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METRIC DUALITY IN EUCLIDEAN SPACES

JUSSI VAISALA

1. Introduction.

1.1. We consider point sets in the one-point extension R” = R" U {oo} of the
euclidean space R", n>2. Suppose that U is open in R”, and let X =
Cu = R”\ U be its complement. The Alexander duality gives an isomor-
phism between the homology of U and the cohomology of X:

(1.2) H,(U) ~ H(X),

where p+q =n—1, and H, and H? denote the reduced singular homology
and CUech cohomology groups with coefficients in the same group; see [Mu,
74.1]. The isomorphism is functorial with respect to inclusions.

In this paper we study to what extent the metric properties of X are de-
termined by the metric properties of U and vice versa. An early example of
this was given in 1963 by L.V. Ahlfors [Ah], who characterized the quasi-
circles in the plane by the three-point property. In 1965 F.W. Gehring [Ge,]
introduced the concept of linear local connectedness, abbreviated LLC. We
recall the definition. Let M be a metric space with distance written as |a — b|.
We let M = M U {0} denote the one-point extension. Open and closed balls
are written as B(a,r) and B(a,r). For ¢ > 1, a set A C M is said to be ¢-LLC
in M if for each a € M and r > 0 the following two conditions are satisfied:

¢-LLC;y: Each pair of points in 4 N B(a, r) can be joined in 4 N B(a,cr).

¢-LLC;: Each pair of points in 4 \ B(a, cr) can be joined in 4 \ B(a,r).

Depending on what is meant by joining, one can consider pathwise and
continuumwise properties LLC;, LLC,, LLC. The property ¢-LLC; is quan-
titatively equivalent to the property c-bounded turning, which (continuum-
wise) means that each pair a,b € 4 can be joined by a continuum a C 4 with
diameter at most c|a — b|.

For a Jordan curve X C R2, the Ahlfors condition is equivalent to LLC,
and also to LLC,. The components of U = R?\ X are then quasidisks,
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which can be characterized by the LLC property [Ges, 3.6]. On the other
hand, Gehring and O. Martio [GM, 2.21] proved that a domain U C R? is
¢-LLC if and only if, quantitatively, the components of X = R\ U are
points or closed K-quasidisks.

In this paper we introduce p-dimensional analogues of the properties c-
LLC; and ¢-LLC;. The definitions, based on homology for open sets U C R”
and on cohomology for closed sets X C R”, are given in 2.2. Sets with these
properties are called outer and inner (p,c)-joinable, respectively. The basic
result in the theory is the following duality theorem, proved in 2.7: Let
p+q=n—-2,let U be openin R" and let X = R"\ U. Then U is outer [or
inner] (p, ¢)-joinable in R” if and only if X is inner [or outer] (g, ¢)-joinable in
R". Forn=2, p=gq =0, this implies the aforementioned result of Gehring--
Martio and other well known results.

The proof of the duality theorem is rather easy, and it makes use of the
Alexander duality and Mayer--Vietoris sequences. Observe that p+q is
n—2 and not n— 1 as in the Alexander duality (1.2). Our result should
therefore not be regarded as a metric version of the Alexander duality.

Section 3 deals with general properties of joinability. In Section 4 we
consider the behavior of the joinability properties under various maps. In
fact, the original reason for introducing the LLC property was Gehring’s
observation [Ge,] that if n > 3 and if  : B” — D’ is K-quasiconformal, then
CD' is ¢-LLC with ¢ = ¢(K,n). Our results imply that CD’ is indeed (g, c)-
joinable for 0 < g <n-—3.

The main significance of the joinability properties seems to be based on
their relations with John and uniform domains; also these must be considered
in the p-dimensional sense. These are considered in Section 5. As an appli-
cation we obtain quasim&bius invariance properties of couniform sets, which
are partially new also in the case p = 0.

1.3. Terminology and notation. Let M be a metric space with distance
written as |a — b| or d(a,b). Then M = M U{oc} is a topological space,
where the neighborhoods of oo are the complements of closed bounded sets
of M. We let d(A, B) denote the distance between A, B C M, and d(A) is the
diameter of a set 4. In M we set d(a,00) = oo and d(co,00) = 0. The num-
bers d(A, B) and d(A) are then defined for all 4, B C M; they may have the
value co. We agree that d(4, &) = oo and d(F) =0. For a€ M and r > 0,
balls and spheres are written as

B(a,r) = {x:|x—a| <r}, Bla,r) = {x:|x—a| <r},
S(a,r)={x:|x—a|=r}.

For real numbers a, b we write
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a Ab =min(a,b), aVb=max(a,b).

The cardinality of a set 4 is #A4.

We fix a nontrivial abelian group G, which will be the same throughout
the paper. For a topological space X, we let H,(X) denote the reduced sin-
gular homology groups of X with coefficients in G, customarily written as
H,(X) or H,(X; G). By p-chains and p-cycles we mean singular p-chains and
reduced singular p-cycles with coefficients in G. Each p-chain in X can be
uniquely (up to ordering of terms) written in the form

g=mo1+ -+ Yok,

where v, € G, v #0, and oy, -, 0% are distinct singular p-simplexes in X,
that is, continuous maps of the standard p-simplex A? into X. The carrier of
o; is the image set |0y = 0,47, and the carrier of a p-chain g with the above
representation is

lgl = lonU---Ulokl.

We let H?(X) denote the reduced Cyech (equivalently Alexander--Spanier)
cohomology groups of X with coefficients in G. If 4 C B C X, we use the
notation

Hpy(A) — Hy(B), H”(B) — H(A)

for homomorphisms induced by inclusion, without always mentioning this
explicitly.

If a condition 4 with data v implies a condition 4’ with data +/ so that ¢/
depends only on v, we say that 4 implies 4’ quantitatively. A symbol (usually
¢) appearing in both v and v/ need not have the same value in both condi-
tions. For example, c-uniformity implies ¢-LLC quantitatively for domains
in R", which means that c-uniform domains are ¢-LLC with ¢’ = ¢/(c). If we
are dealing with R" and if v/ depends only on v and n, we say that 4 implies
A' n-quantitatively.

In most cases, we shall give explicit estimates for the constants.

2. Joinability and duality.

2.1. Summary of Section 2. We define the joinability properties, which are
the basic concepts of this paper. In 2.7 we prove the central duality theorem
in R". We also consider duality in some other spaces homeomorphic to S”.

2.2. Joinability. We first introduce some algebraic terminology. Let

(s) : 428
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be a (very short) sequence of abelian groups and homomorphisms. We say
that the sequence is fast if ker (Ba) = ker a or, equivalently, ker (Ba) C
ker a. Dually, the sequence is slow if im (Ba) =im S or, equivalently,
im 8 C im (Ba). In particular, (s) is fast if @ = 0 and slow if 8 = 0. Setting
~ = Ba we also say that the triangle

A ! C
oA
B
is fast or slow if the sequence (s) has this property.

Let M be a metric space. Suppose that 4 C M = M U {cc}, a € 4\ {00},
r > 0 and ¢ > 1. For each integer p, inclusions induce four sequences

(a) Hy(4 1 B(a,r)) — Hy(4 1 Bla,cr)) — Hy(A),
©) Hy(4\ Bla,cr)) — Hy(4\ B(a,r)) — Hy(4),

(©) HP(4) — H'(ANB(a,cr) — HP(ANB(a,1)),
(d) HP(4) — HP(4\ B(a,r)) — H”(4\ B(a,cr)).

If the sequence (a) is fast for every a € 4\ {oo}, r > 0, we say that A4 is
homologically outer (p, c)-joinable. If (b) is fast for all a,r, then A is homo-
logically inner (p, c)-joinable. If (c) is slow for all a,r, then A is cohomologi-
cally outer (p,c)-joinable. If (d) is slow for all a,r, then A4 is cohomologically
inner (p, c)-joinable.

We shall abbreviate the words ‘homologically’ and ‘cohomologically’ by
hlog and cohlog, respectively. We say that A4 is hlog (p,c)-joinable if A is
both hlog outer (p,c)-joinable and hlog inner (p,c)-joinable. The concept
cohlog (p, c)-joinable is defined analogously.

If A is hlog outer (p, ¢)-joinable for some ¢ > 1, we say that A4 is hlog outer’
(p)-joinable, and similarly for the other joinability properties.

We shall mainly consider the case where M = R" and A4 is either open or
closed in R". To simplify terminology, we usually omit the word ‘hlog’ if 4 is
open in R" and the word ‘cohlog’ if A is closed in R".

The homological joinability properties can be defined more explicitly in
terms of cycles and chains. For example, an open set U C R” is outer (p, ¢)-
joinable if and only if, given a € U \ {oo} and r > 0, a p-cycle in U N B(a,r)
bounds in U N B(a, cr) whenever it bounds in U.

The choice of open and closed balls in the sequences (a)--(d) was made in
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order to get the duality theorem in a precise form. However, it is clear that if
A has one of the joinability properties, the corresponding sequence is fast or
slow also if the open balls are replaced by closed balls or vice versa and if ¢ is
replaced by any number ¢’ > c.

The concepts defined above depend on the coefficient group G, and in a
complete notation one should write (p, ¢, G)-joinable, for example. The re-
sults of this paper hold for every coefficient group G, and the reader may
think, for example, that G = Z everywhere. However, it seems to the author
that in some applications it may be useful to let G be a field.

2.3. Examples. To give the reader some idea of joinability, we present
some examples without always giving a detailed proof. In the proofs, the
duality theorem 2.7 would sometimes be useful.

We consider open sets U C R” and thus omit the word ‘hlog’. It turns out
that the joinability properties are interesting only for 0 < p < n — 2; see 2.9.
The set U is outer or inner (0, ¢)-joinable if and only if all components of U
are ¢-LLC; or ¢-LLC,, respectively; see 3.5. A convex open set U C R" is
outer (p, 1)-joinable for every p, since the sets U N B(a,r) are hlog trivial. A
ball B(xp,t) is (p,1)-joinable for every p € [0,n — 2], since also the sets
B(xo, 1) \ B(a,r) have trivial homology groups for these p.

If 1 <k <n-1, the domain U = R* x B"* is not inner (k — 1)-joinable,
since the (k — 1)-sphere S¥~!(c), ¢ > 1, considered as a (k — 1)-cycle, does
not bound in U\ B". Let —1 <t < 1 and let U be the domain B*\ [te,¢] in
R3, where e is a unit vector. Then U is (0, 1)-joinable and inner (1, ¢)-joinable
for some ¢ = ¢(t) but not outer (1)-joinable. The troublesome 1-cycles are
small circles around the line segment [te, e]. Moreover, c(tf) — oo as t — —1.
However, the limiting case U = B* \ [—e, ] is (1)-joinable, since the trouble-
some 1-cycles are no longer boundaries in U. There is a similar situation
with U = B"\ [te,e] and (n — 2)-joinability for each n, including the case
n=2.

The complement of the disk B in R is (1)-joinable and inner (0)-joinable
but not outer (0)-joinable.

Although the point a in the definition of the joinability properties is al-
ways a finite point, the point oo plays an essential role. For example, a line L
in R" is not hlog inner (0)-joinable but L U {oo} has this property.

2.4. Relative joinability. Let us consider the situation 4 C M as in 2.2. In
the definition of the four joinability properties, the center a of the balls was
supposed to lie in 4 \ {oo}. Hence these properties are intrinsic properties of
A. The space M plays no role, except that we could include both cases
oo € A and co¢ 4. Nevertheless, it is often convenient to consider the con-
ditions also at points a € M \ 4. For example, the duality theorem 2.7 can



254 JUSSI VAISALA

then be given in a more exact form. We say that 4 has one of the four
properties in M (or in M) if the corresponding condition holds for all a € M.
For example, 4 is hlog outer (p, c)-joinable in M if the sequence (a) of 2.2 is
fast for all a € M, r > 0. We next show that this relative joinability is in fact
quantitatively equivalent to absolute joinability:

2.5. LEMMA. If p > 0 and if A C M is hlog outer (p,c)-joinable, then A is
hlog outer (p,2c + 1)-joinable in M. The corresponding statement is valid for
the other three joinability properties as well.

PrOOF. Let a € M, r > 0. Writing ¢’ = 2¢ + 1 we must show that the se-
quence

H,(AN B(a,r)) — Hy(AN B(a,c'r)) — Hy(A)

is fast. If AN B(a,r) = &, the first group is trivial and, consequently, the
sequence is fast. If 4 N B(a,r) # &, choose a point x € 4 N B(a,r). Now

B(a,r) C B(x,2r) C B(x,2cr) C B(a,c'r),

and we obtain the commutative diagram
H,(ANn B(a,r)) — Hp(AN B(a,c'r))
Hy(A).
H,(AN B(z,2r)) — Hp(A N B(z,2cr))

Since the lower row is fast, so is the upper row.
Next assume that A is hlog inner (p, ¢)-joinable and thata € M, r > 0. We
must show that the sequence

Hy(A4\ B(a,c'r)) — Hp(A\ B(a,r)) — Hy(4)

is fast. If AN B(a,r) = &, the second map is the identity, and the sequence is
trivially fast. If 4N B(a,r) # &, choose x € A N B(a,r). Now

B(a,r) C B(x,2r) C B(x,2cr)) C B(a,cr),

and we can proceed essentially as in the first case.
The cohlog cases are treated by analogous arguments.

The proof of the duality theorem is based on the following algebraic re-
sult:
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2.6. LEMMA. Suppose that the diagram

of abelian groups and homomorphisms is commutative and has exact horizontal
rows. Then the left-hand triangle is slow if and only if the right-hand triangle is

fast.

ProoF. The lemma is obtained by elementary diagram chasing. Suppose
first that the left-hand triangle is slow and that ¢ € C with Ac = 0. Then there
is b€ B with gb=c. By slowness, there is @’ € A’ with f'd’ = jb. Then
ac=aghb=gjb=gf'ad =0.

Conversely, assume that the right-hand triangle is fast and that b € B.
Since the upper row is exact, we have hgbh = 0. By fastness, this implies
g'jb = agb = 0. By exactness, there is @’ € A’ with f'a’ = jb. Hence the left-
hand triangle is slow.

2.7. DUALITY THEOREM. Suppose that U is an open set in R" and that p is
an integer with0 <p<n-—2.Set X =CU =R"\ U andq=n—2 —p. Then

(a) U is outer (p,c)-joinable in R" if and only if X is inner (g, c)-joinable in
R",

(b) U is inner (p,c)-joinable in R" if and only if X is outer (g, c)-joinable in
R,

(c) U is (p,c)-joinable in R" if and only if X is (q, c)-joinable in R".

ProOOF. Assume that U is outer (p,c)-joinable in R". Let a€ R", r >0,
and set By = B(a,r), B, = B(a,cr). Consider the diagram

Hp11(U U By) — Hp(U N By) — Hy(U) @ Hy(B1)

| |

Hp+1(U) (O] Hp+1(Bz) —->Hp+1(U U Bg) —>-HP(U n Bg)

Here the horizontal rows are parts of exact Mayer--Vietoris sequences. The
trivial groups H,(B;) and Hp41(B;) can be omitted. Then all vertical and
slanted arrows are induced by inclusions, and hence the diagram is commu-
tative. Now the right-hand triangle is fast. By Lemma 2.6, the left-hand tri-
angle is slow. By Alexander duality (1.2), this sequence is isomorphic to
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HI(X) — HY(X \ B)) - HY(X \ By).

Since this is slow, X is inner (g, ¢)-joinable in R".
All steps of the above proof hold also conversely. Hence (a) is true. Part
(b) is proved by an analogous argument with the aid of the diagram

Hp41(U UCB2) > Hy(U \ B2) > Hy(U) ® H,y(CB2)

| l

Hp41(U) ® Hp41(CB1) = Hp41 (U UCB1) > Hy(U \ By).

Part (c) is a direct consequence of (a) and (b).

2.8. REMARK. We gave Theorem 2.7 in terms of relative joinability, since
the duality then holds with the same constant ¢. With the aid of 2.5 we ob-
tain an absolute version of the duality theorem: If U or X is outer or inner
(p, ¢)-joinable, then X or U is inner or outer (g,2c + 1)-joinable (4 cases).

2.9. The uninteresting cases. The definitions of the four (p, ¢)-joinability
properties make sense for all integers p. However, for open and closed sub-
sets of R”, only the case 0 < p <n—2 gives interesting properties. For
completeness, we discuss the situation in the other cases. The easy proofs are
omitted.

Assume that 4 is open or closed in R". Then 4 is (p, 1)-joinable for all
p < —=2and p > n. For p =n—1 we have:

(a) A4 is outer (n — 1)-joinable if and only if 4 = R" or co ¢ int A.

(b) 4 is inner (n — 1)-joinable if and only if 4 = R" or int 4 = .

In the positive cases, 4 is outer or inner (n — 1, 1)-joinable.

The case p = —1 requires correct understanding of the reduced homology
group H_;(Z). In most textbooks this group is either undefined or trivial. I
believe, however, that it is both logical and useful to define H_;(J) = G as
in [Ma, p. 108] or [Br, p. 181]. For example, the reduced Mayer--Vietoris
sequence of an excisive couple {4, B} is then exact without the restriction
AN B # &, and the Alexander duality (1.2) holds for all integers p,q with
p+q=n—1 and for all open sets U C S". The duality theorem 2.7 and its
proof are valid for all integers p,q with p + ¢ = n — 2. However, Lemma 2.5
is not valid for p = —1. For example, an open set U C R” is always outer
(=1,1)-joinable, but it is outer (—1)-joinable in R" if and only if U = R" or
U=g.

The statements (a) and (b) are easily proved directly, but it is still easier to
prove the corresponding statements for (—1)-joinability in R” and make use
of the duality theorem.

We remark that the duality theorem is true but rather uninteresting in R'.
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Convention. From now on, we always assume that 0 < p < n— 2 when we
are considering outer or inner (p, c)-joinability of a set in R".

2.10. REMARK. The case p = n — 1 is more interesting if R" is replaced by
S". For example, it is easy to show that a compact set X C S" is outer
(n — 1,c¢)-joinable in S" if and only if S” \ X is not contained in any ball
B(a,r) with a € ", 0 <r < 2/c. On the other hand, X is inner (n — 1)-join-
able if and only if X = S” or X has no interior points in S”.

2.11. Other metrics. The only property of the euclidean metric needed in
the proof of the duality theorem was the fact that the sets B(a,r) and CB(a,r)
are homologically trivial in dimensions 0 < p < n — 1. Hence the theorem
remains valid, for example, in every n-dimensional normed space. Further-
more, we can replace R” by any metric space which is homeomorphic to S”
and satisfies this condition on balls. For example, the duality theorem is va-
lid on S”. Here the restriction 0 < p < n — 2 is essential.

More generally, we show that the duality theorem can be extended to a
metric space which is homeomorphic to S” and suitably joinable in its own
metric. This result is given in 2.14 and 2.15. We need two generalizations of
the algebraic parallelogram lemma 2.6. The proofs are based on routine
diagram chasing and therefore omitted.

2.12. LEMMA. Consider the following diagram of abelian groups and
homomorphisms:

Cy

B, Cs D,

Ay —>By—>Cs /)
EoL as

B4 —-—->C4.

Write j = jaj, and a = azopa;. Suppose:
(1) The diagram without the maps i, 3 is commutative.
(2) k=jiand~ = fa.
(3) The horizontal rows are exact.
(4) The sequence A3 B, N By is slow.
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Then the sequence C, SN 2, D, is fast.

2.13. LeMMA. Consider the following diagram of abelian groups and homo-
morphisms:

By —C

J1 a\
\
i B2 Cy,——D,
J2 01%4
A3 B3 ‘C3
\ _
J3
By.

Write j = jajoji and a = apay. Suppose:
(1) The diagram without the maps i, 3 is commutative.
(2) k =jiand v = Pa.
(3) The horizontal rows are exact.
(4) The sequence C) i» G —ﬂ+ D, is fast.
Then the sequence A3 - B AN By is slow.

2.14. THEOREM. Let S be either a metric space or the one-point extension of
a metric space. Suppose that S is homeomorphic to S". Suppose also that
0<p<n-2 and that S is hlog outer (p,co)-joinable and hlog outer
(p + 1,c0)-joinable. Let U be open in S, and write X = S\U, g=n—2—p.
Then the following conditions are quantitatively equivalent:

(1) U is hlog outer (p, c)-joinable.

(2) X is cohlog inner (q, c)-joinable.

Explicit bounds. Each of the conditions (1), (2) implies the other with
¢ 3cco V a.

PrOOF. Suppose that (1) holds. Let a€ S\ {oo} and r>0. Set
¢ =1V (3¢/cy), Bi = B(a,r), B, = B(a,cor), By = (a,cor), Bs = B(a,dc}r).
Then B; C B, C B3 C By. We obtain the diagram
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HP-H(U U Bl)-—->Hp(U n B;)-—>HP(U) (&) Hp(Bl)

" Hp41(U U By) — Hy(U N By) — Hy(U) @ Hy(B,)

B
Hy1(U) ® Hpy1(Bs) — Hpy1(U U Bs) — H,(U N Bs)

Hp41(U) ® Hpt1(Bs) = Hp41(U U By).

Here the horizontal rows are parts of exact Mayer--Vietoris sequences. All
vertical arrows are induced by inclusions. The maps i and ( are defined by
i(x,y) = uyx, Bx = (v.x,0), where u and v are inclusions. The remaining two
slanted arrows are defined by commutativity.

We verify that the diagram with corners omitted satisfies the conditions of
2.13. Clearly the diagram without i and 3 is commutative. Since S is hlog
outer (k,co)-joinable for k=p,p+1, the maps H,(B)) — Hy(B:) and
Hp.1(B3) — Hpy1(Bs) are zero. This implies 2.13(2). By 2.5, U is hlog outer
(p,3c)-joinable in S. Since coc’ > 3¢, the sequence H,(UNB)—
H,(U N B3) £, H,(U) ® Hy(B,) is fast. Hence the sequence H,.(U) —
H, 1 (UUBy) = Hyp 1 (U U By) is slow by 2.13. By Alexander duality this is
isomorphic to the sequence H?(X) — HY(X \ Bi) — HY(X \ Bs;). We have
thus proved (2) with the constant ¢3¢’ = 3cco V c3.

Conversely, assume that (2) is true. Let a € S\ {0} and r > 0. Let ¢’ and
By, By, B3, B4 be as in the first part of the proof. We obtain the diagram

Hy(U N By) — Hy(U) @ Hp(By)

Hp11(U U By) — Hy(U N By) — Hy(U) & Hy(Bz)

|

Hp41(U) ® Hp41(B3) = Hp41(U U B3) — H,(U N By)

L~

Hp1(U) & Hp41(Bs) = Hp11(U U By) — Hy(U N By).

B

The maps i and 3 are defined essentially as in the first part. We can now
proceed as before, using 2.12 instead of 2.13, and show that (1) holds with
the same constant 3cco V ¢3.



260 JUSSI VAISALA

2.15. THEOREM. Theorem 2.14 remains valid if the words “‘outer’’ and “‘in-
ner’’ are interchanged.

Proor. The proof is obtained from the proof of 2.14 by replacing
B],...,B4 by S\§4,...,S\§1.

3. Basic properties of joinability.

3.1. Summary of Section 3. We consider some easy consequences of the de-
finitions of the joinability properties. In particular, we show that (0)-join-
ability is equivalent to componentwise LLC, defined in 1.1. We also consider
the duality theorem in the plane.

3.2. THEOREM. Suppose that A C R" is open or closed. Then A is outer or
inner (p, c)-joinable if and only if each component of A is outer or inner (p,c)-
Jjoinable, respectively.

ProOF. Let 4;, j € J, be the components of 4. For p > 0, the result fol-
lows easily from the fact that H,(A) is the direct sum of the groups H,(4;),
and HP(A) is the direct product of the groups H”(A4;). For p =0, observe
that one can replace the reduced groups by unreduced groups in the defini-
tion of the (0,c)-joinability properties in 2.2; cf. 3.4 and 3.7. Hence the
above argument is valid in this case as well.

3.3. Notation. Recall that in this paper Hy(X) denotes the reduced 0-di-
mensional singular homology group of a topological space X. In the next
few results we exceptionally need also the unreduced group, which will be
written as Ho(X). Similarly, FO(X ) will be the unreduced O-dimensional
CUech cohomology group of X. If X # (&, these groups are isomorphic to
Hy(X) ® G and H°(X) & G, respectively.

We identify the singular O-simplexes of X with points of the space. Then
each 0-chain can be written as a finite sum g = ), ~v,x; where v; € G and
x; € X. Moreover, g is a reduced cycle if and only if v, = 0. Given points
x,y € X, it is well known that the following conditions are equivalent:

(1) x and y can be joined by a path in X.

(2) vx — vy bounds in X for some nonzero v € G.

(3) As (2) but for all v € G.

3.4. LEMMA. Suppose that X is a topological space and that A C B C X.
Then the following conditions are equivalent:

(1) The sequence Hy(A) — Ho(B) — Ho(X) is fast.

(2) The sequence Hy(A) — Hy(B) — Ho(X) is fast.

(3) Points x,y € A can be joined by a path in B whenever they can be joined
by a path in X.
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ProOF. First observe that if a singular 0-chain bounds in a space, it is a
reduced 0-cycle. This obviously implies the equivalence of (1) and (2). Sup-
pose that (2) is true and that x,y are points in 4 which can be joined by a
path in X. Choose an element v # 0 in G. Then the 0-cycle yx — vy bounds
in X. By (2) it bounds in B. Hence (3) holds.

We finally show that (3) implies (1). Let 4;, i € I, be the path components
of 4. Choose a point a; € A; for each i € I. For a 0-chain g in 4 we let [g]
denote its class in Ho(A4). Now Hy(4) is generated by elements
[vai], ¥ € G, i € I. Assume that u =Y ;[via;] € Ho(A4) is mapped to zero in
Hy(X). For a path component Y of X set I(Y)={i€l:a;€ Y}. Then
2icl(y) Vi@ can be written as a sum of elements of the form vx — vy where
v € G and x, y are some points a; € Y. If (3) is true, these elements bound in
B. Hence u is mapped to zero in Ho(B), and (1) follows.

3.5. THEOREM. Let M be a metric space and let A C M. Then the following
two conditions are equivalent:

(1) A is hlog outer (0, c)-joinable in M.

(2) Every path component of A is pathwise c-LLC;.
The following two conditions are also equivalent:

(3) A is hlog inner (0, c)-joinable in M.

(4) Every path component of A is pathwise c-LLC,.

Proor. This follows directly from 3.4.

3.6. The groups TJ_O(X ) and H°(X). Let X be a topological space. It is well
known that ﬁO(X ) can be identified with the group of all locally constant
functions a:X — G; see [Sp, 6.4.5]. Moreover, we can write
H(X) = ﬁO(X )/K, where K is the group of all constant functions X — G.
If X # &, we may identify K = G. If i : A — X, then * :ﬁO(X) — HO(A) is
the restriction map i*a = a|4. Thus i* = 0 if and only if 4 is contained in a
quasicomponent of X.

We say that two points x,y € A are separated in X if they belong to dif-
ferent quasicomponents, that is, X can be written as a disjoint union of
closed sets E, F with x € E, y € F. Equivalently, there is a continuous map
a: X — {0,1} with a(x) =0, a(y) = 1.

3.7. LEMMA. Let X be a topological space and let A C B C X. Then the
following two conditions are equivalent:

(1) The sequence _ﬁO(X) — }_IO(B) — FO(A) is slow.

(2) The sequence H*(X) — H°(B) — H°(A) is slow.
Moreover, they imply the condition:

(3) If points x,y € A are separated in B, they are separated in X.
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If X is compact metrizable and if A is closed in X, then all three conditions are
equivalent.

ProOF. The equivalence of (1) and (2) follows easily from the considera-
tions of 3.6. We show that (1) implies (3). Assume that x,y € A are separated
in B. Then there is a continuous map 3 : B — {0, 1} with 8(x) =0, B(y) = 1.
By (1) there is v € #(X) with v]4 = B|A. Since v(x) # v(y), x and y are
separated in X. Thus (3) is true.

Suppose that X is compact metrizable, that A is closed in X and that (3) is
true. Let § € ﬁO(B) and write a = ]A. Since A is compact, a4 C G is finite.
Hence we can express A4 as a disjoint union of compact sets 4y,. .., Ax such
that ad; = {v;} for distinct elements ~;,...,v. If x € 4;, y € 4; with i # j,
then B(x) # B(y), which implies that x and y are separated in B. By (3) they
are separated in X. Hence no component of X meets both 4; and 4;. By
Lemma 3.8 below, X can be written as a disjoint union of compact sets
Xi,..., Xy with 4; C X;. Define v: X — G by setting y(x) = ~; for x € X;.
Then v € ITIO(X) and 7|4 = «, and we have proved (1).

3.8. LEMMA. Suppose that X is a compact metrizable space and that
Ay, ..., Ay are disjoint compact sets in X such that no component of X meets
two sets A, Aj. Then X can be written as a disjoint union of compact sets
X1,..., X, with A; C X;.

ProOOF. In the case k = 2, the lemma is given in [Wh, 1(9.3), p. 15]. The
general case follows by induction.

3.9. Terminology. The LLC concepts were defined in 1.1 using open balls
in LLC; and closed balls in LLC;. In the following theorem it is convenient
to replace open by closed and closed by open. We let LLC| and LLC), denote
the new concepts. This only means an arbitrarily small change in the para-
meter c.

3.10. THEOREM. Let M be a metric space and let A C M be compact. Then
the following two conditions are equivalent:

(1) A is cohlog outer (0, c)-joinable in M.

(2) Every component of A is continuumwise c-LLC].
The following two conditions are also equivalent:

(3) A is cohlog inner (0, c)-joinable in M.

(4) Every component of A is continuumwise c-OLLC.

Proor. We prove only the first part, since the proof of the second part is
rather similar. Suppose that (1) is true, that C is a component of 4 and that
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a€ M, r>0.Let x,y € CNB(a,r). By (1), the sequence
(a) H°(4) — H°(4N'B(a,cr)) — H (4 N B(a,r))

is slow. Since x and y are not separated in A, it follows from 3.7 that they are
not separated in A4 N B(a, cr). Since this set is compact and since the quasi-
components of a compact set are components, there is a component of
AN B(a,cr) containing x and y. Hence (2) is true.

Conversely, assume that (2) holds. Let a € M and r > 0. It suffices to show
that (a) is slow. Let x,y € 4 N B(a, r) be points which are not separated in 4.
Since A is compact, these points belong to a component C of 4. By (2), there
is a continuum « with {x,y} C a C CN B(a,cr). Hence x and y are not se-
parated in 4 N B(a, cr). From 3.7 it follows that (a) is slow.

3.11. THEOREM. (Duality in the plane). Let U be open in R* and let
X = R*\ U. Then:

(@) The components of U are pathwise c-LLC, if and only if the components
of X are continuumwise c-LLC).

(b) The components of U are pathwise c-LLC, if and only if the components
of X are continuumwise c-LLC].

(c) The components of U are pathwise c-LLC if and only if the components
of X are continuumwise c-LLC'.

Proor. This follows directly from 2.7, 3.5 and 3.10.

3.12. REMARKS. 1. In this generality, Theorem 3.11 seems to be new.
However, several special cases are well known, at least quantitatively. For
example, assume that X is connected. Then the components of U are simply
connected domains in R?. For such domains, the property c-LLC, is known
to be quantitatively equivalent to the c-John property [NV, 4.5]. Recall that
¢-LLC; is quantitatively equivalent to c-bounded turning. Hence we obtain
the result [GNV, 5.9]: A continuum X C R? is of ¢-bounded turning if and
only if, quantitatively, all components of R? \ X are c-John domains.

Next assume that U is connected. We see that U is ¢-LLC if and only if
each component C of X is ¢-LLC’. One can show that this happens if and
only if C is either a point or a closed K-quasidisk, where ¢ and K depend
only on each other; cf. [Ge;, Lemma 4]. Consequently, a domain U C R? is
¢-LLC if and only if, quantitatively, it is a K-quasicircle domain. This was
proved in [GM, 2.21].

2.If XCRis compact and continuumwise c-LLC;, it is pathwise -
LLC,; for every ¢ > c; see [NV, 4.3]. I do not know whether the corre-
sponding result is true for LLC,.
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4. Joinability and maps.

4.1. Summary of Section 4. We study the behavior of the joinability proper-
ties under various maps. It is almost obvious that they are quantitatively
preserved by L-bilipschitz maps. We show in 4.3 that, more generally, they
are quantitatively invariant under 7-quasisymmetric maps. Furthermore,
hlog (and cohlog) (p, c)-joinability is quantitatively invariant under n-quasi-
mobius maps. In particular, this is true for K-quasiconformal maps
f: R" — R". In 4.11 we show that, under certain additional conditions, a K-
quasiconformal map f : G — G’ quantitatively preserves (p, c)-joinability if
p > 1. For p = 0 this is not true. Hence the result is relevant only for n > 3,
and it seems to be one reason for the striking difference between the quasi-
conformal theory in the plane and in higher dimensions.

4.2. Quasisymmetric maps. A growth function is a homeomorphism
n:[0,00) — [0,00) such that n(¢) > ¢ for all 7. Suppose that M and M’ are
metric spaces, that 7 is a growth function and that 4 C M. An embedding
f 4 — M is said to be n-quasisymmetric if

fa — fx| |a — x|
<
o —fx| = 7’(|b.— x})
for all triples of distinct points x,a,b in A. If co € A C M, an embedding
f:4— M is called n-quasisymmetric if f(co) = oo and if f | 4\ {oo} is 7-
quasisymmetric. For example, an L-bilipschitz map is n-quasisymmetric with
n(t) = L%t

4.3. THEOREM. Suppose that M and M’ are metric spaces, that A C M and
that f : A — M’ is n-quasisymmetric. If A is hlog outer (p,c)-joinable, then fA
is hlog outer (p,c')-joinable with ¢ = c/(c,n). A similar statement is valid for
the other three joinability properties.

Explicit bound. The theorem is true with any ¢’ > 7(c).

Proof We prove the case where A4 is hlog inner (p, ¢)-joinable; the other
three cases are rather similar. Let ¢ > n(c). We show that f4 is hlog inner
(p, ¢')-joinable.

Let xX =fxefA\{oo} and let r>0. Set B, =f4ANB(X,r),
B, = fANB(¥,c'r) and

t=sup{la—x|:aef B}

We may assume that ¢ > 0. The number ¢ is finite, since quasisymmetric
maps map bounded sets onto bounded sets. Setting By = 4 N B(x, t) we have
f7'B| C By. Hence f defines a map f, : A\ B; — fA4 \ B,.
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Setting B, = A N B(x, ct) we show that /B, C B,. Let b € B, and choose
A > 1 such that n(Ac) = ¢’. Next choose a € f~! B with |a — x| > t/\. Now

b — x|
|a — x|

t
—_ ¥l < — ¥l < __c__ -
/b x|_n( )lfa x|_n<t/)\)r cr.
Hence fB, C B). Thus f~! defines a map g, : f4\ B, — A\ B,, and we ob-
tain the commutative diagram

Hp(fA\ By) — Hp(fA\ By) — H,y(fA)

= 2 I

Hy(A\ Bz) —— Hp(A\ Bi) —— Hy(A).

Here f, is an isomorphism, and the lower row is fast. It follows that the up-
per row is fast. Hence fA4 is hlog inner (p, ¢)-joinable.

4.4. Quasimobius maps. Let M be a metric space and let a,b,c,d be dis-
tinct points in M. The cross ratio of the quadruple (a, b, c,d) is the number

|a — bllc —d|

e dl ===

if all points are finite. If one of them is oo, the corresponding factors are
canceled out.

Let M’ be another metric space, let A C M and let  be a growth function;
see 4.2. An embedding f : 4 — M’ is n-quasimébius if

fa, fb,fe,fd| < n(la,b,c,d|)

for all quadruples (a,b, c,d) of distinct points in 4. We recall that a home-
omorphism f : R" — R" is n-quasim®&bius if and only if, n-quantitatively, 1 is
K-quasiconformal. Furthermore, an 7-quasisymmetric map is #-quasimobius
with 0 = 6,,.

Neither the inner nor the outer joinability properties are invariant under
quasimdbius maps. However, we show in 4.6 that (p, ¢)-joinability is quan-
titatively preserved by n-quasimobius maps. We first prove an auxiliary re-
sult, for which we introduce some terminology. By an annulus in a metric
space M we mean a set

R=R(a;r;,r) ={xeM:r <|x—a|l <nr},

where a € M and 0 < r; < ry < oo. Let s(R) denote the ratio r/ry. If E and
F are subsets of M such that one of them is contained in B(a,r;) and the
other in M \ B(a,r,), we say that R separates E and F. For ¢ > 1, the sets E
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and F are c-separated in M if there is an annulus R with s(R) > c separating
Eand F.

A reader interested only in the case M = M’ = R" of Theorem 4.6 can re-
place Lemma 4.5 by the simpler version where f is assumed to be a M&bius
map of R". In this case the lemma is known to hold with ¢y =1 and
h(c) = c'/? 4 ¢71/2 — 1; see [Ge,, p. 174]. However, even in this case the de-
tails are a bit tedious; they are given in [Wa, pp. 71--75]. If 4 C R" and if
f: A — R" is n-quasimdbius, we can factorize f = ugv where g is 7-quasi-
symmetric and u,v are M6bius maps of R". To prove the quasiméobius in-
variance of (p,c)-joinability in R” it therefore suffices, in view of 4.3, to
prove the invariance under Mobius maps. This can be done as in 4.6 repla-
cing 4.5 by the simplified version.

4.5. LEMMA. Let 1 be a growth function. Then there are a constant cy > 1
and a homeomorphism h : [cy, 00) — [1,00) such that the following is true:

Let M and M' be metric spaces, let A C M, and let f : A — M be n-quasi-
mobius. Let ¢ > ¢y and let E,F C A be c-separated in A. Then fE and fF are
h(c)-separated in fA.

Explicit bounds. If M = R" and f is Mobius, the lemma is true with
co=1, h(c) = c'/? 4+ ¢='/2 — 1 and also with ¢y = 16/9, h(c) = 3./c/4. In the
general case one can choose ¢y = 1 +6/n71(1/7), h(c) = (Tn(6/(c — 1)))~"/2.

PROOF. Suppose that f : 4 — M’ is n-quasimSbius and that E, F C A are
c-separated in A for some ¢ > 3. We may assume that both sets £, F contain
at least two points. Choose an annulus R = R(q;r, cr) separating E and F in
A. We may assume that E C B(a,r) and F C 4\ B(a,cr).

Case 1. d(fE) < d(fF). Let x,y € E with x # y, fx # co. Let u,v € F with
u # v, u# oo. Consider the cross ratio 7 = |x,y,u,v|. Assuming v # co we
obtain

u— x| +|x—y| + |y —v|

2 [ P
e |x—u2;|ry—v| p=r)
=2 (c—l c_1) +(c——11)r)
<

since ¢ > 3. This is easily seen to be true also if v = oo
Suppose first that fF is bounded. Choose v € F so that
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() 3lfu—fv| 2 d(fF) 2 d(fE) > |fx = fy.

We estimate the cross ratio f7 = |fx,fy, fu,fv|. Since d(fE) < d(fF) < oo,
none of the points is co. Write ¢ = |[fx — fy|/|fx — fu| and a = t/f 7. Applying
(2) we get

Iy = U =S+ Vo —ful + Vu=fol 5 o |fx — ful
Fipl S e <343 |+154+3/z.

a =

Since f7 < n(7), these estimates yield

2
(3) 4tt+ 3 = 7’(cE 1)'

Set ¢o =1+ 6/n7'(1/7). Then n(6/(co — 1)) = 1/7. Since n(s) > s for all s,
we have ¢y > 43.

Assume that ¢ > ¢o. The function g(s) = s?/(4s + 3) is increasing in s > 0.
Since the right-hand side of (3) is less than 1/7 and since g(1) = 1/7, we have
t < 1. Hence > = (4t +3)g(t) < 7g(t). By (3) this implies ¢ < ¢(c), where
@ : [cg,00) — (0,1] is the decreasing homeomorhism

o= ()"

For a fixed x we consider the number

s=sup{|fy —fx|:y € E}.
For all y € E and u € F we have

Vy = fx| = tlfx — ful < @()lfx — ful.

Hence fE C B(fx,s) and fF C fA\ B(fx,s/y(c)). Setting h(c) = 1/p(c) we
get a homeomorphism ¢ : [y, 00) — [1,00) satisfying the condition of the
lemma.

Next assume that fF is unbounded. Choose ¢y as above and assume that
¢ > cp. If 0o € fF, we choose fv = co and obtain f7 = |[fx — fy|/|fx — fu| = ¢,
which yields 1 < n(6/(c — 1)) and a better estimate than above. Assume that
0o ¢ fF. If oo € fE, we choose fy = co. Then f1 = |fu — fv|/|fx —fv| = 1 as
fv — oo, and we obtain 1 < n(6/(c — 1)) by (1). This implies ¢ < ¢, a con-
tradiction. Hence oo¢fE. Now we can choose v such that
fr=tlfu—fy|/|fy —fv] is arbitrarily close to ¢, and we again get
1< n(6/(c—1)).

Case 2. d(fF) < d(fE). Now choose x,y € F and u,v € E, and consider
the cross ratio 7 = |x, y,u, v|. Since
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pe—ul =yl + =y __6

<
[ P e R

the estimate (1) holds again. We can then proceed as in Case 1 and obtain
the same ¢y and 4. In this case fF lies inside and fE outside of the separating
annulus.

4.6. THEOREM. Suppose that M and M’ are metric spaces, that A C M and
that f : A — M is n-quasimébius. If A is hlog (p,c)-joinable, then fA is hlog
(p, ¢ )-joinable with ¢’ = '(c,n). The corresponding statement holds for cohlog
Jjoinability.

Explicit bounds. If M = M’ = R" and f is M0bius, the theorem is true with
¢ =2 If M=M =R" and f is n-quasimdbius, one can choose
¢ =2n(2c%)* If 0o € A or o € fA, this can be replaced by 27(c)* or n(2¢?),
respectively. In the general case the theorem holds with any ¢’ > 1 + 6n(7¢?).

PrROOF. We may assume that ¢ > 1. The map g =f"!:f4 — 4 is /-qua-
simSbius with 7/(r) = 7' (r™")"". Let ¢y and h: [co,00) — [1,00) be the
quantities given by Lemma 4.5 for the growth function 7/. We show that the
theorem holds with any ¢’ > h~!(c) > co.

We first prove that f4 is hlog outer (p,c’)-joinable. Let b € f4 \ {oco} and
r>0. Set B =fANB(b,r), B, =fANB(b,c'r). By 4.5, there is an annulus
R(a;s,h(c')s) in A separating the sets gB] and g[f4\ B;]. Thus either
gB| C B(a,s) or gB; C A\ B(a,h()s).

Case 1. gB| C B(a,s). Write t = h(c')s/c. Since ¢ > h~!(c), we have ¢ > .
Set By = AN B(a,t), B, = AN B(a,ct) = AN B(a,h(c')s). Now f and g de-
fine maps f; : B, » B5 and g : Bj — B;, and we obtain the commutative
diagram

Hp(Bi) _— Hp(Bé) — Hy(fA)

= 2 I

HP(BI) - Hp(B2) —— HP(A)'

Since A is hlog outer (p, ¢)-joinable, the lower row is fast. Since f, is an iso-
morphism, it easily follows that also the upper row is fast.

Case2. gBy C A\ B(a,h(c')s). Set By = ANB(a,s), B, =ANB(a,cs).
Now f and g define maps f; : 4\ By — Bj and g; : By — A\ B,, and we have
the diagram
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Hy(By) —— Hp(By) —— Hy(fA)

l Tfl. Tf.

Hp(A\ Bz) — Hy(A\ By) — Hy(A).

Since 4 is hlog inner (p,c)-joinable, the lower row is fast. Hence the upper
row is again fast, and we have proved that f4 is hlog outer (p,¢’)-joinable.
The proofs for the inner joinability and for the cohlog case are rather simi-
lar.

4.7. THEOREM. For a set A C R", the following conditions are quantitatively
equivalent:

(1) A is hlog (p, c)-joinable.

(2) fA is hlog outer (p, c)-joinable for every Mobius map of R".

(3) fA is hlog inner (p,c)-joinable for every Mibius map of R".
The statement is also true with hlog replaced by cohlog.

Explicit bounds. (1) implies (2) and (3) with ¢+ 2¢2. Each of (2) and (3) im-
plies (1) with ¢+— 2¢ + 1. See also 4.16.

Proor. By 4.6, (1) implies (2) and (3) quantitatively. Suppose that (2) is
true. With f = id it implies that 4 is hlog outer (p,c)-joinable. Let a € R"
and let r > 0. Choose an inversion f of R" which interchanges the spheres
S(a,r) and S(a,3cr). By (2) and 2.5, the set fA4 is hlog outer (p,3c)-joinable
in R". Hence the sequence

H,(fAN B(a,r)) — H,(fAN B(a,3cr)) — H,(f4)
is fast. This is isomorphic to the sequence
H,(A\ B(a,3cr)) — Hy(4\ B(a,r)) — Hp(A).

Hence 4 is hlog inner (p,3c)-joinable. The proofs for (3) = (1) and for the
cohlog case are rather similar.

4.8. Quasiballs. If f : R" — R" is K-quasiconformal, the set fB" is an open
K-quasiball, and fB" is a closed K-quasiball. By [AVV, 5.23], f is n-quasi-
mobius with n = ng. Hence it follows from 4.6 that open and closed quasi-
balls are (p, ¢)-joinable with ¢ = ¢(K) forall 0 < p < n—2.

4.9. Quasiconformal maps. Suppose that D and D’ are domains in R", and
let f: D — D' be a K-quasiconformal map (homeomorphism). Suppose also
that D is (p, c)-joinable. We shall study under which conditions D' is (p,c’)-
joinable with ¢ = d(c,K,n). If f extends to a K-quasiconformal map
g : R" — R", this follows from 4.6 as in 4.8. In the general case, D’ need not
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be (0, ¢’)-joinable even if D is a ball. For example, D’ can be the infinite tube
B"! x R', which is not inner (0)-joinable. However, Gehring [Ge;, p. 174]
observed that if n > 3 and if D = B", then 0D’ is ¢-LLC with ¢/ = ¢/(K,n).
By the duality theorem, this means that D’ is (n — 2, ¢’)-joinable. We shall
show in 4.13 that D’ is indeed (p,c’)-joinable for all 1 <p <n-—2. (A still
stronger result will be given in 5.27.) This will follow from the more general
result 4.11, in which D is only assumed to be QED and to satisfy a homo-
logical triviality condition.

We recall that a domain D C R” is called ¢-QED (quasiextremal distance
domain) if

M(E,F) < cM(E, F; D)

for each pair of continua E,F C D; here M(E, F) is the modulus of the fa-
mily of all paths joining E and F in R", and M(E, F; D) is the modulus of the
subfamily whose members are in D. The concept was introduced by Gehring
and Martio [GM], who proved the n-quantitative implications c-uniform
= ¢-QED = ¢-LLC [GM, 2.11, 2.18].

We need a topological auxiliary result:

4.10. LEMMA. Suppose that 0 <p <n—1, that U is open in R" with
H,1(U) =0, that F is closed in U and that z is a p-cycle in U\ F, not
bounding in U\ F. Then there is a component Fy of F such that z does not
bound in U\ F.

PrOOF. Let @ be the family of all open sets V' C U such that U\ F C V
and such that z does not bound in V. Thus U\ F € . With the aid of
Brouwer’s reduction theorem [HW, p. 161] we show that ¢ contains a max-
imal element. It suffices to show that if V; C ¥V, C ... is an ascending se-
quence in @, then the union V of the sequence is in $. Assume that V¢ .
Then z = 0g for some g € S, (V). Since |g| is compact, |g| C ¥ for some j,
and we get the contradiction V;¢ &.

Let V' be a maximal member of &. It suffices to show that the set
A = U\ V is connected, since then A4 is contained in a component of F. If 4
is not connected, we can express 4 as a disjoint union 4 = 4; U 4,, where
the sets 4; are nonempty and closed in 4 and hence in U. The sets
Vi = U\ 4; are open. Since V' is maximal in @, z bounds in ¥ and in V;.
Consider the exact Mayer--Vietoris sequence

Hp+1(V1 U V2) — Hp(V1 n V2) — Hp(Vl) @HP(VQ).

Here ViUV, = U and VNV, = V. The class u of z in H,(V) is mapped to
zero by the second map. Since H,.(U) =0, this implies u = 0. Hence z
bounds in ¥, which is a contradiction.
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4.11. THEOREM. Suppose that 1 < p <n—2, that D C R" is a c-QED (p, ¢)-
Jjoinable domain and that f : D — D' is K-quasiconformal. Suppose also that
H,.1(D) = 0. Then D' is (p, c')-joinable with ¢ = '(c,K,n). Moreover, CD' is
(n—2 — p,c")-joinable with ' = 2¢ + 1.

ProOOF. Observe that the hypotheses imply that n > 3. The last statement
follows from the first part and from the absolute duality theorem 2.8. By 4.7
it suffices to show that D’ is outer (p,c’)-joinable, since the hypothesis is
Mobius invariant. To this end, let yo € D', r > 0, and let z’ be a p-cycle in
D' N B(yo,r) bounding in D'. Suppose that ¢/ > 1 is such that z’ does not
bound in D' N B(yy, c'r). It suffices to find an upper bound ¢’ < ¢(c, K, n).

Set F = f~1[D'\ B(yo,’r)]. The map f~! carries z/ to a p-cycle z, which
bounds in D but not in D \ F. By 4.10 there is a component Fy of F such that
z does not bound in D \ Fy. We can write z = z; + ... + z; such that the sets
|zj| are the components of |z|. Since p > 1, each z; is a p-cycle, and some z;
does not bound in D\ Fy. We may assume that z; does not bound in D \ Fp.
We shall prove the inequalities

(1) d(|z1, Fo) < cd(|z1]),

() d(|z1], Fo) < cd(Fo).

Assume that (1) is false. Fix a point a € |z;|. Write s =d(|z;|) and
A =d(|z1], Fo)/cs. Then A > 1 and |z;| C B(a, As). Since D is (p,c)-joinable,
z; bounds in D N B(a,cAs) C D\ Fy, which is a contradiction.

Next assume that (2) is false. Now fix a € Fy and set s = d(Fp). Then
|z1| € D\ B(a,cs). Since D is (p,c)-joinable, z; bounds in D\ B(a,s) C
D\ Fy, which is again a contradiction.

Let 1 <t<¢ and write U=f"![D'\ B(yo,tr)]. Then F C U. Choose
points a, b € Fy such that d(a, |z1|) < 2d(Fo, |z1|) and |a — b| > d(Fy)/3. Since
Fy is a connected subset of the open set U, we can join the points a,b by an
arc o C U. Then d(a)>|a—b|>d(F)/3 and d(a,|z1]) <d(a,|z1]) <
2d(Fy, |z1|). Hence (1) and (2) yield

d(a, |21]) < 6c(d(a) Ad(|z1])-

Since D is ¢-QED, a standard modulus estimate [GM, 2.6] gives
M(a, |z1]; D) > q(c,n) > 0. On the other hand, the sets fa and fz;| are se-
parated by the annulus R(yo;r, tr), and hence

M(fo,flz1]; D) < wai(logt)' ™",

where w,_; is the area of S"~!. Since f is K-quasiconformal, these estimates
imply
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g(c,n) < Kw,_(logt)' ™.
Letting t — ¢’ gives the desired bound ¢’ < ¢i(c, K, n).

4.12. COROLLARY. Let D C R" be a c-QED domain such that CD is c-LLC,
and let f:D— D be K-quasiconformal. Then CD' is ¢-LLC with
d=d(c,K,n).

PrOOF. The condition LLC implies that CD is connected and hence
H,_1(D) = 0. The result follows from 4.11 together with 2.7 and 3.5.

4.13. CorOLLARY. Let n> 3 and let f : B* — D' be a K-quasiconformal
map. Then D' is (p,c’)-joinable for all 1 <p <n-—2 with ¢ = J(K,n), and
hence CD' is (q,2¢ + 1)-joinable for all 0 < g < n — 3.

4.14. ExampLE. We show that 4.11 is not true without the condition
H,1(D) = 0. Let Dy C R® be the cylinder B2 x (—1,1), let 1/2 <¢< 1, and
let C be the suspension (double cone) of 32(1 /2) with *te; as suspension
points, e3 = (0,0,1). Then D = Dy \ C is a domain in R?.

The components C and CDy of CD are closed Ky-quasiballs with a uni-
versal Ky. By 4.8, they are (0, c)-joinable with a universal ¢. By 2.8, D is
(1,3c)-joinable for all . An elementary but lengthy cases-and-subcases ar-
gument shows that D is ¢;-uniform in the ordinary sense with a universal c;.
Hence D is ¢,-QED with a universal ¢; by [GM, 2.18]. Thus D satisfies the
conditions of 4.11 for p =1 except that H,(D) # 0. Let D; be the infinite
tube B x R', and let fo: Dy — D), be a K-quasiconformal map such that
foB* = B? and fy(x); — £oo as x — +e3. Then f; defines a K-quasiconformal
map of D onto a domain 0, and D' is not outer (1, ¢')-joinable with any ¢’
independent of ¢.

4.15. QuEsTION. Suppose that D C R?® is a hlog trivial (1, c)-joinable do-
main and that f : D — D’ is K-quasiconformal. Is D’ (1,c)-joinable with
¢ = ¢(K)? In the possible counterexample D cannot be (0, ¢)-joinable, since
then 5.22 would imply that D is ¢/-uniform and hence ¢’-QED, contrary to
4.11.

4.16. Relative versions. Since each joinability property is, by 2.5, quanti-
tatively equivalent to the corresponding relative property in the space M, all
results of this section have relative versions, which follow directly from the
corresponding absolute results. However, one can often get better bounds
for the constants by rewriting the proof in the relative setting. In 4.7, for
example, (2) implies (1) with the same constant c if joinability is understood
to be relative to R".
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5. Joinability, John and uniformity.

5.1. Summary of Section 5. We study the relations between the joinability
properties of an open set U C R" and the John and uniform properties of U,
all taken in the p-dimensional sense. In order to get better results we slightly
generalize the definition of hlog (p, ¢)-uniform domains by setting the uni-
formity condition only on null-homologous p-cycles. Moreover, the set U is
not required to be connected. These sets U are called weakly (p, ¢)-uniform,
and the weakly (p, ¢)-John sets are defined analogously. We show in 5.5 that
weakly (p)-John sets are inner (p)-joinable and in 5.6 that weakly (p)-uni-
form sets are (p)-joinable. The converse results 5.21 and 5.22 need some ad-
ditional conditions. Some applications are given in 5.24--5.27.

5.2. Weakly John and uniform sets. We first recall the known results in the
case p = 0. A c-uniform domain D C R" is ¢-LLC with ¢ = ¢(c). The im-
plications “uniform = QED = LLC” of [GM] give this with ¢ = ¢/(c,n),
but a direct proof with ¢ = ¢/(c) is easy; cf. [V, 4.7].

The converse is false as in seen from the annuli R(a;r,r;) with r,/ry close
to 1 or from the domain between two parallel planes in R*. However, the
converse is true for simply connected planar domains D, for which ¢-LLC
implies that either #0D <1 or D is a K-quasidisk with K = K(c) [Ge,,
Lemma 4].

A c-John domain is ¢-LLC; with ¢’ = ¢/(c). The proof is easy but seems to
belong to the folklore. The converse is again true for simply connected pla-
nar domains [NV, 4.5] and, more generally, for K-quasiconformal images of
B" [He, 3.1].

Uniform domains of order p have recently been studied by J. Heinonen
and S. Yang [HY] and by P. Alestalo [Al]. In [HY] the definition is based on
homotopy; in [Al] both homotopical and homological versions are con-
sidered. Since we do not consider homotopical uniformity in this paper, we
shall simplify the terminology by omitting the word ‘“homologically”.

We first give a somewhat generalized definition for (p, ¢)-uniformity. In-
deed, we allow that the open set U is not connected, and the uniformity
condition is only required to hold for null-homologous cycles.

Suppose that U is open in R, that 0 < p < n — 2 and that ¢ > 1. We say
that U is weakly (p,c)-John if for every p-cycle z bounding in U there is a
(p + 1)-chain g such that 8g = z and

@) d(x,|z]) < cd(x,0U) forall xe€]lg|
If, in addition, g satisfies the condition

(T) d(lg]) < cd(|z]),
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the set U is weakly (p, c)-uniform. We say that (L) is the lens condition and
(T) is the turning condition. Together they are called uniformity conditions.

As with joinability, U is said to be weakly (p)-John or weakly (p)-uniform
if it is weakly (p, ¢)-John or weakly (p, c)-uniform for some c, respectively.

We see at once that U is weakly (p, ¢)-John or weakly (p, ¢)-uniform if and
only if each component of U has this property.

It is possible to characterize these properties purely in terms of homology,
without mentioning cycles and chains; see 5.10 and 5.14.

These properties depend also on the coefficient group G, and in a complete
notation, one should write (p, ¢, G)-uniform etc. Compared with the termi-
nology of [Al], we see that U is a homologically (p, c)-uniform domain in the
sense of [Al] if and only if

(1) U is weakly (p, ¢)-uniform,

2 Hp(U) =0,

(3) U is connected,

(@) co¢ U,

6 G=1Z.

Furthermore, U is weakly (0, ¢)-uniform if and only if, quantitatively, each
component of U is a c-uniform domain in the ordinary distance cigar sense.
The corresponding statement holds in the John case.

We say that U is (p, c)-uniform if it satisfies the conditions (1),(2),(3). Si-
milarly, U is (p,c)-John if it satisfies these conditions with “uniform” re-
placed by “John” in (1).

We have not excluded the case oo € U. The conditions (L) and (T) make
sense in the natural way also in this case; recall that d(a, 00) = oo for a € R”
and d(oco0,00) =0. In particular, (L) is true for all ¢>1 whenever
x = oo € |g|. However, we show in 5.4 that removing the point oo from U
does not essentially change the John and uniform properties of U. The proof
is based on the following topological observation, which will be useful also
later:

5.3. LEMMA. Suppose that 0 <p < n—2 and that A,V C R" such that V is
open, H,(V) =0, and CV C int A. Then the map H,(ANV) — Hy(A) is an
isomorphism.

PROOF. Since AU V = R", the lemma follows from the exactness of the
Mayer--Vietoris sequence

H, ((AUV) = Hy(ANV) — Hy(4) ® Hy(V) — Hy(AU V).

5.4. THEOREM. Let U be an open set in R" with oo € U and let ¢ > 1. Then:
(1) U is weakly (p,c)-John if and only if U \ {oo} is weakly (p, c)-John.
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(2) U is weakly (p,c)-uniform if and only if U\ {oo} is weakly (p,c)-uni-
form.

Proor. Write Uy = U \ {00} and suppose first that U is weakly (p,c)-
John. Let z be a p-cycle bounding in Uy. Then z = dg for some chain g in U
satisfying the lens condition 5.2(L). If co ¢ |g|, there is nothing to prove. As-
sume that oo € |g|. Choose R > 0 such that the ball B(R) contains |z| U CU.
Set A= (c+1)/(c—1) and 4 = |g| UCB(AR). By 5.3, z = g, for some g in
A\ {oo}. We show that g, satisfies the lens condition in U. Only points
x € |go| \ B(AR) need to be considered. For these we have

dix,lz[) _[x[+R_A+1
< < = c.
dx,0U0) “x[-R-A-1 ¢

Hence U is weakly (p, ¢)-John.

Conversely, assume that Uy is weakly p-John. Let z be a p-cycle bounding
in U. If co¢|z|, then z bounds in Uy by 5.3. Hence z = dgy with some
(p + 1)-chain go in Uy C U satisfying the lens condition. If oo € |z|, we may
assume that |z| # {oo}. Fix a point a € |z| \ {oo}. Choose a ball B(a,R)
containing CU, and set A = ¢/(c — 1), A = |z] U CB(a,2\R). By 5.3, there is a
chain g; in 4 such that 8g; = z — zy with co¢ |z9|. Moreover, the p-cycle zy
bounds in Up by 5.3. Hence zy = dgo with some gy satisfying the lens condi-
tion in Uy. Writing g = go + g1 we have Jg = z. We show that g satisfies the
lens condition in U.

Suppose that x € |g| C |go| U |g1| and that x¢ |z|. Set t = |x — a|/R.

Case 1. t > X\. Now d(x,0U) > (¢ — 1)R, and hence

d(x,|z]) < |x—a| = Rt < td(x,0U)/(t — 1) < cd(x,0U).
Case 2. t < ). Since |g1| N B(a, AR) C |z|, we have x € |go|. Since |zo| C 4,
we obtain
d(x,|z]) = d(x,A) < d(x,]|z0|) < cd(x,0U).

Hence U is weakly p-John.
The proof for the uniform case is similar but simpler, because the turning
condition excludes the case oo € |g| in the first part of the proof.

5.5. THEOREM. If an open set U C R" is weakly (p,c)-John, U is inner
(p,2c + 1)-joinable in R".

PROOF Write ¢ =2c+ 1. Let a€ R" and r > 0. Let z be a p-cycle in
U\ B(a,c'r) bounding in U. We must show that z bounds in U\ B(a,r).
Since U is weakly (p, ¢)-John, z = g for some (p + 1)-chain g satisfying the
lens condition in U. If |g| N B(a,r) = &, there is nothing to prove. In the
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opposite case we fix a point x € |g| N B(a, r). Now
2cr =cr—r<d(x,lz|) < cd(x,0U),

and hence B(a,r) C B(x,2r) C U. Applying 5.3 with V = CB(a,r) we see that
z bounds in U \ B(a,r).

5.6. THEOREM. If an open set U C R" is weakly (p,c)-uniform, U is
(p,2c + 1)-joinable in R".

Proor. The inner joinability follows from 5.5 and the outer joinability
follows easily from the turning condition 5.2(T).

5.7. Discussion. The converse results for 5.5 and 5.6 are not true. For ex-
ample, the (p)-John property is easily destroyed by a countable set, which
has no effect on the joinability properties. However, results in the converse
direction seem to be extremely useful in the applications. It is clear that some
topological conditions are needed. Indeed, if H,_1(U) = 0 or, equivalently,
X = CU is connected, then the converses of 5.5 and 5.6 are quantitatively
true in the case p =n—2. This can be proved with the Mayer--Vietoris
technique. However, for p < n — 3 the situation becomes more complicated.
Let us consider the case n = 3, p = 0. Suppose that U C R? is a domain with
X = CU c S2. The following examples show that there are at least four es-
sentially different ways in which the (0,c)-John property of U can break
down:

(1) X consists of a finite but large number of points scattered in S2. Al-
ternatively, X consists of two closed caps so that S?\ X is a narrow neigh-
borhood of the equator.

(2) X is a fairly dense net of lines of latitude and longitude. Alternatively,
X = 82\ (D U D;) where D; and D, are small open caps centered at the
poles.

(3) X = 8%\ D where D is a small open cap.

(4) X is a long spiral-like arc from the north pole to the south pole.

In (1) and (2), U is inner (p,c)-joinable for p = 0,1 with a reasonable c,
but the topological properties of U and X are complicated, because
Hy(X) #0in (1) and H{(X) # 0 in (2). In the last two cases, X and U are
topologically very simple, but the inner (0, ¢)-joinability of U breaks down in
(3) and the inner (1, ¢)-joinability in (4).

We shall prove a result (Theorem 5.21), which implies that an open set U
in R? is weakly ¢-John if H(X) = H'(X) =0 and if U is inner (0,c)- and
(1,c)-joinable; ¢’ = /(c). Replacing inner joinability by joinability we obtain
an analogous sufficient condition for weak (0, ¢')-uniformity.

Unfortunately, I have not been able to prove the cases p < n — 3 without
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deeper tools than those used so far in this paper. Indeed, we shall make use
of results on the canonical homomorphisms in the Cech theory, obtained by
E.E. Floyd, E. Dyer and O. Jussila in the fifties and early sixties. This theory
will be summarized in 5.15. Before that, we characterize the John and uni-
form properties of an open set U with the aid of inflations of OU.

5.8. Relative inflation. For A C R" and r > 0, the ordinary r-inflation of 4
is
B(A,r) ={x € R":d(x,d) <r} = | | B(a,r).
acA
Let V' be open in R" with V # R". For x € V we set 6(x) =d(x,0V) =

d(x,CV). For A C V and 0 < t < 1, the t-inflation of A relative to V is the
open set

B(4,1,V) = | B(a, 16(a)).

acA

The definition makes sense also if V¥ is open in R" and if R*"NdV # &,
oo A. If co € A, we set

B(A4,t,V) = B(4\ {0}, t, V) U {00},
but this set is not open in general.

5.9. LEMMA. Suppose that A C B C U C R" and that U is open, A is com-
pact, and #A > 2. Then the following conditions are quantitatively equivalent:

(1) d(x,A4) < cd(x,0U) for all x € B,

(2) BN B(0U,1/c,04) = &.

Explicit bounds. Each of the conditions implies the other with the constant
c—ce+ 1.

PrROOF. We may clearly assume that R” N QU # (. Assume that (1) holds.
For x € R" write 6(x) = d(x, ). Assume that x € BN B(U,1/(c + 1), CA4).
If x = oo, this is clearly impossible. If x # oo, there is z € U \ {oo} such
that (c + 1)|x — z| < é(z). Since

6(z) < 8(x) + |x — z| < ed(x,0U) + |x — z] < (¢ + 1)|x — 2|,

this is a contradiction,

Conversely, assume that (2) is true. Let xe€ B. If x=o0, then
d(x,0U) = oo, and (1) holds. If x # oo, then for all z € U \ {oo} we have
|x — z| > 6(z)/c, and hence

8(x) <68(z) +|x —z| < (c+ 1)|x —z|.
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Thus (1) follows with c+— ¢ + 1.

5.10. THEOREM. Let U be an open set in R". Then the following conditions
are quantitatively equivalent:

(1) U is weakly (p, c)-John.

(2) If z is a p-cycle bounding in U and if #|z| > 2, then z bounds in
U\ B(0U,1/c, Clz|).

(3) If A C U is compact with #A4 > 2, the sequence

H,(A) — H,(U\ B(8U,1/c,CA)) — H,(U)
is fast.

Explicit bounds. The conditions (2) and (3) are equivalent with the same
constant ¢, and each of (2) and (1) implies the other with ¢+ ¢ + 1.

ProOF. The conditions (2) and (3) are obviously equivalent with the same
constant ¢. The quantitative equivalence of (1) and (2) follows almost di-
rectly from 5.9.

5.11. Mébius inflation. In order to obtain a variation of 5.10 for weakly
uniform open sets we introduce a new kind of inflation, based on cross ra-
tios. Let ¥ be open in R" with #0V >2. Forac V, yelVand 0 <t <1
we set

Qa,t,V,y)={xeV:|xayzl <t forall zelV}.

This set is Mobius invariant: If ¢ is a Mobius map of R", then
Olpa, t, oV, @y) = pQ(a,t, V,y). It is often convenient to normalize the si-
tuation so that a=o00 or y= 0. Since |x,a,00,z] =|x —ada|/|la—z| and
|x,00,p,2] = |y — z|/|x — y|, we get

(1) Q(a,t,V,00) = B(a,td(a, CV)), Q(co,1,V,y) =CB(y, M(y)/1),
where
M(y) =max {|y —z|:ze CV}.

From these considerations we see:

2) Q(a,t,V,y)C V.

(3) In all formulas above we can replace CV by 9V

(4) The set Q(a,t, V,y) is a generalized open ball, that is, a MObius image
of B".

We next consider the dependence of Q(a,t, V,y) on y. We normalize
a = oo. Clearly M(y') <2M(y) for all y,y’ € CV. Suppose that ¢ < 1/3. If
x € Q(oo,t, V,y), then



METRIC DUALITY IN EUCLIDEAN SPACES 279

x=y12x=yl=ly=y>MQy)/t-M(y) > M(Q)/3t.

Hence x € Q(o0, 3¢, V,)), and we obtain:

Ift<1/3, a€ Vandy,)y € CV, then
(5) O(a,1,V,y) C Qa,3t,V,y).

For A C V, t > 0and y € 0V we define the Mébius t-inflation of A relative
to (V,y) by

04,1V, y) =] @1, V,y).
acA

Also this set is a Mobius invariant: Q(p4,t,oV,0y) = pQ(4,t,V,y) for
each Mdbius map ¢ on R". The point co plays no special role. By (5) we
have

(6) 0(4,1,V,y) C 04,31, V,))
whenever t < 1/3, A C V and y,)’ € CV. From (1) we see that
() (4,1, V,00) = B(4,1,V)

whenever A C V C R".

5.12. LEMMA. Suppose that A C BC U C R" and that U is open, A is
compact, and #A > 2. Then the following conditions are quantitatively
equivalent:

(1) d(B) < cd(A) and d(x, A) < cd(x,0U) for all x € B.

(2) Q(8U,1/c,CA,y) N B = J for some y € A.

(3) 00U, 1/¢,CA,y)NB = forally € A.

Explicit bounds. (2) = (3) with ¢ 3¢, (3) = (1) with c—4(c+ 1), and (1) =
(3) with ¢+ 24c% + 1.

Proor. Trivially (3) implies (2), and the quantitative implication (2) = (3)
follows from 5.11(6). The condition (3) can be rewritten as follows: For all
a€dU, x€ B\ A, y € A, there is z € 4 such that |x,a,y,z| > 1/c. This is
the same as (iii) of [Al, 2.1] and hence quantitatively equivalent to (1). The
explicit bounds follow from the proof of [Al, 2.1].

5.13. REMARK. Lemma 5.12 is not true if U C R" is replaced by U C R",
since (3) does not imply the first inequality of (1). However, the proof of [Al,
2.1] shows that it still implies the second condition of (1) with ¢+ 4(c +1).

5.14. THEOREM. For an open set U C R", the following conditions are
quantitatively equivalent:
(1) U is weakly (p, c)-uniform.
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(2) If z is a p-cycle bounding in U and if #|z| > 2, then z bounds in
U\ Q(0U,1/c,Clz|,y) for some y € |z|.

(3) As (2) but for all y € |z|.

(4) If A C U is compact with #A4 > 2, the sequence

HP(A) - Hp(U\ Q(6U7 l/C, CAay)) - HP(U)

is fast for some y € A.
(5) As (4) but for all y € A.

Explicit bounds. The implications (2) < (3) < (5) = (4) & (2) are true with
the same constant ¢. Moreover, (2) = (3) and (4) = (5) with ¢— 3¢, (1) =
(2) with ¢+ 24¢% + 1, and (3) = (1) with ¢+~ 10c.

Proor. The quantitative equivalences (2) = (3) and (4) < (5) follow from
5.11(6), and (2) < (4) is obvious. If co¢ U, the equivalence (1) < (2) follows
from 5.12. Suppose that oo € U and that (1) holds. Let z be as in (2). By (1),
z = Og for some (p + 1)-chain g satisfying the uniformity conditions in U. If
|z} C R", then also |g| C R" by the turning condition. Applying 5.12 to the
open set U\ {oo} we obtain (2). Assume that oo € |z|]. We prove that
lelNQOU,1/(c+1),0|z],00) = &. It suffices to show that for all
x € |g| \ {oo}, @ € OU there is w € |z| such that

|x — al
la —w|’

(A) < |x,a,00,w| =

c+17~
Pick w € |z| with |x — w| = d(x, |z|). Then

x—a) > d(x,0U) > d(x,|z])/c = |x — wi/c
by the lens condition. Since
la—w| <l|a—x|+|x—w S.(c+ 1)|x —al,

(A) follows.

We finally show that (3) implies (1) also in the case oo € U. Let z be a p-
cycle bounding in U. We may assume that #|z| > 2. By (3), z = dg with
lel € U\ Q(0U,1/c,Clz|,y) for all y € |z|. By 5.12 and 5.13, g satisfies the
lens condition in U with a constant ¢’ = ¢/(¢). If oo € |z|, the turning condi-
tion is trivially satisfied. If oo¢ |z|, write d = d(|z|) and fix y € |z|. If now
|g| € B(y,4cd), g satisfies the turning condition with the constant 8c. If
lg| ¢ B(y,4cd), we may assume that there is a point xo € |g| N S(y, 4cd).

We show that CU C B(y,3cd). Let a € dU. Since xo¢ Q(a,1/c, Clz|,y),
there is welzl with |xp,a,y,w| >1/c. Since |y—w|<d and
|xo — a| < 5¢d + |a — w|, this implies |a — w| < Scd/3 < 2cd. It follows that
U C B(y,3cd), and hence CU C B(y, 3cd).
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Write 4 = |g| UCB(y,4cd), V = B(y,5cd). By 5.3, z=0g, for some g
with |g;| C 4 N V. The chain g, satisfies the turning condition d(|g;]) < 10cd.
The lens condition of g implies the same condition at points
x € |g1| N B(y,4cd) C |g|. If x € |g1| \ B(y,4cd), then d(x,|z|) < |x — y| < Sed
< 5d(x,0U), and the theorem is proved.

5.15. Nerves. We give a summary of the theory of nerves and canonical
homomorphisms needed in the sequel. Let X be a metrizable topological
space and let U = (U;),; be an indexed covering of X. For a multi-index
i=(ig,...,ip) € I"! we set Uy = U, N...NU,. The nerve of % is the sim-
plicial complex N(U) whose ordered p-simplexes are the multi-indexes i for
which U; # (. The reduced cohomology groups of N (%) with coefficients in
G are written as HP (%).

If Y C X, a covering ¥’V = (V}),c; of Y is a refinement of % if there is a
map u:J — I, called a (¥, %)-projection or simply a projection, such that
V; C Uy for all j € J. A projection u induces homomorphisms u* : H? (%)
toH? ("), which are independent of the choice of u. If U is an open covering
of X, there are canonical homomorphisms 7 = my : H? (%) — H?(X). These
maps can also be defined if % is a locally finite closed covering, but we shall
work solely with open coverings. Recall that H?(X) is the reduced CUech
cohomology group of X.

Suppose that u : J — I is a (¥, %)-projection. For j = (jo,...,j,) wWe write
uj = (wjo, .. .,uj,). For an integer ¢ > 0 we say that the projection u is g-
strong if the inclusions V; C U, induce zero maps H*(U,;) — H*(V;) for all
k < g and for all simplexes jin N(77).

We need the following basic result on canonical homomorphisms:

5.16. THEOREM. Suppose that X is a metrizable space, that X D X_1 D
Xo D ...D X, and that Uy = (Ui)ie,k is a covering of Xy with sets U; open in
Xy, —1 <k < q. Suppose also that wy : Iy — Iy is a g-strong (Ui, Uk-1)-
projection for 0 < k < q. Consider the commutative diagram

Hj(uq) _—E”Hj(Xq)

Hj(u—l)‘?_‘{’Hj(X—l),

where u=uy...uy, a: X;— X_y, and the maps ©_,,my are canonical. Then
im o* C im 7y for 0 < j < q and ker 7_; Ckeru* for0<j<gqg+1

5.17. ComMENTs. For finite closed coverings, Theorem 5.16 is given in
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[Dy, p. 129]; see also [F1, p. 320] and [Ju;, p. 39]. The case of arbitrary open
coverings seems to belong to the folklore. However, Corollary 5.18 below is
given in [Go, p. 213] for arbitrary open coverings and for locally finite closed
coverings. We prefer to work with open coverings, since various inflations of
a set have natural open coverings consisting of open balls. Shrinking these
balls slightly and choosing sufficiently large finite subfamilies one could ob-
tain the results of this paper by using only finite closed coverings, but the
proofs would be more complicated and less elegant. An expository preprint
[Juy] has been recently written by O. Jussila.

5.18. COROLLARY. Suppose that U = (Uy),c; is an open covering of a me-
trizable space X such that H/(U;) = 0 for all i € IP*') p >0, and for allj < q.
Then the canonical homomorphisms 7 : H/ () — H/(X) are bijective for j < q
and injective for j = q + 1.

5.19. Notation. Suppose that X C ¥ C R", where V is open and has at
least one finite boundary point. Recall from 5.8 that if co¢ X, the t-inflation
B(X,t,V) of X relative to V was defined as the union of all balls
B(x,td(x,0V)), x€ X. If oo€ X, we simply added oo to the set
B(X \ {o0},t, V). In the following crucial lemma, however, we want to in-
flate also the point co by a set CB(R), R > 0 and write

B(X,t,R, V) = B(X \ {c0},1, V)UCB(R).

5.20. LEMMA. Suppose that X C V C R" where X is compact and V is open
with 0¢ V. Suppose also that 0 < g < n — 2 and that
(1) X is outer (j,c)-joinable for 0 <j < gq,
(2) H(X)=0for0<j<gq
Let 0 <t <1/2and ¢ > 2(c+2)"". Then, if co¢ X, the sequence
H™'(B(X,1,V)) — H'(B(X, 1/, V)) —» HT*(X)

is fast. If oo € X and R > 0, then ker i C ker j in the diagram
HY(B(X,t,R/2,V)) —— H1*(X ULB(R))
J
HI(B(X,t/c,39T1R, V).

ProorF. We prove the case oo € X; the case co¢ X is similar but simpler;
the balls B(R) do not occur at all. For a € R" set 6(a) = d(a,0V). We start
with

Fact 1. If a € R" and B(a, t6(a)) meets B(R), then B(a, t6(a)) C B(3R).
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Since 0¢ V, and ¢ < 1/2, we have 6(a) < |a| < R+ té(a) < R+ 6(a)/2.
Hence the diameter of the ball B(a, t6(a)) is 2t6(a) < 6§(a) < 2R, and Fact 1
follows.

Set X(R) = X U CB(R). For x € X define U(x, ¢, R) = X(R) N B(x, t6(x)) if
x# oo and U(oo,t,R) =CB(R). Then the family #%(t,R) of all
U(x,t,R), x € X, is an open covering of X(R). If ¥ <t and R’ > R, then
(r,R') is a refinement of %(t, R), and a natural (%(¢,R'), %(t, R))-projec-
tion is given by the identity map of the index set X. We next prove:

Fact 2. If (¢ +2)¢ < tand R’ > 3R, this projection is g-strong in the sense
of 5.15.

Define b > ¢ by (b +2)¢ =t. Let xo, ..., x; be distinct points in X with

k
E({,R)=(\U(x,!,R) #+ @&.
i=0
We must show that the map H/(E(t,R)) — H/(E({,R')) is zero for
0</<gq
Suppose first that x; = co for some i. Then E(¢, R’) is the intersection of
CB(R') and the balls B(x;,?6(x;)), s # i, and hence cohlog trivial. Next as-
sume that x; € R* for all i. We may assume that 6(xp) < §(x;) for all
0 < i< k. If B(xo,16(xp)) does not meet B(R), then E(z, R) is the intersection
of all balls B(x;,t5(x;)) and hence cohlog trivial. Assume that B(xq, t6(xp))
meets B(R). Then B(xo, t6(xp)) C B(3R) C B(R') by Fact 1. Since |x; — xo| <
2¢'6(x;) and since t = (b + 2)¢', we have B(xg, b'6(xo)) C B(x;, t6(x;)) for all i.
Hence

E({,R') C U(xo,!,R) = X N B(x0,16(x0)) C X N B(xo,b'6(x0)) C E(t, R).
Since b > ¢, it follows from (1) and (2) that the maps

H/ (X N B(x0,b1'8(x0))) — H/ (X N B(x0,6(x0)))

A

are zero; observe that we are using open balls and therefore needed a con-
stant b > ¢. Hence the maps H/(E(t, R)) — H/(E(f, R')) are zero as well, and
Fact 2 is proved.

Define &' > ¢ by ¢/ =2(b' +2)*". Fork=—1,...,gset 4 = (b +2) "'t
and Ry =3*"'R. Thus t_y=¢, ty = (b +2)tky1, tg=2t/c, R.y =R and
Ry1 = 3Ry. By Fact 2, the coverings % (1, Ry) satisfy the condition of 5.16
with the substitution X — X (R), Xix+— X (Rk); now u : X — X is the iden-
tity projection. Hence ker 7_; C ker »* in the diagram
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HI* Y (U(t,, Ry)) —— HI(X(R,))

I !

H™(U(t, R)) —> HI*(X(R));

here u is again the identity projection.

Set P(t,R) = B(X,t,R, V). For x € X define V(x,t, R) = B(x,t6(x)) if
x# 0o and V(oo,t,R)=CB(R). Then the family ¥ (#,R) of all
V(x,t,R), x € X, is an open covering of P(z, R). Since finite intersections of
the members of V(¢, R) are cohlog trivial, it follows from 5.18 that the ca-
nonical homomorphisms 7 : H/(¥"(¢t, R)) — H/(P(t, R)) are bijective for all j.
The identity map of X defines simplicial maps

N(¥(t/2,R)) - N(#(t, R)) - N(¥ (1, R/2))

for all 0 < ¢ < 1 and R > 0. We obtain the commutative diagram

H(V(t, R/2)) Y HIH UL, R)) 5 BV (U(t,, Ry)) -5 HIH (V(ty/2, Ry))

o HI*Y(X(R)) —> H*Y(X(R,)) ™

/

HI(P(t, R/2)) ! HT*1(P(t,/2, Ry))

where each 7; is canonical. We proved above that ker m_; C ker »* and that
mo and m; are bijective. Since #,/2 =t/ and Ry = 39+1R, the lemma follows
by simple diagram chasing.

5.21. THEOREM. Suppose that 0 < p < n— 2 and that U is an open set in R"
such that

(1) U is inner (k, c)-joinable forp < k < n -2,

2) H,(U)=0forp+1<k<n-1
Then U is weakly (p, c’)-John with ¢’ = d(¢,n — p).

Explicit bounds. The theorem is true with any ¢ > 4(2¢ + 3)" "', If (1) be-
low is true, one can choose any ¢’ > 4(c +2)" 77"

PrOOF. Set X =CU and ¢ = n—2 — p. Replacing ¢ by 2c + 1 we see by
Alexander duality (1.2) and by 2.8 that we may assume:

(1) X is outer (j, c)-joinable for 0 <j < ¢,

2) H(X)=0for0<j<q.
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We assume that co € X. The proof for the case oo € U is similar but easier;
it makes use of the simpler case of 5.20.

Let z be a p-cycle bounding in U with #|z| > 2. By 5.10 it suffices to find
¢ = (¢, q) such that z bounds in U\ B(QU,1/c, V) = B(X,1/c,V) where
V = C|z|. We show that this is true for each ¢ > 4(c +2)?*'. Choose ¢’ with
4(c+2)"" <2¢" <. For 0<t<1 and R>0 we set P(1,R)=
B(X,t,R, V) and P(t,R) = cl P(t,R). Choose R > 0 such that z bounds in
U N B(R/2). Consider the diagram

Ho+\(P(1/2, R/2)

|+

HY(P(1/2,R/2)) —-—i’———>H‘1+1(X U CB(R)) i,HqH(X UCB(R))
Hi(P(1/2¢",39+1R)) 2> HI+1(P(1/', 3912 R))

where all maps are induced by inclusions. Here ker (i3i2) C ker j by 5.20,
and hence ker (ixij) C ker (kjij). By Alexander duality this means that
ker a C ker (3 in the diagram

H,(CP(1/2,R/2) 2= H,(U N B(R))

|

H,(CP(1/',39F2R)).

Hence z bounds in CP(1/¢/,39*2R) C U \ B(oU,1/c, V).

5.22. THEOREM. Suppose that 0 < p < n — 2 and that U is an open set in R
such that

(1) U is (k,c)-joinable forp <k <n-2,

Q) H(U)=0forp+1<k<n-1
Then U is weakly (p,c')-uniform with ¢ = ¢/(c¢,n — p).

Explicit bounds. The theorem holds with any ¢ > 40(18¢% +2)" 7 TIf (1) is
replaced by “(1') X =CU is (j,c)-joinable for 0 <j<n—2-p” one can
choose any ¢ > 40(2¢2 +2)" 77"

PrROOF. Let z be a p-cycle bounding in U with #|z| >2 and let y € |z|.
By 5.14 it suffices to find ¢ =c'(c,n—p) such that z bounds in
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U\ Q(0U,1/c,V,y) where V = (|z| and Q is the M&bius inflation defined in
5.11. Since Q is Mébius invariant and since (k, ¢)-joinability is quantitatively
Mobius invariant by 4.6, we may normalize y=o00. Since
Q(dU,t,V,00) = B(U,t, V) by 5.11(7), the theorem follows from 5.21 and
5.10. Observe that we needed only the easy case oo € U of 5.21.

5.23. Uniform holes. Suppose that X is a compact set in R”. By a hole of X
we mean a component of U = CX. By the Swiss cheese conjecture we mean
the following statement: If all holes of X are c-uniform domains and if
f:X — R" is n-quasimdbius, then the holes of fX are c¢-uniform with
¢ = (c,n,n) or maybe even ¢'(c,n). The case where X has only one hole
was proved in [Vd,, 5.6], and the case where X has precisely two holes with
X as a common boundary was announced in [Vi,, 5.10]. The proofs made
use of compact families of compact sets in R”, and they did not give explicit
bounds for ¢/(c,n,n).

We show that the results of this paper can be applied to prove the Swiss
cheese conjecture, generalized to weakly (p, ¢)-uniform sets, in several cases
including the case X = $"~!, and with explicit bounds.

5.24. THEOREM. Suppose that X is a compact set in R" and that 0 < p <
n — 2. Suppose also that

(1) U =CX is weakly (k,c)-uniform forp <k <n-2,

2) H(X)=0for0<j<n-2-p.
Let f: X — R" be n-quasimébius. Then U fX is weakly (k,c')-uniform for
p<k<n-2withcd =cd(c,n,n—-p).

Explicit bounds. The theorem is true with any ¢’ > 40[87(2(2¢ + 1)%)* +2]7*,
g=n-2-p. If X is (j,c)-joinable for 0 <j<g, one can choose any
d > 40[8n(2c)* + 2]"'H or, if f is p-quasisymmetric, any ¢ > 40[2n(c)2+
27+,

Proor. By (1) and 5.6, U is (k,c;)-joinable in R" for p <k <n—2 with
¢y =2c¢+1. Set g =n—2— p. By the duality theorem 2.7, X is (j, ¢;)-join-
able for 0 <j < g. By the quasimdbius invariance 4.6, fX is (j, c;)-joinable
for 0 <j < g with ¢; = c3(¢,n). By the absolute duality theorem 2.8 we see
that U’ =C fX is (k, c3)-joinable for c3 = 2¢; + 1. The condition (2) of 5.22
holds for U’ by Alexander duality, and the theorem follows from 5.22.

5.25. COROLLARY. Iff : S""! — R" is n-quasimébius, then 0 fS"~" is weakly
(p, ¢)-uniform for 0 < p < n — 2 with ¢ = c¢(n, n). In particular, the components
of C £8"~! are c-uniform domains in the ordinary sense.

Explicit bounds. The corollary holds with any ¢’ > 40[8n(2)* + 2]""'. If f is -
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quasisymmetric, one can choose any ¢ > 40[2n(1)> +2]"~'. If f is L-bi-
lipschitz, one can choose ¢/ = 10 - 4"L%~4,

5.26. REMARK. P. MacManus [MM] has recently proved the case p = 0 of
5.25 with ¢ independent of n.

5.27. THEOREM. Let n > 3 and let f : B" — D' be a K-quasiconformal map.
Then D' is (p,c’)-uniform for 1 < p < n-—2withc = (K,n).

Proor. This follows directly from 4.13 and 5.22.
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