], prop. 2) to the non-separable case.

3, Automorphism groups and invariant ideals.

In this paper we consider automorphism groups (i.e. group actions)
o : G — Aut(A4) with the following property:

(Al): There is an essential ideal I, <A and a group homomorphism
u:G— U(M(I,)) such that a,(x) = usxu} for all x € 4 and s € G. (Recall
that all groups are supposed to be discrete, so there is no continuity condi-
tion for u. U(M(1,)) stands for the unitary group of the multiplier algebra
M(L)).

Obviously (A1) implies

(A2): There is an essential ideal I, <4 and a map u: G — U(M(I,)) such
that a,(x) = u;xu} for all x € 4 for all s € G.

3.1. REMARK. In the situation (A2) all ideals contained in 1, and all primi-
tive ideals not containing I, are a-invariant.

Proor. For all ideals I<l, we have o5(I)= a,(I®) C uIlou’ C
I,II, c I. To prove the second assertion let P be a primitive ideal not con-
taining I,. Say P = ker(m) for an irreducible representation 7. Then 0 # =|;
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may be extended uniquely to an irreducible representation ;r—l_,:_of M(1,) and
for all x € P we conclude (as(x)) = m(usxu;) = |, (us)m(x)7|; (4;) = 0.

3.2. REMARK. If(4,G, ) is a C*-dynamical system such that « satisfies
(A1) then there are an essential ideal I, <4 and a map u: G — U(M(1,))
such that for all irreducible representations w: 4 — L(H) with ker(w) 2 I,
the pair (, ;ﬂ: o u) is a covariant representation of (4, G, ).

This technical version will be helpful later. We will not make use of the
simple fact that the converse also holds.

Let (4, G, a) be a C*-dynamical system, G a discrete group. Let
K(G,A) :={x: G — A;supp(x) is finite}

The following facts are well known (see [G], [T] or the early paper [ZM]):

If I < A4 is a-invariant then the closure K(G,I) of K(G,I) is a closed two-
sided ideal in 4 x, G which is generated by I (observe I C 4 x, G because G
is discrete). We have Res(K(G,I)) = I and the image of Res is precisely the
set Id,(A4) of a-invariant ideals. Moreover if I € Id,(4) and J <4 x, G then
Jj D K(G,Res(J)) and J D K(G,I) & Res(J) D I.

If G is amenable then the map Id,(4) — Id(4 X, G), I — K(G,I) is con-
tinuous with respect to the 7,-topologies. Let us prove that it is also con-
tinuous with respect to 7;.

Let I; — I in (Ido(4),7s) and let (I;) be any subnet such that (K(G, 1))
has a 7,-limit L. We already know K(G,I;) — K(G,I) with respect to the
weak topology, and this implies L C K(G,I). Conversely since Res is -
continuous and 7, is Hausdorff, we have

L D Res(L) = 7, — lim Res(K(G, [;)) = 75 — li}m I =1
j

Therefore L D K(G,I). So K(G,I) is the only 7;-accumulation point of the

net (K(G, I;)).

3.3. PROPOSITION. Let G be amenable and let I < A be an essential and -
invariant ideal. Then K(G,I) <9 A %, G is essential.

PrROOF. Let x € 4 X, G with x- K(G,I) = {0}; we must prove x =0. If
y €1 then for all s€ G we have 0= (xy)(s) = x(s)as(y) and therefore
a,1(x(s))y = 0. Here x(s) denotes the generalized Fourier coefficient of x.
Since 1 is essential this yields x(s) = 0 for all s € G. By the amenability of G
the element x is determined by its generalized Fourier-coefficients and this
implies x = 0.
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4. The restriction map.

Now let us study the restriction map Res: Id(4 x, G) — Id(4). We already
mentioned the continuity of Res (with respect to 7, and with respect to )
and that Prim(A4) does not behave properly under this map. We will establish
in this section that things are different if the primitive ideal space is replaced
by the minimal primal ideal space. The proof of the following proposition
can be taken from ([PR], prop. 2.1)

4.1. PROPOSITION. Let a: G — Aut(A) satisfy (A2) with the ideal 1, and
let wx U be an irreducible representation of A X, G such that
P := ker(m x U) does not contain K(G,1,). Then 7 is a factor representation,
in particular Res(P) is a prime ideal. If A is of type 1 then Res(P) € Prim(4).

4.2. COROLLARY. We have Res(Primal(4 X, G)) C Primal(4) if G is
amenable and o satisfies (A2).

ProoF. Since G is amenable K(G, I,) is essential in 4 X, G by prop (3.3)
implying that every primal ideal P < 4 x, G can be approximated by a net
(P;) of primitive ideals of the crossed product such that P; p K(G,1,). By
the above proposition all the Res(P;) are primal and we have
Res(P;) — Res(P) with respect to 7,.

If « satisfies (A1) even more is true

4.3. THEOREM. Let G be amenable and « satisfy (Al). Then

(i) Min-Primal(4) C Res(Min-Primal(4 x, G)) C Res(Primal4 x, G)) C
Primal(4).

(it) If A has property (E) and Min-Primal(A) is closed then
Min-Primal(4) = Res(Min-Primal(4 x, G)).

Proor. To prove (i) we only have to demonstrate the first inclusion. Let I,
be the essential ideal and v: G — U(M(l,)) the homomorphism in the defi-
nition of (Al). Given P € Min-Primal(A4) there is a net (P;) of primitive
ideals such that {Lg P; — P. Let P; =ker(n), m irreducible. Remark 3.2
implies that 7 x (m;|; ov) is an irreducible representation of 4 x, G and by
T,-compactness we may assume that

ker(m; x (m], o v)) — Q € Prim(4 xo G)" C Primal(4 x, G).

By 75-continuity of Res we conclude

Res(Q) = lim Res(ker(m; x (m ov))) = lim ker(w;) = P.
4 [

Therefore if Qp is a minimal primal ideal contained in Q we have
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Res(Qp) C P. But by the above Corollary Res(Qy) is primal and so we get
Res(Qy) = P since P is minimal primal. This proves (i).

Let U be the interior of the set of separated points in Prim(4) which is an
open and dense subset by prop. 2.4. It is « acts on Prim(4) by home-
omorphisms. Hence the corresponding ideal Iy is essential and a-invariant,
and so is I := Iy N I,,. Therefore K(G, I) is an essential ideal by prop. 3.3. So
if Q € Min-Primal(4 x, G) is given there is a net (Q;) of primitive ideals in
A x4 G such that Q; — Q. By prop. 2.2 this is automatically 7;-convergence
and this implies Res(Q;) — Res(Q) with respect to 7;. So by the 7;-closedness
we get the asserted result if we can show that Res(Q;) is minimal for all i.

From Q; p K(G,I) we conclude that Res(Q;) is primitive by 4.1 and
Res(Q;) 7 I. Now th. 2.4 yields that Res(Q;) is minimal primal.

Let us define .# = Min-Primal(4 x, G)” N Res™!(Min-Primal(4)).

4.4. REMARK. If G is amenable, « satisfies (A1), 4 has property (E) and
Min-Primal(4) is closed then from the above theorem one easily can con-
clude

M = Min-Primal(4 x, G)".

If G is amenable and « satisfies (A1) then Res : # — Min-Primal(4) is a
continuous surjection; even more is true

4.5. PROPOSITION. Let G be amenable and o satisfies (Al). Then
Res : #4 — Min-Primal(A) is a quotient map where M carries the relative -
topology or the relative T,-topology.

ProoF. Since Res is continuous the quotient topologies in both cases
are finer than the topology on Min-Primal(4). Conversely let
U C Min-Primal(4) such that Res™!(U) N.# is relatively open (7, or 7
since 7, C T, we may restrict attention to 7;) and let us show that U is open
in Min-Primal(4). To this end consider a net (I;) which converges to I € U
and verify that I; € U for large indices i.

By the above theorem there are Q; € Min-Primal(4 x, G) with
Res(Q;) = I; and we may assume that this net is 7,-convergent to the ideal L
in the closure of Min-Primal(4 x, G). Since 7, is a Hausdorff-topology we
get Res(L) = lim; Res(Q;) = lim;J; = I and so L € Res™'(U)N.#. By as-
sumption we must have Q; € Res™!(U)N.# for large i and this implies
I; = Res(Q;) € U for large i.

It can be shown that in general Res : .# — Min-Primal(4) is not open.
This is closely related to the dual action of G as we will see soon. The above
theorem and the remark raise the question under what conditions



298 FERDINAND BECKHOFF

Min-Primal(A4 x, G) is closed. Even under the assumptions of the above re-
mark this is not always the case. One sufficient condition for the closedness
of Min-Primal(4 x, G) will be the openness of Res; the property (EM) will
be another such condition.

5. The openness of the restriction map.

In this section we answer the question when the restriction map
Res : .# — Min-Primal(A4) is open. The proof of the next proposition can be
taken from ([PR], prop. 2.1).

5.1. PROPOSITION. Let G be abelian, o satisfy (A1) with the ideal I, and let
A be of type 1. If mx U is an irreducible representation of A X, G with

ker(w x U) 7 K(G,1,) then = is irreducible.
Now let 6 : G — Aut(4 x4 G) be the dual action. This defines an action
G x 1d(4 Xo G) = 1d(4 x4 G), (7, 1)— I == &;'(1),
and clearly for a representation m x U of 4 x, G we get
v(ker(m x U)) = ker(m x yU).
The following lemma is well-known or easily established.

5,2, LEMMA. The action of G on 1d(4 x,G) makes 1d(4 x,G),
Prim(4 x4 G), Primal(4 x, G), and Min-Primal(4 x, G) a G-space with re-
spect to the T,~topology as well as with respect to the Ts-topology.

5.3. PROPOSITION. Let G be abelian, a satisfy (Al), and A have property
(E). Then there is a subset U of Prim(A) satisfying

(1) U is open and dense in Prim(A4).

(ii) U C int(sep(Prim(4))).

(iii) Res™!(U) N Primal(4 x, G) C Prim(4 x, G).

(iv) U c {P € Prim(4); P p 1,}.

(V) The action of o on 1d(A) is trivial on U.

Proor. By ([Pd], 6.2.11) there is an essential ideal I7 in 4 having con-
tinuous trace. Let T C Prim(4) be the corresponding open set. Define
S := int(sep(Prim(4))) which is an open and dense set in Prim(4) by 2.4.
Then

U:=TNSN{P € Prim(A4);P 2 I,,}

is open and dense. So the properties (i), (ii) and (iv) go without saying. The
points in U are primitive ideals not containing /, and therefore invariant by
3.1.; this implies (v). The difficult point is (iii).
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Let P € Res™!(U)NPrimal(A xaG). We must show that P is primitive, i.e.
supp(P) contains exactly one element. To this end let Q;, O, € supp(P). First
we have Res(Q;) D Res(P) € U. But the ideals in U are primitive, hence
maximal (4 is liminal !), and so we conclude Res(Q;) = Res(P) = Res(Q»).
The Q; are kernels of some irreducible representations n; x U; and we have
ker(m) = ker(m;), so without loss of generality we may assume m; = m =: 7
because irreducible representations with the same kernel are equivalent in
liminal (type I) C*-algebras (the irreducibility follows from 5.1 and
Res(Q:) =Res(P) p1,). For s€ G and aed we get Ujm(a)Uf; =
m(as(a)) = Ussm(a)Us, hence Uy Uy € n(4) = C-1, i.e. there is v, (s) € C
such that Ui, = 7(s)Uys. Obvmusly ~1 is an element of G. Define
U := U,,v, := 1. Then we have

Q1 =ker(r x yU) and @, =ker(m x y,U),

and the claim reduces to 4; = 7,. The argument from now on are taken from
([OR], prop. 1.5). There the special case 4 = (X, X") is considered where 7
is a point evaluation; but this is irrelevant. For the convenience of the reader
the arguments are repeated here.

Let us assume v, # 7, and construct a contradiction. Since the dual group
is Hausdorff there are open and disjoint subsets Vi, V> C G containing )
and ~, respectively. We may assume that these sets are of the form

Vi={xeG:|x(s)—m)s)| <& VS €K}

where ¢; > 0 and K; C G finite, say ) = ¢ =: e and K; = Kr = {s1,...,5:}.

Using these data we will construct open susets M), M, C Prim(4 x, G)
satisfying Q) € M, Q, € M;. Since Qy, Q, € supp(P) and P is primal these
ideals are in a limit set of convergent net and therefore M; N M, # 0. This
finally will lead to the contradiction ¥y NV, # 0.

The ideal I corresponding to U is a continuous trace C*-algebra, hence
there are ag € I, and an open neighbourhood W C U of Res(P) = ker 7 such
that

For all irreducible representations p of 4 with ker p in
W the operator p(a) is a rank 1 projection

(1)

This is nothing but the Fell-condition. So 7(ap) has the form (-[£)¢ for
some £ € H, with ||£|| = 1. Then

¢i = (m x 1 U()¢l€) € P(4 xa G),
where P(A4 x, G) is the set of pure states (m x ;U is irreducible), If my, de-
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notes the GNS-construction with ¢; we have w4 ~ m x y;u which implies
ker my, = Q;. Put

X5, 1= agwy b, € K(G,A), j=1,...,n,

where w: G — U(M(Ia)) is the map coming from the condition (Al).
Computation of ¢;(s;) : As kerm I, we get

Um(@)U; = vUim(a)(3U)" = m(ou(a))

= n(waw;) = =, (w)m(a)m]; (w)’
So F,“(w,)*U, € n(4)' = C- 1, hence there is A € G such that
() Vi€ G: U, = XD, (w),

and this implies

(3) Bi(xs, = ((m x % U)(x,)E|€) = <(Z 7r()Cs,v(t)>’Yi(t) Uif|§>

1€G
= ((a0w} )(s) Uy €16) & (s M(5) (m(a0)€lE)
= 7i(5)A(57),
because 7(ap) is the rank 1 projection (-|€).
Definition of My and M,: The canonical map
P(A Xo G) = (4 X0 G)"; ¢ 4]
is open by [Dx2], 3.4.11) and so

- {[m] )€ P4 %0 G), max [0(x,) — 6i(x;)| < %}

is open in (4 x, G)" i =1,2. Since (4 x4 G)" by definition carries the weak
topology of the map ker : [ry] — kermy we must have N; = ker '(N;) for
some open subset N; C Prim(4 x, G). But then M, := N;NRes™ (W) C
Prim(A4 x, G) are open and we hve Q) € M, Q> € M, by construction. As
already explained above we must have M| NM; #0,= N 1 N N2 n
ker Res"(W) # 0. Let [p x v] be an element in this set, p x v irreducible.
Then ker(p) is in W C U, so ker p 7 I,,, and therefore p is irreducible by 5.1.
By definition there exist 7; € H,x,||ni|| = 1, such that the states

i = (p x v(-)milm) € P(4 Xa G)

satisfy the inequalities

(4) i) — i) <§v1= 1,...,n, i=1,2.
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Computation of (x, ): From

vp(@)Vi = plau(a)) = p(waw;) = pl;, (w)p(a)ply, (w.)*

and from the condition (A1) (see 3.2) we again may conclude

(5) IyeG:VieG: v = T,ﬂ(w,)fy(t).
Thus we get
(6) d)z(X )=(pxv xs, )nilmi) = <Zp xs, vt"]t|7h>
teG

= (p(aow; )vs nilni) by definition of x,,
= ((p(ao)nilni}y(s;).

Note that (p(ao)m:|n:) € [0,1], since p(ag) is a projection (use kerp € W
and ||| = 1).

This finally leads us to the desired contradiction: If u € [0,1], then 1 is the
nearest point among all points z of the circle and therefore |1 — z| < |1 — u|]+
| —z| < 2|p — z| for all these z. This implies

i(s7) = ¥(s)Msp)| = 11 = 7i(s)v(s)A(5)]
< 2|{p(ao)milm) — Yi(s)v(s)A(s))]
= 2|(p(ao)milni)v(s5) — i(s;)A(s;)]
= 2|thi(x, — di(x,| by (3) and (6)
<e€ by (4).

=

But this means v\ € V; NV, which is the contradiction we have been
looking for.

5.4. LEMMA. Let G be abelian, « satisfy (A1), and A have property (E). Let
U C Prim(A) be as in prop. 5.3. If then Py, P, € Res™!(U) N Primal(4 x, G)
with Res(P)) = Res(P,), there is a y € G such that Py = vP,. Moreover all
ideals in Res™'(U)NPrimal(4 x, G) are minimal primal. Res™'(U)N
Min-Primal(4 x, G) is dense in Min-Primal(4 x, G).

PrOOF. Since the elements in Res™!(U) N Primal(4 x, G) are primitive,
there are irreducible representations =; x U; with P; =kerm; x U;. ker
(m;) 7 In (I, is the ideal in the definition of (A1) implies by 5.1 that m; is
irreducible. As ker m; = Res(P;) = Res(P,) = kerm; these must be unitarily
equivalent, wlogm =m,=m1 For s€G and a€d4 we have
Uism(a) Uy, = m(aa(a)) = Upsm(a) Uz, U, (U3 € n(4)' = C- 1. So there is a
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7(s) € C with U, 5 = (s) U, and this ~ is easily seen to be a character of G.
It follows that P, = ker(w x U}) = vker(w x U,) = vP, which is the first as-
sertion.

Now let P be in Res™!(U) NPrimal(4 x, G). If Q is a minimal primal
ideal contained in P we must have Res(Q) = Res(P) and so P = vyQ for some
character v by what has already been proved. This of course implies that P is
minimal primal, too.

In order to prove the density assertion let [, be the ideal corresponding to
U which is essential and a-invariant. Then K(G,Iy) is essential in 4 X, G
by prop. 3.3. Now for P €Prim(4 x, G) we have P P K(G,Iy) iff
Res(P) 7 Iy iff Res(P) € U. Hence Res™!(U) NPrim(4 x, G) is dense in
Prim(4 x, G), and this implies that Res™!(U) N Primal(4 x, G) is dense in
Primal(4 x, G). This set is contained in Min-Primal(4 x, G) by what we
have seen above, and this proves the density result.

5.5. THEOREM. Let G be abelian, a satisfy (Al), and A have property (E).
Then the following are equivalent:

(i) Res: (A, 7;) — Min Primal(A4) is open.

(i) If I, I, € M with Res(I}) = Res(I,) there is ay € G such that I) = vI.

If this is the case and Min-Primal(4) is closed then
M = Min-Primal(4 x, G) is closed.

Proor. “(i) = (ii)” Consider I}, € # with Res(l;) = Res(l;) = J. Let
(W) and (V;) be open neighbourhood bases of I} and I, in (4, ;) respec-
tively. By assumption Res(Wj) N Res(V;) is an open neighbourhood of J in
Min-Primal(4). If U C Min-Primal(4) is as in prop. 5.3 we have
U nRes(Wi) NRes(V;) # 0, i.e.

3P} € Wi, P{) € Vi : Res(Py)) = Res(P{)) € U.

By the above lemma we find v, € G satisfying P,((],) = ’yk,IP,(j,) . By com-
pactness of G we r({l%y assume that 7; converges to some 7y € G. Since
P,(:,) — I and P,(cz,) — I, with respect to 7; we get from the continuity of the
G-action (see 5.2) the desired result I} = vI,.

“@i) = (i)”: Suppose that Res: (#,7;) — Min-Primal(4) is not open.
Then there are an open subset W C .#, an ideal I € W, and a net (J;) in
Min-Primal(4)\Res(W) with J; — Res(I). Let I, € # with Res(f;) = J;.
Restricting to a subnet we may assume [; — I in (I1d(4 x4 G), 75). The con-
tinuity of Res yield Res(I) = Res(I). This implies 7 in .# and by assumption
we can find a character v such that / =~J = lim;~vJ;. So we must have
vI; € W for large indices i and therefore J; = Res([;) = Res(v/;) € Res(W)
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for these indices. This contradiction finishes the proof of the reverse direc-
tion.

By 4.3 we have Min-Primal(4) C . Conversely each P € .4 contains a
minimal primal ideal Q which implies Res(P) D Res(Q). But both Res(P)
and Res(Q) are minimal primal hence they are equal. By the above result we
have P = vQ for some character v and so P is minimal primal, too, This also
proves the closedness assertion.

Res is not open in general (even under stronger assumptions) as will be
seen in remark 6.6. I do not know whether the equivalence of (i) and (ii)
holds under weaker hypotheses.

6. The property (EM).

6.1. The property (E) in general does not carry over from 4 to 4 x, G and it
is easy to see that (Eb) does. There are examples showing that the slightly
stronger property ‘“(Eb) and the minimal primal ideal space is closed” is not
inherited from A4 to 4 x, G. In this section it will be shown that the follow-
ing stronger property (EM) is in fact inherited. A is said to have the property
(EM) iff A4 has (Eb), Min-Primal(4) is closed, and the map I~ dim([) is
continuous on MinPrimal(4).

So this will be another theorem yielding the closedness of the minimal
primal ideal space of the crossed product algebra. We start with a series of
lemmata.

6.2. LEMMA. Let A have property (E), a satify (A2),{Q,...,0}C
Prim(A4) be an a-invariant set with Qi,...,Q, pairwise different, and G act
transitively on this set. Then

(i) M=, Q) is primal and o-invariant.

(i) #:={J€ld(4 x,G): JNA=(\_, Q;} has maximal elements and
these are primitive.

(i) If P is any primitive ideal in A X, G with Res(P) = (Yi_; Q;, then

dimP >r-dimQ, =) dimQ;.

ProoF. (i): Let I, < 4 be the essential ideal in the definition of (A2). Then
there is a net (P;) of primitive ideals such that I, ¢ P; — Q;. For all
j€{l,...,r} we can find 5; € G with Q; = oy 1(Q)) by the assumed transi-
tivity. By 3.1 the P; are a-invariant 1mply1ng P =q; lP LN a"(Q‘) 0;.
So {Q.,...,Q,} is contained in the limit of some convergent net. This proves
the first part, the a-invariant being clear.

(ii): Since the image of Res consists of all invariant ideals, (i) gives us that
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{#} is non-empty. { #} obviously is inductively ordered and so we have
maximal elements by Zorn’s lemma. Let P be such a maximal element and
let us show that it is primitive.

Since P# A X,G it must be contained in some primitive ideal
R. =

.

Res(R) DRes(P)=( |0 =

Jj=1

T

supp(Res(R)) C supp (ﬂ Qj) ={01,..., 0}

i1

This last equality stems from the liminality of A (all primitive ideals are
maximal) and the fact that primitive ideals are prime.

But then supp(Res(R)) is an a-invariant subset in {Q;, ..., Q,} and by the
assumed transitivity we have equality implying Res(R) = ﬂi, Q;. Hence R
is in {_#} and the maximality proves P = R.

(iii): Now let P< A4 x, G be primitive with PNA = ﬂ;=1 Q;. There are
m, 1, ..., irreducible representations such that P = kerm and Q; = kerm;,
and the 7;’s are pairwise inequivalent. By ([Dx2], 4.2.5) we get

R r r
m(A) = A/(aNkern) = A/ (ﬂ Q,-) =P a/Q = Pmi(4).
j=1 j=1 J=1

So H, is a Hilbert space such that L(H,) contains a subalgebra iso-
morphic to @_, 7;(4) = @], L(Hx,) (m; is finite dimensional !). So
dim P = dim H, > ) " dimH, =Y dim Q.
- =1

Clearly dim(Q;) = dim(Q;) for all j.

6.3. LEMMA. Let G be abelian, a satisfy (Al), A have property (E), and
U C Prim(A) as in prop. 5.3. Furthermore let I < A be an a-invariant primal
ideal and (P;) a net in Prim(A4 x, G) such that Res(P;) € U and Res(P;) — 1.

If then Q € Prim(A4 x4 G) with Res(Q) D I, there is subnet (P;) and a

A k .
character v € G such that P;, — vQ with respect to T,

Proor. We have K(G,Res(P;)) — K(G,I) C K(G,Res(Q)) C Q. So by
Schochetman’s theorem 2.1 there are a subset (P;) and primitive ideals
R; € suppK(G,Res(P;,)) satisfying R, — Q. Since Res(R;) D Res(P;,) we
even have equality because Res(P;,) is primitive by 5.3 and therefore max-
imal. 5.4 provides us with characters v, € G satisfying P;, = Y R;, . Restrict-
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ing to another subnet we may assume v, — v € G by compactness of G and
R;, — R(7) by 7y-compactness of 1d(4 x, G).

Now 5.2 implies P;, = %R;, — YR. As R, — Q(7,), we have R C Q im-
plying YR C vQ, hence P;, — yQ(7y).

6.4. LEMMA. Let G be abelian, o satisfy (Al), A satisfy (EM) and

U C Prim(A) as in prop. 5.3. Then the following holds
() If (P;) is a net in Res™ ' (U) N4 and P; — J(ry) then

limdim P; = dim Q = dim R.
d QGSu%)(J) Q REsu;gg{es(J))
(i) We have equality in lemma 6.2. (iii), i.e.
If {Q1,...,0,} C Prim(A4) is an a-invariant set (pairwise different Q;’s) on
which o operates transitively and P is a primitive ideal in A X, G such that
Res(P) = (-, Q), we have

dimP =r-dimQ, =) dim Q.
j=1

Proor. (i) First note Res(P;) € U C Prim(4) N min-Primal(4), hence
Res(J) = 7, — Res(P;) € Min-Primal(4),
becaue Min-Primal(4) is closed by (EM); and we have

(1) limdimRes(P) = )  dimR.
! Resupp(Res(J))

By proposition 5.1 we know dim P; = dim Res(P;) (P; = ker(m x U) holds

for some irreducible 7 x U; then Res(P;) = ker m and the irreducibility of m
yields the equality of the dimensions). This together with (1) implies

(2) limdimP;=  »  dimR
! Resupp(Res(J))

and from lemma 2.3 we get

(3) lim dim P; > > dimQ.
Qesupp(J)

We only have to prove equality here.

supp Res(J) is finite (because A has property (Eb) and therefore this set
decomposes into a disjoint union supp Res(J) = C;U...U C,, where the sets
C; are a-invariant and o operates transitively on them. By lema 6.2 (ii) there
are Q; € Prim(4 x, G) with Res(Q;) = NC; and lemma 6.2. (iii) says
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(4) dimQ; > ) " dimR.
ReC,

Since Res(Qj) = NC; D Res(J) € Min-Primal(4) and because of lemma
6.3 we may assume P; — 7;Q; for some ; € G (take r times a subnet if ne-
cessary). But we also have P; — J with respect to the 7;,-topology implying
forall xe A x, G

[l + JI| = lim ||x + Pif| > [| Q)|

From this we see J C 7;Q; and then

(5) supp(/) O {m @, .-, %A}

Because Res(y;0;) = Res(Q;) = NC; the ideals v,Qi,...,7 0, must be
pairwise different and this leads to

6 & £
Y dmQ> Y dim(yQ) =3 dimg,
j=1 J=1

Qesupp(J)

W

> ZZdimRz > dimR

Jj=1 ReC, Resupp(Res(J))
D Jim dim P;.
1

Together with (3) the desired equality follows.
(ii) Since the last chain of inequalities ends up in an equality we conclude

r

Zr:dimQj =Y > dimR
Jj=1

j=1 ReC;

By (4) or lemma 6.2 (iii) we then have

dimQ; = ) dimR, je{l,...,r}
ReC;

which proves (ii).

6.5. THEOREM. Let G be abelian, o satisfy (A1), and A have property (EM).
Then also A x o, G has the property (EM), in particular Min-Primal(4 x, G) is
closed and we have # = Min-Primal(4 x, G)

Proor. It was already mentioned that 4 x, G has (Eb). Next we show
that the minimal primal ideal space is closed. To this end consider an ideal J
in Min-Primal(4 x, G)*\{4 x, G}. Let U be as in 5.3, hence there is a net
(P;) in Res™!(U) such that P; — J with respect to 7;. Let I be a minimal
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primal ideal contained in J. => Res(I) C Res(J). As Res(P;) — Res(J) and
Min-Primal(4) is closed Res(J) must be minimal primal implying
Res(I) = Res(J). Now lemma 6.4 leads to

Y dimQ@= )  dimR= Y  dimR= ) dimQ.
Qesupp(J) Resupp(Res(J)) Resupp(Res(7)) Qesupp(])

Since supp(/) D supp(J) we must have equality, hence I = J proving that
J is minimal primal.
Now let us verify the continuity of the map

dim : Min-Primal(4 x, G) — N.

Let P; converge to J in the minimal primal ideal space. Since N with the
discrete topology is a regular space we may assume that the ideals P; all lie
in some dense subset, say in Res™! (U) N Min-Primal(4 x, G) (see lemma 5.4
for this). We have to show

Z dim Q — Z dim Q.
Qesupp(P)) Qesupp(J)

But the left side is nothing but dim P; and the continuity assertion follows
from the proceeding lemma. This proves that the crossed product algebra
has property (EM); the rest goes without saying.

6.6. REMARK. The property (EM) does not imply openess of Res in gen-
eral. Consider

Ai(x) 0 0
A4:= {x € C([0,2], M3) : x(1) = ( 0 A2 (x) 0 ) }’
0 0 Xs(x)

where C([0,2], M3) stands for the algebra of continuous functions on the in-
terval [0, 2] with values in the 3 x 3-matrices. The irreducible representations
of are given by

7r,(x) = x(t), te [0,2]\{1}, AL, A2, A3,
I := ker(\;) Nker(A\;) Nker(A3) is an essential ideal in 4. Let

0 1 0
(1 0 0) ift<1

0 01

v(t) = 0 -1 0
(1 0 0) if t>1

0 0 1

Then v € M(I) and the conjugation with v defines an Z/(4Z)-action on 4
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satisfying (A1). Tedious computations show that Res is not open, in fact it
can be shown that there are eight minimal primal ideals in 4 x Z/(4Z) which
are mapped to I by Res. Since Z/(4Z) cannot act transitively on eight ele-
ments, Res is not open by 5.2. The details are left to the reader.

Another useful property is “quasistandard” (see [AS1}) which means that
Min-Primal(A4) is closed and each primitive ideal containes exactly one
minimal primal ideal. But even if 4 additionally satisfies (EM) then 4 x, G
in general fails to be quasistandard as can be shown by examples.

I would like to express my thanks to the referee for many useful sugges-
tions which helped to shorten and to clarify the present paper to a con-
siderable extent.
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