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ON THE COHOMOLOGY RING OF THE FREE LOOP
SPACE OF A WEDGE OF SPHERES

MOHAMMAD PARHIZGAR

Abstract.

In this paper we consider H*(#X, k), the cohomology ring of the free loop space of X, when X is
a wedge of spheres of the same dimensions (both even and odd), i.e.,
X =8rHygntl. VS or X =8\ S ... .. \/ S?". We prove that in the odd-dimen-
sional case, this ring is an algebra with an infinite number of generators and an infinite number
of relations, which however has a very nice algebraic structure. It is the trivial extension of the
ring consisting of the elements of degrees (2n)k,k = 1,2,---, by the module consisting of the
elements of degrees (2n+ 1)k,k = 1.2, - -. In the even-dimensional case, we prove that this ring
is the trivial extension of the ring consisting of the elements of degrees (2n — 1)k, k =1,2,---, by
the module consisting of the elements of degrees (2n)k,k = 1,2, - .. We prove that H*(#X, k)(in
low dimensions) is a Koszul algebra when X = V,Z:l S(d > 3, odd), but it is not a Koszul alge-
bra When X = S*\/S*. However we get strong indications that this algebra satisfies a condition
M3 that has been studied by Lofwall and Roos. We study the torsion of these cohomology rings
with coefficients in Z and prove that in odd-dimensional case there is no torsion at all, whereas
in even-dimensional case we have torsion. We prove that only 2-torsion is present in this case
and determine the number of generators for the 2-torsion part. A general tool that we use is the
Eilenberg-Moore spectral sequence
E?,, = Tory X0 (H(X, k), H' (X; k)7 = H"(£X, k).

This spectral sequence degenerates if X is a formal space and k is a field of characteristic zero. It
reduces our work to the calculation of the Hochschild homology H, (A, A) = Tor (A, A). We
also study another Eilenberg-Moore spectral sequence and find that it degenerates for #S> but
does not for £ S*. This gives a clear indication that the ring structure of H*(#X, k), should be
more complicated when X is a wedge of even-dimensional spheres.

0. Introduction.

In this paper k& is usually a field of characteristic 0, X is a CW—complex with
a basepoint, #X is the free loop space of X, i.e., the space of continuous
maps S' — X with the compact open topology and QX is the loop space of
X, basepoint preserving maps, S' — X. In the literature (cf. [20]) the Betti
numbers of the free loop spaces have been studied.

If X is a finite CW-complex, then the “fiber homotopy pull-back diagram”
(cf. e.g. [20] page 182):
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X — xt

l -

X A xxX

where A is the diagonal map, X! = {¢: I=[0,1] — X} and X' — X x X is
defined by ¢ — (¢(0), ¢(1)), gives rise to an Eilenberg—Moore spectral se-
quence in the second quadrant.

E;7 = Tor ®*A(H* (X, k), H' (X, k))? = H"(£X, k)
where
H'(X x X, k) = H*(X, k) @ H'(X, k).
If

m
X = \/ S”i
i=1

is a wedge of spheres, then this spectral sequence degenerates and, as a result
of the following theorem due to D. Anick, we obtain

T Tor" 9P D @(x, k), B (X; 0)+" > HY(LX, k).
10
THEOREM 0.1. Let k be a field of characteristic zero and let X be a formal
space, then H*(¥£X, k) is naturally bigraded and

(0.1) [T Tor" ®OSH D 1(x, k), B (X, k)" ~ H'(£X, k)

t>0
ProoF. (cf. [1], page 489).

In fact (0.1) is an isomorphism of rings (on the left hand side we have the
Hochschild homology and on the right hand side the cohomoloy ring) when
X is a wedge of spheres. See [12] for more information. In [20] the groups

Tor; O ON (1 (X, &), H' (X, k) =

(H* (X, k))*"!

s,y LLKer(()™ = (1))

is calculated when H*(X,k) =k + A is concentrated in even degrees and
where

(0.2) Sp: A®" — A"

is defined by S, = 1 —s,, and s, : A®” — A®" is defined by:
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MNOXND...... @ A— (=DM OND...... ® At

In this paper we calculate the groups

Tor, OO (1 (X, k), H* (X, k) =

+ t+1
(H (X’k))® HKer((H+)®l L (H+)®1)’

Im T,y
when H*(X, k) = k + A is concentrated in odd degrees and where
(0.3) T, : A®" — A®"

is defined by T, = 1 — ¢, and ¢, : A®" — A®" is defined by
AMOIN®...... RAM— M OAN®...... ® An—1-

Using this, we give an explicit formula for H*(¥X,k), when
X =V, Sd(d > 3, odd, and m > 2), see Table 2.1.1 below. We prove that
the ring H*(£X, k) is the trivial extension of H**(¥X, k) by the module

HY(#X, k) = s~ H> (£X, k)

in the case when X =S8%\/S%\/...... S%(d;, odd) and that the ring
H* (% (S*\/ 8%),k) is the trivial extension of H*(#(S*\/ S*), k) by the mod-
ule

H*(2(8*\/8%),k) = s7'H3* (£ (8*\/ 8%), k).

Moreover we prove that H*(#X, k) is isomorphic in low dimensions to a
Koszul algebra, i.e., Tor”jq(k,k) =0 for p # g in the case X = Vf=1 s(d > 3,
odd). Note that the even dimensional subalgebra, i.e., H*(#X, k) is not free
(see [12]).

In section 3, we show that the ring H*(£(S*\/ $*), k) in low dimensions is
not a Koszul algebra, but that

EXtH,(y(y \/S‘)k) (k, k)

has a very nice form. We also study the torsion of these cohomology rings
with coefficients in Z and prove that in the odd-dimensional case there is no
torsion at all (section 2.1 below), whereas in the even-dimensional case we
have only 2-torsion (section 3.1 below). We also determine the number of
generators for the 2-torsion part.

In section four we consider the degeneration of the Eilenberg-Moore
spectral sequence in some special cases as follows.

Let X be a finite simply connected CW—complex with a basepoint xo, PX
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the space of paths in X starting in xo and PX —— X the map that to each
path associates its endpoint. We have a pull-back diagram

X — PX
I I
{x} — X

This diagram gives rise to another Eilenberg-Moore spectral sequence:
(0.4) E?, , = Extf. x o (k k), = gr(H. (X, k))

THEOREM 0.2. ([21] page 25). The Eilenberg—Moore spectral sequence (0.4)
degenerates if X is a finite, simply connected CW —complex with dim X < 4.
Whenever this spectral sequence degenerates

dimy (H,(QX, k)) = ; dimy Extfy, (K, O
24

where the sum is finite.

In section four we replace X in (0.4) by #X the free loop space of X and
prove that it degenerates in the case X = S° but it does not if X = S*.

I wish to thank J.-E. Roos who called my attention to this problem. I am
grateful to him for his great help and good advice during the work on this
paper that encouraged me to continue. I also wish to thank J. Backelin, R.
Froberg, L. Lambe and C. Lofwall for stimulating discussions.

1. Algebraic preliminaries.
1.1. The normalized standard free resolution.

Let A = k @ A be an associative k—algebra with unit (non-graded). More-
over assume that the product is zero in A. Then

H.(A,A) = Tor (A, A)

is the homology of the complex

(LL1) e O ARKATH L A® RS P A A%

where

(1.1.2) (AN ®...... QM) =@ N®...... ® An)
+(=D)"AMAR [N ®...... ® A1)

(See [20] page 178).
Now assume that A is a graded algebra which is connected, that is, the
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unit 7 : kK — A is an isomorphism in degree 0. Denote the cokernel of 7 by A,
since A is connected we have

A=A"={y€A|degy>0}.
Recall (cf. [18] page 228) the bar construction.
B"AN) =A% AR - - A N.

Notice that B™"(A, N) is a left A—module with the extended module action.
It is customary to write an element of B™"(A,N) as v [11 @12 ®......
®7q ®a and of B°(A,N) as y®[ | ®a. If we write & = (—1)"T%8%q for
a homogeneous element, then we can assemble the B™"(A, N) into a resolu-
tion by introducing an external differential

§:B™"(A,N)— B (A,N)
where

s(vmlal - lvala) = (=1 (yy) 2l - - [ynla

n—1
+ 3D Al - e [ e ] bala

i1
+ (=1)*E 1] - -1 (ma)
Now in the case of product zero we obtain:
(1.13) dA®NM®...... QM = (D EN @[ ®. ... ® A
+ (_l)deg)\+degz\1+ ~~~~~ +deg)\n—1+"—1(_1)")\n)\ ® [)\l ® . ® )‘n—l]-

Notice that in (1.1.3) if A\ys are concentrated in even degrees, then we have
the same formula as in the non-graded case. But in this paper we also need
to consider the case when )\;s are concentrated in odd degrees. If this is so,
then

(_l)deg)\+deg)\1+ ~~~~~~ +deg)\,,_|+n—l(_l)n — _1’ v n>0.

We have assumed A to be in degree 0, i.e., deg A = 0. Hence (1.1.3) can be
written as

(1.1.4) AN ®...... QM =M@ N®...... ® A

In order to calculate

Torj RS XH (g(X, k), H* (X, k))
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when H*(X,k)/k is concentrated in odd degrees, let H*(X,k) = A =k ® A
and use the isomorphism

(1.1.5) A @ A" — A®"H @ 1 @ A®",
Moreover define
(1.1.6) T, : A®" — A®"
by T, =1 — t,,, where 1, : A®" — A®" is defined by

AR ...... QM—MONR...... ® An—1-
Now the resolution (1.1.1) can be written as:
(1.1.7) ______ — A®n+2 +1® A®n+l 4, _)A®n+l

+1®A%d — AP L @A — o

where the map d, has the simple form:

(1.1.8) dy[(Vo@M ®...... Q) +(1dw ®...... ® Wn)]
=W W Q...... ® Wy)
— (W QW ®...... ® Wn—1)
=T, (W Ow,®...... ® Wy)
Therefore

Kerd, = A®"*!' + 1 ® Ker T,

and

Im dpy = Im Tpyy
and hence
(1.1.9) Torl" RHOH XA 1 (X k), H* (X, k))

+ ®t+1
— H*(X,k)) HKer((H+)®t L (H+)®1).

Im Ty
DErFINITION 1.1.1. (The shuffie product in the graded case cf. [18]). Let ,,
denote the group of permutations of the set {1,2,...... P+agt. If o€y,
then o is a (p, q) shuffle if the following holds
cl)<o(2)<-o--- < o(p) and
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Define the shuffle product (x) on the level of the standard free resolution
(1.1.1) as follows:

Suppose
AR @@ ®...... ®a,) € A ® A%
and
LRbIRb®...... ®b, € A® A%,
then
AR ®a®...... ®ap]*ﬂ®[b1®b2® ...... ®bq]
= Z (—l)s(a),\u ® o1y ® i) Do ® Coipig)]

(p,q)—shuffles(o)

where ¢,y = a) if 1< 0(i) <p, cou) = boy—p if p+1<0(i)<p+gq
and

s(o) = Z(deg ci+1)(degcyyj+ 1)

summed over all pairs (i,p +j) with o(i) > o(p +j). This sign reflects the
convention that +1 is introduced when elements are switched past each other
according to their total degrees. Here A is a graded algebra and

A=A"={y€eA|degy>0}.
We study the shuffle product, since this gives the product structure on
Tory. XA XA (+(X k), H* (X, k)),
and hence on H*(¥X, k).
1.2. Invariant subspaces of Hochschild homology.

Let k be a commutative field, ¥ a finite dimensional vector space over k
and A = k& V the trivial extension of k by V. In other words A consist of
the set of pairs (k,v),k € k,v € V' with pairwise addition and multiplication

(k1,w) - (k2, v2) = (kiky, kiva + kavy).

Let A° = A ®; A%, where A° is the oposite ring (here A° =A), and let A
be considered as A¢ module in the natural way. In [20], the Hochschild
homology of trivial ring extension is calculated as follows:

V®n+1

(1.2.1) H,(A, A) = TorX (A, A) = [ Ker(ver 2 ven),

Im S,y

where
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(1.2.2) Sp=1—-spands,(V @ ® - Qvy)
=(-1)""%e@ne - Q..

Now Ker S, in (1.2.1) is exactly the vector space (V®")é of invariants in
Ve for the group Z/nZ acting through its generator s, = 1 and hence

3 _ltsitst+ -+
n

Ker S, = (V") yen,

In a similar way, Coker S,;; in (1.2.1) is the space of coinvariants for the
analogous action of Z/(n+ 1)Z. But the exact sequence

(1.2.3) 0 — Ker S, — V& S» — V"®" —, Coker S, — 0(cf. [20])

shows that Ker S, and Coker S, always have the same dimension over k.
Therefore it follows from (1.2.1) and the preceding discussion that

[Torl (A, )] = [(VE"Y%] + [(Vo )72 forn > 1.
Using the endomorphism

1+sy+52+- -+
n

N =

of V®" as a projection of ¥®" onto (V®")é, J.-E. Roos (cf. [20]) found the
dimension of the invariant subspace by the following formula, over a field of
characteristic 0:

1 n—1 X
|(V®")"ZZ| = traceN = ;Ztrace(sn)’
i=0

where (s,)° is the identity on V®".,
In this part we try to find the dimension of the invariant and coinvariant
subspaces over a field of arbitrary characteristic.

Z -
THEOREM 1.2.1. Assume the group "7 acts through its generator t, =1 on
Ven by
(M@ ® @) =V @V @ @Vt

Then the dimension of the invariant subspace is independent of the character-
istic of the field, moreover

n

1 .
((venyE =2 v

i=0



ON THE COHOMOLOGY RING OF THE FREE LOOP... 203

Z ., . , . . .
where (V") is the invariant subspace under the action of t, and || is the di-
mension as a vector space over k.

PrROOF. Let |V]|=m, |V®| =m" =1 and let

be a basis for V®". If the characteristic of k is zero, then the distinct ele-
ments of

(1.2.4)

1+t,+24+ 1
{ +t,+ ,,: + 1 (o) s € V@,,}
form a basis for
Ker T, = Ker(1 — t,) = (V&)

We denote this basis by

(1.2.5) M:{H’"“ﬁ:”'ﬂzhl(an),
1+tn+t,2,+-~+tﬁ"l(ai2), .....
n
...... ,‘*’”*‘5:”'+’ﬁ_l<aim)}
Note that
(1.26) 1+tn+t,2,+-~+tf,'l(ai)=1+tn+tﬁ+'--+tf,_l(aj)

n n

if and only if ; = tXa; for some 1 < k < n. By eliminating the denominator
n we get the basis

(12.7) My ={(1+ta+ 24+ Vo), I+ ta+ 52+ + 67 ") (i), .
e (U ta+ 24+ 27 (i)}

For any 1<j<mlet r; be the least integer 1<r;<n such that
t;;](Olij) = oyj, then

n —
(1+tn+t§+---+t:_l)(a,-j):;(l+tn+t,2,+~~~+t:{ N(ay).
J

Now put
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(1.2.8) M ={Bn=1+ta+ 2+ + ") en),
Bo=(+t+th+ -+ 87" ) aa),
...... Bim= N+ ta+ 24+ (um)}

We prove that M’ is a basis for the invariant subspace regardless of the
characteristic of k. Clearly M’ is a linearly independent set, since the ele-
ments of M’ are different with coefficients one. To prove that M’ generates
the invariant subspace, let o be any invariant element in V®". Arrange the
basis

{al,a27 ""aal}

of V®" as

In M, we replaced t, by ¢ for simplicity. As a linear combination of ele-
ments of M, let

(12.9) a=b%an +bYt(an) + b4 () + -+ + b7 )
+ b?za,'z + b}zt(aiz) + b?ztz(a,-z) o + b,ré—ltrz_l (@) +----
+ B0, Ctim + bL t(im) + b2, (i) 4 -+ + 577 ()

Now applying ¢ to «, we obtain:

(1.2.10) (@) = bY t(an) + b2 (an) + -+ + B2 Y ay) + B ()
+ % t(un) + b2 (o) + -+ - + 37 () + b3 o) + -
+ B0 t(atim) + bL P (Qtim) + -+ + B2 () + BT (i)

An element o € V®" is invariant if and only if
(1.2.11) t(a) = a.
It follows from substituting (1.2.9) and (1.2.10) into (1.2.11) that

blol =b,ll = blz1 R b:{—z — b;’;"l — b?l
B = bl = b = = pr i 0
g0y TR T =b; =05 =10
bo :bl _b2 et =b’m—2_brm—]_b0
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and hence

o =b)Bin+byBn -+ + b9, Bim-

This shows that a is a linear combination of elements of M’. This proves the
first part of the theorem.

For the second part, later in section 2 in Theorem 2.1.1, we prove that
(1.2.12) |(venyz Z |y

when the characteristic of k is zero. Now the result follows by the first part
of the theorem.

VA -
THEOREM 1.2.2. Assume the group — acts through its generator s, =1 on

nZz
V®n by

SV @V @ e e @) =(-1)""v®v @ ® Vn_1.

Then the dimension of the invariant subspace is independent of the character-
istic of the field if the characteristic is different from 2. If this is the case, then
(Vo = 131y Do

n

i=0

Z . . . . ..
where (V®")Z is the invariant subspace under the action of sy. In characteristic
2, the dimension of the invariant subspace can be calculated as in Theorem
1.2.1, ie.,

|(venyE Z [

Proor. If characteristic of k is 2, then —1 = +1 and hence:

(M ®N®- @) = (1) (1O ® - @Vai)
=M@V ® Q1) =LV QN - BV).

This proves the second part of the theorem. The proof of the first part is al-
most the same as in Theorem 1.2.1. If n is odd then:

55N @V ® - ®Vn) = (M BV - ®Vn)

and hence the dimension of the invariant subspace is independent of the
characteristic of the field as we proved in Theorem 1.2.1. Consider the case
that » is even, i.e.,
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SV @V Q@+ ®Vp) =~V @V ® - @Vp_1)
As in Theorem 1.2.1, let | V| = m,|V®"| = m" = [ and let

be a basis for V®" over a field k of characteristic zero. Consider the set

(1213) G={(1+s+s*+---+5 ") ()| is a basis element of V*"}

(we have replaced s, by s for simplicity). For any 1 <i </ let k; be the least
integer 1 < k; < nsuch that 5% (o) = +a;. If s5(ay) = —au, i.e., if k; is odd,
then

(I+s+8+ -+ ()=0
and if s5 () = ay, i.e., if k; is even, then
_n
=%

Now let G’ be the set of all distinct non-zero elements of G. Assume

(I+s+s+ -+ @) =1 +s+5 4+ + 57 (o).

(12.14) G ={(1+s+s+-+5" D), (1 +s++ -+ 5N an),
...... S+ s+82 4+ 5 ) ()}

To prove that G’ is a basis for the invariant subspace is easy and is left to the
reader. For any 1 <j<gq let u; be the least integer 1 <u; < n such that
5% (0yj) = ayj, then

(I+s+5*+ - +5(ay) =u£(1+s+s2+---+s“f"‘)(aij).
j

Put
(1.2.15) G ={fy=1+s+5+ -+ an),
Bo=1+s+5+- -+ (an),
...... Big=1+s+5+- +54 ) (i)}

We prove that G” is a basis for the invariant subspace over a field k, of
characteristic p(p # 2) and hence the dimension of the invariant subspace is
independent of the characteristic if the characteristic is not 2. Clearly G” is
linearly independent over k,, since it contains distinct elements with coeffi-
cient 1. It remains to prove that it generates the invariant subspace. First let
us construct an special basis of V®". Consider the basis {a1,a3,...... ,au} of
V®" and put
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(12.16) H={(1+s+s*+--+ 5" (a;)|a;isabasis element of ¥®"}.

Recall that for any 1 <i </ k; is the least integer, 1 < k; < n such that
() = ay. If k; is odd then

(I4+s+s+-+5(a) =0

and hence the element (1 + s+ s> + - - - + $7!)(;) of H in (1.2.16) does not
appear in G” in (1.2.15). But if k; is even then the element
(14+s+s>+---+ 51 () lies in both H in (1.2.16) and G” in (1.2.15). So
G" is a subset of H. Rewrite the set H by arranging the elements as follows:
(12.17)  H={Bu=1+s+5+ - +5N(an),

Bo=(1+s+5+ -+ N an),...... ,

Big=(1+s+5+ +5" ),

Bigrn = (L +5+5 4+ 5 ) ayg41),

Bigry = (L +s+ 5+ + 52 N (ajg12), - . -,

IBi(q+w) = (1 + s+ 52 +--+ su(ww)_l)(ai(q*l—w))}

where uy,uz,...... ,Ug are even and ugy1,Ugy2, - ... ,Ugyw are odd. Now an
special basis for V®" is:

(1.2.18) Gy ={au, —s(an),sz(an), ...... ,Su'—z(ail), —s“‘”l(ail),
ai, —s(an), s (@), ... .. L8 2 (a), =5 Yan), ... . ,
Qig, —s(a,-q),sz(aiq), ...... ,s""'z(a,-q), —Su"—l (a,-q),
g1y, —5(Qitgr1))s S (Qigg1))s -+ -+ , =5“e07 (ayg41)),

s“e 0™ qyga)),

ifgr2), —S(Cig+2))> 8 (Qiga2) )y - - - - - , =572 (@412)),
sl (a,-(q+2) Yyeuennn s
Qi(g+w) _s(ai(q+w))a Sz(ai(lﬁ-w)), ------ ) _su(“w)_z(ai(q-i-w))’

SHigem—1 (ai(q+w))}-

Now let o be an invariant element. As an element of V®" « is a linear com-
bination of elements of G; in (1.2.18). Let
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(1.219)  a=can —cys(an) + As*(an) + - + ¢ “2¢1=2(ay)
A CT))
+ Qan — chs(an) + As*(an) — - + c?zz"zs“z‘2(a,-2)

- C:.‘zz_lsuz—l(a,'z) I

+ g — ClyS(ctig) + iy (qtig) — -+ -+ + 22 ()
— C;‘;_ls""_'(a,-q)

+ c'(q+l)a'(q+l l(q+1 yS(@ig+n)) + C‘(q_H)S 2oy (1) F oo
~ Cligrn) “sen 2 agrn) + ey 510 (i)

+ i(q+2)Xi(g+2) — q+2 )S(atigr2)) + ¢ (q+2)52(ai(q+z)) .
_ ctf((;fé)ﬁsu(qn) (iggrz)) + cu(q+z> sarn=1 (qtigsz) + -

+ Clgw) Qilg+w) — CilgrmS(Qigiw) + CgrmS (Qiggim)) = -+

U(g+w)~ H(g+w)

2 - -1 -
— cyy s e g ) + iy 8O (Qigaw)-

Now our aim is to prove that « is a linear combination of elements of G”
to conclude that G” is really a basis for the invariant subspace. To do this we
prove that all coefficients of a;;(j > ¢+ 1) in (1.2.19) must vanish. As a
sample we prove that the coefficients of a;(,1) are zero. Rewrite « as:
(1220) a = C?(q+l)a,-(q+|) - c,!(q+1)s(a,-(q+1)) + c?(q+])sz(ai(q+l)) 4o

-2 _ -1 _
= ity S0 (ugen) + i 51 aigan) + 8
Applying s to a, we obtain
(1.221)  s(a) = €gu1)3(@igen) = Cigenys* (Qitgen) + g (Ciggan) + 00

Y(g+

-2 _ +n—1
= cinly s N augrn) = iy (i) + ().

Equating (1.2.20) and (1.2.21), since « is an invariant element, we get

= —cHen=2 = Mgl =

0 1 _ 3 . 0
Cigg+1) = ~Ci(g+1) = Cf(qﬂ) = ~Cig+) = Ci(g+1)

and this implies
2€j(g 1) = 0.
Since the caracteristic of k is not 2, c,.( g+ = 0 and hence

0 Al 2 3 — AU —2 _ HUgen—1
Cig+1) = Cig+1) = Ci(g+1) = Cig+1) = = o™ = o™ = 0.
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2. The free loop space on a wedge of odd spheres.
2.1. Graded vector space structure and torsion.

THEOREM 2.1.1. Let X =8%\/-.-.\/S? be the wedge of m,d—spheres
(d > 3,0dd). We have the following explicit formula for H*(¥X,k), where
A = H>°(ZX, k).

(2.1.1)
deg 0 d—1 d 2d-1) 2d-1)+1 ----.
- - ]\@2
H (#X,k) k 1&A A 1®Ker T,  ——  -----
ImTz

(T, is defined in (1.1.6)), and moreover
H@-D(#X k) |=| 1 ® Ker T |=| A% |=| @D+ (2K k) =1§: (0:)
’ T Im T, ’ 5 &=
In the above formula (i, s) means the greatest common divisor of i and s and
|| is the dimension as a vector space over k.

REMARK 2.1.2. The proof of this theorem is essentially identical to that in
the even case given by Roos in [20].

PRrOOF.

(2.12) HY(£X,k) = ] ] Torl SR K (1 (X, k), H* (X, &))" "

n>0

(cf. the introduction). For given N, the Tor, in (2.1.2) can according to
(1.1.9) only occur if n satisfies either n+ N =dn or n+ N =d(n+1), ie.,
onlyif n=N/(d —1) or n= (N —d)/(d — 1), which requires N or N — 1 to
be divisible by d — 1. In the first case the contribution to HN(#X, k) is
1®KerT, and in the second case the contribution to HN(¥X,k) is
A®"1/ImT,,; but the first case occurs when N =k(d—1), for
k=1,2,3,------ and the second case occurs when N =k(d — 1)+ 1,for
k=1,2,3,-----. . This proves the first part of the theorem.
For the second part, note that it has been shown in [20] that

]\@s 1 . X
s(d—1) - == =_§: — 1) =D i)
| H (£X,k) |=| Ker Ty |= | TmT. =5 ,~=1( ) m

when T, : A® — A®* is defined by T, = 1 — £, and where t, : A® — A% is
defined by
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MOM®...... @A — (-1)'N@N®...... ® As1-

The only thing we need to do is to eliminate the sign coefficient (—l)i(s_')
(see the proof in [20]) because now t,:A® — A® is defined by

AMON®...... RAs— AN ®...... ® As—1 and has no sign.
2 4. -1
Put N = L+e4¢ +n e , where t is defined in (1.1.6), and define
the map

n
B(V1®v2® ...... ®Vn):zl®vi®vi+l® ...... RQVRV Q@ --vv-- ®vi_1.
i=1
It is clear that
1 ®KerT, = 1® N(A*") = B(A®").

Moreover as the following lemma shows, B induces an isomorphism:

o
HO-Dm+(@X k) = 1111\1 C Tor}. FOSHRN Hx(X k), H* (X, k))
1-\®n
= 1 K Tn-
ImT,,H ©Rer Ln

13
HE-D"(#X k) = 1 ® Ker T, C Tor' XRSH XA (g (X k) H*(X, k))

1 ®n+1
A

“ImT,,

H 1®KerT,
where X = SV s’.
LEMMA 2.1.3. Let {B(ay),B(a2),---,B(ay)} be a basis for
HE-D"(#X k) =1 ®KerT,

as a vector space over k, then {[a1], (2], -, [cu]} can be chosen as a basis for

®n

T

>

H(d—l)n+1 (,?X,k) —

as a vector space over k.
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Proor. It is enough to prove that [oy],[a2],...,[oy] are linearly in-
dependent. If

cy [al] + Cz[az] +---+ C1[Ot[] =0,

then
ciap+cap+ -+ oy €Im'T,
and hence
crar +oap+ -+ oy = (1 — o for some a.
Thus

aBay +Bay+ -+ ¢Bayy=B(l —t)a=1®N((l =)o) =0
which implies that
C1 =(,‘2='”=C1=0.

LEMmMmA 2.1.4.

—an
B(a) =0 = [a] = 0in

T,
PrOOF. We have
B(a) =1®N(a) =0= N(a) =0
but
A% = N(A™) & (1 — (A%,
hence
N(a)=0= a € (1—-1)(A™).
LeMMA 2.1.5. The spectral sequence:
E;" = Tory X0 (H*(X, k), H* (X; k) = H'(£X, k)
degenerates in the case
X=8\/s?--\/$! (d,0dd)
over a field k of arbitrary characteristic.

ProoF. The elements of H (X, k) are concentrated in degree d and hence
by (1.1.9), the elements of
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Tory XHEH N (H* (X, k), H* (X, k))
are concentrated in degrees dp and dp + d. This shows that only the terms
E,”% = Torl ®XA) (1 (X, k), H*(X; k)
and

EZ_P,dP-HI' - Tor;I‘(XxX,k) (H*(X,k), H* (X, k))dp+d

are non zero. Note that the spectral sequence is (E,, d,) where d, has bidegree
(=r,r — 1). Consider the two complexes

(2.1.3) 0= Er—p+r,dp—r+l d —, Er—p,dp d — Er—p—r,a'p+r—l =0

and

(2 1 4) 0= E—p+r,dp+d—r+1 d E—p,dp+d d —, E—p—r,dp+d+r——l =0
A r r r

Since (2.1.3) and (2.1.4) hold for all r > 2, we have
E,?? = E Pforallp, q
and hence the spectral sequence degenerates.

Lemma 2.1.5, together with Theorem 1.2.1, which asserted that the di-
mension of the invariant subspace under the action of

(M®nme...... V) =V @V ®...... ® Vpi

is independent of the characteristic of the field, together with (1.1.9) imply
that

H*(£(s*\/$%),2)

has no torsion part at all.
By the same argument as above it can easily be seen that

HY (2 (S \/S5-- - \/$5),k)  (g,0dd)

has no torsion part at all.

2.2. The ring structure of H*(£(S?\/ 8%),k)(d > 3,0dd).
2.2.1. Global observations.

LemmA 2.2.1. Let X =89\/-..... \/SY be a wedge of m,d—spheres
(d >3, 0dd) and let A = H*(X, k). Then the shuffle product on the level of the
standard free resolution (1.1.1) is given by



ON THE COHOMOLOGY RING OF THE FREE LOOP... 213
Na@ar®...... ® ap] * plaps1 @ Ap2 @ . ..... ® Gpyq)
= Z A/,L[ao--l(]) A1) D .ot ® aa_:(erq)]
(p,q)—shuffles(co)

PrROOF. All elements in A = coker(k — A) are concentrated in degree d
and d is odd, so

s(0) =) (degci+ 1)(degepy; +1) = (d+1)(d+1).
This implies (1) = 1.

THEOREM 2.2.2. Let Q* denote the indecomposables in H*(£(S?\/ 8%), k),
d >3, odd. The elements Y|,Y>,...... , Y are representatives of a basis of
QU=+l if and only if the elements X\ = B(Y1), X, = B(Y2), -+, X, = B(Y})
are representatives of a basis of Q41"

ProofF. We prove this theorem by induction. We have two generators
X1, X; in degree (d — 1) and two generators Yi, Y in degree d that satisfy

X; =B(1) and X, = B(Y»).
Assume that the claim is true for n < p. We prove that
X = B(Y) represents an indecomposable in H4-DF+) (&(8d \/ s, k)
if and only if
Y represents an indecomposable in H@-De+)+1( o(gd v 89, k).

To prove this, assume that X = B(Y) represents an indecomposable in de-

gree (d —1)(p+ 1) but Y does not represent an indecomposable in degree
d-DpE+1)+1,ie,

Y=Y gy i X X5 XPY)
where
degX; <(d—1)p, deg¥; < (d—1)p+1 and
X;=B(Y;) forall i=1,2,3,...... L
Since

B(Y')*B(Y) = B(Y'«B(Y)) = B(B(Y') * Y) (cf. [13]),
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we obtain that

X =B(Y) =) ikt BAP XS - XFY) = thpy i X' X572 - XFB(Y))

ki yrk k
= Zaklkr'kzXl]XZZ e XX

But this is a contradiction to the fact that X was an indecomposable ele-
ment. To prove the converse, assume that Y appears as anindecomposable in
degree (d—1)(p+1)+1 but X =B(Y) does not appear as an in-
decomposable in degree (4 — 1)(p + 1), i.e.,

X =) tpy e X X5 X
where
deg X; < (d — 1)p andX; = B(Y;)foralli =1,2,3,...... 1L
This implies that

B(Y) = @iy B(Y1) ' B(¥2) - B(¥)"

=" k- BY1B(Y) ' B(X2)" - B(Y)N]
and hence
Y= aupi VXX X
which is a contradiction.
We have used the following
LEMMA 2.2.3. Let a € V® and v € V", then
a*B(y) = B(a) xv

PrOOF. (cf. [13]). This lemma has been proved in the non graded case, i.e.,
when ¢ : V& — V®" s defined by

and
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B(V] 024 13 [ R X vn)
n

(_l)ml®vi®vi+1® ------ RQVRV Qv ® Vi_1.
i=1

Here we have a similar proof with no sign coefficient.

Denote the ring structure of H**(#(S?\/S9),k) by R and denote
Hodd( 28\ S%,k) by M. Then M =S"'R (where R=R/k and
(S'RY = (RY"™") is an R module with shuffle product and we have

THEOREM 2.2.4. Let X = 89 \/ S be a wedge of 2, d—spheres (d > 3,0dd),
then the ring structure of H*(#X,k) is R® s™' R, the trivial extension of R by
s~1R (see Definition 2.2.11 below ).

ProoF. Both R = HZ*(#(S%\/ S9),k) and s7'R = Hodd((S4\/ 8Y), k) are
R modules with respect to the suffle product. The relation

B(B(Y)* Y') =B(Y) «B(Y’)
for B(Y) € R and Y’ € M shows that the map:
Ho(2(s?\/89),k) = H¥*(2(s%\/8%),k)
is an R module isomorphism.

REMARK 2.2.5. Theorem 2.2.4 is true even for X = §% \/S%\/...... \/ 8%
(di, odd).

Although we are not able to compute the entire ring structure of R@ s~ 'R
we prove the following lemma.

LeMMA 2.2.6. All relations involving elements of odd degree, except com-
mutators of elements of odd degree, are induced by B! from relations invol-
ving only elements of even degree.

PrOOF. Any relation not of the form Y;Y; in odd degrees must be of the
form

(%) Zaklkz“'k:X{qXécz“'thle =0
If we setX; = B(Y;), then the relation (x) is induced by the relation
> Gtk XY Xy XX =0

TueOREM 2.2.7. If H¥*(¥X,k) = T(W)/I, then H*(¥X, k) is isomorphic as
aring to
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T(W @ W)
I+r+w?*+cy
where W' =B Y(W),I' =1 @B~ '(I)and C = {XY - YX|X € W,Y € W'}.

ProoF. The map B : W’ — W induces the following diagram:

il

r L Twew

| [1sm

I 5 1w

Here i and i are inclusion maps and 1® B: W®" @ W' — W®" @ W. Now
if the element

D ik XT X XX
lies in I, then the above diagram shows that the coresponding element, i.e.,
k !
Y ke £ X X XEY,

lies in I’

2.2.2. Explicit low-dimensional calculations.

THEOREM 2.2.8. Let X = S9\/S? be a wedge of 2, d—spheres (d > 3,0dd),
then the ring structure of H*(¥X,k) in low dimensions (up to degree
12(d — 1) — 1) is of the form

k[X],Xz, ...... , X6, Y1, Y2, ... s Y76]
(1)
where 2,1,4,9,8,20,32 of Xys are respectively in degrees
(d-1),4(d—-1),6(d —1),8(d —1),9(d —1),10(d — 1) and 11(d — 1)

2.2.1) R=

and 2,1,4,9,8,20,32 of Y;s are respectively in degrees
d-1)+1,4d-1)+1,6(d—-1)+1,8d—-1)+1,
9d-1)+1,10(d —1)+1and 11(d —1) + 1
and where
I ={Y.Y;(i <)), (X:Y; - X;Y;)(i <))}

In other words, I is generated by the relations of the form Y;Y; and the rela-
tions that make the following matrix symmetric:
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XY, Xy, ... XY,
LY, LY, ... XV,
XY\ X,Y» ... XY,

REMARK 2.2.9. In Theorem 2.2.8 we have chosen the algebra generators
Xis in degree (d — 1)n and the algebra generators Y;'s in degree (d — 1)n+ 1
such that X; = B(Y;) which is possible by Theorem 2.2.2.

PrOOF OF THEOREM 2.2.8. Put H(S?\/S9),k) =k + A, then A =< x,y >
is a vector space of dimension 2 and both x and y are in degree d. By Theo-
rem 2.1.1, we obtain

(2.2.2)
- A®2 A®3
H*(¥X,k) k 1®A A 1®@KerT, T, 1 ®KerT; m}—
deg 0 d-1 d 2d-1) 2d-1)+1 3d-1) 3d-1)+1
dim 1 2 2 3 3 4 4

— Z
Recall that Ker T, in (2.2.2) is exactly the vector space (A®")"z of invariants

I zZ . . =
in A®" for the group -~ acting through its generator ¢, = 1 by

tn(V|®V2®""®Vn)=Vn®V1® """ ® Vp—1.
Hence

Ity 24 G
- :

Consider H*(£(S?\/ 8%),k) in even degrees and denote it by H**(#X, k).
In low dimensions we have:

—on
Ker T, = (A*")”

(2.2.3)
Hz*(,?X, k) k I1® A 1®KerT, 1®KerT; 1®@KerTsy 1®KerTs 1®KerTs
deg 0 d-1 2d-1) 3d-1) 4d-1) 5d-1) 6(d—-1)
dim 1 2 3 4 6 8 14

Start with R;_; = k[X1, X2], where X, X, are the two basis elements of
H*!(#(8?\/ 8%),k) that commute in R;_; and contain no other relations.
We have chosen the notation R;_; because this ring contains all generators
up to degree d — 1. Denote the Hilbert series of R;_; by Hg, (). We have

1

(224) Hg, (1) = a7 — 14204 438+ 42 4510
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Comparing (2.2.3) and (2.2.4) shows that a generator of degree 4(d — 1) is
needed. Call this new generator X3 and add it to R;_;. Denote the new ring
by R4(d—1) then

Rya-1) = kX1, X2, X;),
and

1
(1—*(1 - 119)
=142 438 +4/"% + 616 + 82 +10/24 + - - ...

(22.5)  Hg,, (1) =

Comparing (2.2.3) and (2.2.5), we realize that four new generators are
needed in degree 6(d — 1). Continuing this way, we can find the number of
generators in each degree (even degrees). This ring, i.e., H*(¥X,k). is a
subring of a polynomial ring. If it were a polynomial ring it would have:
2,1,4,9,8,20,32,68,------ generators respectively in degrees:

(d - 1)’4(d - 1)76(d - 1)) 8(d - 1),9(d - l)v

10(d — 1),11(d — 1),12(d — 1), -+ -+ .
However this is only true up to degree 11(d — 1) since C. Lofwall and L.
Lambe have proved the existence of four relations in degree 12(d —1).
Moreover they have proved the non-existence of any relations in previous
degrees, i.e., degrees less than 12(d — 1). (see [12]). It remains an open pro-

blem to find out what this ring looks like in all dimensions.
By continuing, we find the ring

Ryya-1) = k[X1, X2, X3,...... , X76)]
isomorphic to H*(¥X, k) up to degree 12(d — 1) — 1.

In order to prove that
R= k[X1,X2,X3,...... , X76, Y1, Y2, Y3, ... , Y76
(YiY3[i < j), (X:Y; — X; Y)[i <))

and H* (X, k)

are isomorphic up to degree 12(d — 1), first we prove that there is an onto
ring map R— H*(¥X,k) and then that R and H*(#X, k) have the same
Hilbert series. It is clear that H*(#X, k) contains all relations Y;Y;[i < j], by
definition of the shuffle product in H*(#X, k) and also contains the relations
of the form X;Y; — X;Y;, (see Lemma 2.2.3).

To prove that R and H*(#X, k) have the same Hilbert series up to degree
12(d — 1), let
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RI _K{XlaXL """ )Xn]a

R, = k[X17X27X37 """ 7Xna Ylv YZa Y37 """ 3 Yn]
! (YiY;[i <1, (X:Y; — X;Yo)li <)) ’

A4 = k[Xl)X21X37 """ 7Xn1 Yla Y23 Y31 """ ) Yn]
n=

(YiYjli <j], XiYjli <j])
Considering all X;'s and Yj's as of degree 1 we get

. I k-1
Hilbg, (1) = 3 L hint' = 7=+ hin = <n:—1 )

It can easily be seen that (Y;Y;[i <], (X;Y; — X;Y;)[i <]) is a Groebner ba-
sis, so
Hilbg, (1) = Hilby, (1) = > het*, ho = 1.
The monomials of degree k in A4, are of the following types:

My = monomials of degree k in {X}, X3, ..., X, } dim My = hy

M, = Y;- monomials of degree k — 1 in {X), X2, ..., X;;} dimM; = hy_y
M; = Y,- monomials of degree k — 1 in {X3, X3,..., X} dimMy = Ay 51
M; = Y3- monomials of degree k — 1 in {X3, X4,..., X} dim M3z = Ay -2

M, = Y,- monomials of degree k — 1 in {X,} dimM, = b1 =1

and hence
(2.2.6) hie=hep + Mg +hip+ - g

It is also easy to see that

(2.2.7) hi_ig + b+ Fhiin = hin
By (2.2.6) and (2.2.7) we get hy = 2hy, for (k > 1) and hence
. . 2
Hilbg, (1) = Hilbs, (1) = Y _ het* = a7 1.

This shows that R, and H*(#X, k) have the same Hilbert series, up to some
degree. The above argument works, however, for any R,(n > 1), so

kX, X2, X5, ,X76, Y1, Y2, Y3, , Y76]

R (Y:Yj[i <j], (XY — X;Y)[i <Jj])

and H*(ZX,k)

have the same Hilbert series up to degree 12(d — 1) — 1.

In this part we are going to show that the ring
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— k[X]aX27X3a """ )X767 Yl, YZ, Y37 """ ) Y76]

R Y <h Y- X0i<)

i.e., H*(ZX, k) up to degree 12(d — 1) — 1. is a homogeneous Koszul algebra
(see Definition 2.2.10 below). In order to do this we need the following.

DErFINITION 2.2.10. Let R be an algebra over k. We call R a homogeneous
Koszul algebra, if the ring Exty(k, k) is generated by Extk*(k,k).

DEerFINITION 2.2.11. Let R be a local ring and let M be an R—module. The
ring R® M whose elements consist of pairs (r,m) with addition compo-
nentwise and multiplication

(r1,m1)(r2,my) = (rir2, rimy + ramy)
is called the trivial extension of R by M.
DEerFINITION 2.2.12. We say that the bigraded ring R is a Koszul algebra
(with respect to the first degree) up to degree < n (with respect to the second
degree), if there is a ring K (K a Koszul algebra) (with respect to the first

degree) and a ring homomorphism K ¢ — R that is isomorphism up to de-
gree < n (with respect to the second degree).

THEOREM 2.2.13. If the finitely generated ring R is a homogeneous Koszul-
algebra then the trivial extension ring R & R is also a homogeneous Koszul-al-
gebra.

REMARK 2.2.14. We have considered the generators X;'s and Y;s as bi-
graded elements with bidegree (1,degX;s) and (1,deg Y;s) respectively.
Now if we only consider this new degree 1 (the first degree), then
H*(2(8?V 89),k) is nothing but R @ R. This is why we consider the ring
extension R @ R in Theorem 2.2.13.

ProOF OF THEOREM 2.2.13. According to the Froberg formula, [8], It is
enough to show that

Pror(x,¥) - Hpgr(—xy) = 1

where P denotes the Poincare-betti series and where H denotes the Hilbert
series. It is clear that

(22.8) Hprer(t) = Hr(t) + (Hg(f) - 1).
Next we prove that

(2.2.9) Pror(%,¥) = Pr(x,y)/(1 = (Pr(x,y) — 1))
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In [11] Herzog has found
(2.2.10) Pror(z) = Pr(z)/(1 - zPR(2))
but the exact sequence
0—R—R—k—0
gives
Exty(R k) = Exty (k,k),
i.e,
PR(2) = 1/z(Pr(z) - 1).
This gives the proof of (2.2.9). Now using (2.2.8) and (2.2.9) we get
(22.11)  Hggr(=xy) - Prer(x,y) = (Hr(=xy) + Hr(=xy) — 1)
- Pr(x,)/(1 = (Pr(x,y) — 1))
= (2 Pr(x,»))/(1 = (Pr(x,y) = 1)) = 1.
THEOREM 2.2.15. The ring:

k[Xl,Xz,X3, ...... ,X76, Y,Y2,Y35,.... .. y Y76]
(YiYli < jl, (Xi¥; = X;Yi)[i < j))

which is isomorphic to H*(£(S*\/ 89), k) in degrees less than 12(d — 1) — 1 is
a Koszul-algebra, where all generators X; and Y; are considered to be in degree
1.

To prove Theorem 2.2.15 we need the following:

DEFINITION 2.2.16. Let M = &;;50M"/ be biagraded vector space. We de-
fine the bigraded vector space s"4M by putting

(59 M)iJ S ViarZaxs

Now if we consider the generators Xps of H>*(£(S*\V S%),k) and the
generators Yys of H2+1(2(S%\/ 8%), k) as bigraded elements with bidegrees
(1,deg X;) and (1,deg Y;) respectively, then using the notation of Definition
2.2.16, we have

H (2(8*\/8%),k) = HZ(£(8*\/ 8%),k) & "~ 'H> (£(S* \/ 89, k).

In another words the ring structure of H*(£(8%\ 8%),k) is the trivial ex-
tension of H2*(£(S4V/ 89), k) by s~ 'H2 (£ (S*V 8%), k).
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PrROOF OF THEOREM 2.2.15. The ring R = H*(#(S?\/ 89),k) is a poly-
nomial ring in degrees less than 12(d — 1) — 1 and hence a Koszul-algebra, if

we consider the generators to be in degree 1. Now the result follows from
Theorem 2.2.13.

We devote the last part of this section to finding an explicit formula for
Extgr(k,k), when

(22.12) R=

(YiY;li <j), (X:Y; — X Yi)[i < Jj])

DEFINITION 2.2.17. If a and b are bigraded elements with bigrade (si, )
and (s2,f2), then the graded commutator [a,b] is defined by
ab — (=1)"**"2pq for a # b and [a,a] = a* or zero according to whether
s1 + t1 is odd or even.

The following lemma is due to Lofwall ([14]).

LEmMA 2.2.18. Let k[X1, X2, X3,...... , X denote the free graded strictly
commutative algebra on the variables X1, X3, X3,...... , X, of nonnegative de-
gree. Let

fi= bipX;Xx bk € kyi=1,2,3,...... T
Jj<k

be homogeneous elements. Put

R k[Xl,Xz,X3, ...... ,X,,]
(fl 7./27 ----- 7ﬂ) ’
then
k<T\,,T,,...... T, >
A = [Exth(k, k)] = Lo !
[ R( )] (¢1a¢2a """" 1¢S)
As bigraded algebras, T; has bidegree (1,deg X;), and
¢ = culT), Te] cip €k,i=1,2,3,...... 5.
J<k
where [T}, Ty| is graded commutator, and (cij)y,i=1,2,3,...... ,§ is a basis
to the solutions of the linear system
> b Xy =0 i=1,2,3,...... T

i<k
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nn+1
<hence s = ———~( > ) — r)

Proor. (cf. [19] and [14]).

Using lemma 2.2.18, we easily compute [Extk(k, k)], where R is the ring in
(2.2.12) as the following

Extr(k, k) = [Extk(k, k)]

_k <, T Ts,...... Thyeonn. ,81,82,83,...... I >
(F) ’
where F is generated by all graded commutators [T}, 7;] i <j and those re-
lations that make the following matrix skew symmetric, i.e., 4 = —AT.
T|S] T]SZ T|S,,
T2S| T2S2 PN T2Sn
A= : o
.51 T,S, ... T,S.

In other words, F is generated by all relations of the form
[T, 8] i=1,2,3,...... ynand [T}, ]+ [T;, 8] i<j
3. The free loop space on a wedge of even spheres.
3.1. Graded vector space structure and torsion.
The following theorem is due to J. E. Roos.

TueoreM 3.1.1. Let X = S*\/S* and put H(S*\/ S* k) =k + V, where
V =< x,y > is a vector space of dimension 2 and both x and y are in degree 4,
then we have the following explicit formula for H*(¥X, k) :

3.1.1)
deg 0 4-1 4 24-1) 2@4-1)+1 3(4—1) 3@4-1+1 -----
®2 V®3
H(ZXK) k 1oV ¥V 1oKeS - I@KerS; oo

where S, is defined in (1.2.2). Moreover we have



224 MOHAMMAD PARHIZGAR

V®s
ImS;

(3.1.2) | B*4-D(#X k) | =| 1 @ KerS; |= ‘

s
= Hs(4—l)+l(gx’k) |= %Z(_l)i(s—l)z(i,s)

i=1

In the above formula (i, s) means the greatest common divisor of i and s and
|| is the dimension as a vector space over k.

Proor. (cf. [20]).
Definition 1.1.1 implies that the shuffle product in
Tor, PO (| (X, k), H' (X, K))
is given by
Na®ar®...... Qap] * plap1 ®aAp2 ® ... ® Apq)]

= Z sign(a)/\u[aa_u(l) QA1) D ... .. & a,-1 (p+q)]’
(p,q)—shuffles(o)

when X = H*(Z(S*VS%),k), since all elements of H*(S*\/S*) are con-
centrated in even degrees.
If we put:

s+ 44!
n

N

and define the map:
B: V®n SN V®n+l
by
n

B(v1®vz®---®v,,)=Z(—1)i"1®vi®vi+1®---®v,,®v1®---®v,-_1.

i=1
Then it is clear that
1®KerS, = 1®N(V®") = B(V®").

Moreover we have
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®n

B (2(X, K)) = pc € Tork (9% 0 (1 (0 k) 1 (X, )

V@n
= s, H 1 ® Ker(S,-1)

lB
H*(Z(X,k)) = 1 ® Ker(S,) C Torl XM X (1 (X k), H* (X, k))

V®n+l

H 1 ® KerS,,

- ImS,
where X = S*V/ s*.

The proofs of the following two lemmas are essentially identical to those
of Lemmas 2.1.3 and 2.1.4.

LEmMma 3.1.2. If

is a k—basis of
H"(£(8*\/S"),k) = 1 ® KerS,,
then

{[011], [Ozz], ...... ,[as]}

is a k—basis of

3n+1 4 4 yer
H¥ (g (s*\/8Y),k) = 5
LemmMma 3.1.3.
V®n
B(a) =0 = [o] =0in S

In the last part of this section we try to compute the torsion part in
H'(2(s'\/$"),2)
LeEmMA 3.1.4. The spectral sequence
;7 = Torl XM (H*(X, k), H* (X; k))! = H'(£X, k)

degenerates in the case
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X= SdVSd \/Sd (d, even)
over a field k of arbitrary characteristic.

PrOOF. See Lemma 2.1.5.

Theorem 1.2.2, which asserted that the dimension of invariant under the
action of

sMOMN...... @) =(-1)"ven®...... ® Vn_i

is independent of the characteristic of the field if the characteristic is not 2,
together with Lemma 3.1.4 imply that

#(st\/s"),z
has only 2-torsion part. Moreover the series of this 2-torsion can be calcu-

lated by considering the equality of formal power series, provided by the
universal coefficient theorem:

(3.1.3) S nH(LX,Z)f = (1+ 07 W (1) - B4 (1),

i>0

where v,(A4b) denotes the minimal number of generators of the p—torsion
subgroup of an abelian group Ab.

Theorem 3.1.1 implies that over a field of characteristic zero the Hilbert
series of

28\ s,z
is
(3.1.4) HE () =1+ (1+ t)Z;-?fw
n>1 n

where

and over a field of characteristic 2

28*\/$",2)
has the Hilbert series:

(3.1.5) HZ (1 =1+ (1 +t)2@

n>1 n

t3n
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where

V®n
T,

n
_ lz i)
n<
i=1

By replacing (3.1.4) and (3.1.5) in (3.1.3) we obtain:

. yen yon
3.1.6 H(ZX,Z)t = - 3n
(3.1.6) S ni(2X,2) Zl( - )
and this can be written as
sz(Hi(gX,Z))ti - Z %(24_2(37") 4o +2("—11"))t3’1‘
i>0 nZZ,evenn

By the same argument as above it can easily be seen that

HY(L(S*\/S8- - \/$%),k) (g, even)

has only 2-torsion.

3.2. The ring structure of H*(£(S*\/ 8%), k).
3.2.1. Global observations.

THEOREM 3.2.1. Let Q* denote the indecomposables in H*(£S*\/ 8%, k).
The elements Yy, Y,,...... , Y, are representatives of a basis of Q> if and
only if the elements X, =B(Y)),X; =B(Y2), -, X;=B(Y;) are re-
presentatives of a basis of Q™.

ProOF. See the proof of Theorem 2.2.2.

Denote the ring H3*(#(S%\/ S9), k) by R and denote H>*+!(#(S?\/ %), k)
by M. Then M = s~'R (where R = R/k and (s"'R)’ = (R)’"") is an R mod-
ule (using shuffle product) and we have

Theorem 3.2.2. Let X = S*\/S*%, then the ring structure of H*(£X,k) is

R® s 'R, ie., the trivial extension of R by s 'R, where
R=H*(2(S'V S8, k).

ProoF. See the proof of Theorem 2.2.4.

ReMARK 3.2.3. Theorem 3.2.2 is true even for X=Sd‘VSd2V ------
V S%(d;, even).

Although we are not able to compute the entire ring structure of R@® s~ 'R
we have the following result, the proof of which is essetially identical to that
of Lemma 2.2.6.
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LeEMMA 3.2.4. All relations involving elements of degree 3 x +1 except com-
mutators of elements of degree 3 x +1, are induced by B~ from relations in-
volving only elements of degree 3x.

THEOREM 3.2.5. If
H* (£ (S*\/ 8"),k) = T(W)/I.
Then H*(#(S*\/ 8*), k) is isomorphic as a ring to

T(W e W)
I+I'+W?*+C)

where W' =B~/ (W),I' =1®B !(I)and C = {XY - YX|X € W,Y € W'}.

ProoOF. See the proof of Theorem 2.2.7.
REMARK 3.2.6. As a result of this section we show that
(3.2.1) HC,(4) and H*(2(s*\/ 8, k)

have the same ring structure. Here A = k + V is the trivial extension of k by
V, where V is a vector space of dimension 2 and HC.(4) is the reduced
cyclic homology of A.

In [13], Loday and Quillen have defined a product:
HCn(A) ® HC[;(A) — HCn+p+] (A)

for a commutative k—algebra A as follows:
Let

X € (B(A)sorm)im = A® A" and y € (B(A) o)y = A A"
where A = A/k and where 3(4),,
HC,(d) = H,(Tot8(4)

(c.f. [13]. page 571). Define the product as:

_JxxB(y) if r=0
(3.2.2) xey { 0 otherwise.

is a double complex with:

norm)

(Note that xey € (8(4)uorm)itrmiss1) Then this formula is extended to
Tot B(A), 01 ® Tot B(A4),0rm by linearity. In (3.2.2) x is the shuffle product
and B: A ® A®" — A ® A®"*! is defined by:
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(3.2.3) Blay®a; ® - ®ay)

n
:Z(—-l)’"l@ai®a,~+1 R - Ran®a®---®a;_.
i=1

LeEmMmaA 3.2.7.
B(x xB(y)) = B(x) * B(y).
Proor. ([13]. page 575).

This Lemma shows that the product structure on cyclic homology is
compatible with the shuffle product on Hochschild homology on the sense
that the following diagram commutes.

BeB

HC,(4) @ HC,y(4) — HHp1(A4) @ HHppp1(A)
(3.2.4) 1 l
HCn+m+1 (A) ’E" HHn+m+2 (A)

In the above diagram e is the product defined in (3.2.2), * is the shuffle pro-
duct and the map B is the same map in the long exact sequence:

(3.2.5) -+ s HH,(4) — HC,(4) — HCy_5(A) —> HH,_ (4)—> ---- -

The cyclic homology HC,(4) and the reduced cyclic homology HC.(A4) of
A =k + V, the trivial extension of k by V has been computed by many au-
thors e.g. [13] as follows:

[k + Ve ImS,,, if n=2t
HC,(4) = { yertl /Im S, 4 otherwise
and
o V®n+1
HC,.(4) = ImS,,;

where S, : V®" — V®" is defined in (1). Note that by definition of the pro-
duct e in (3.2.2) we have:

(3.2.6) x €k CHCy(A)t > 1=>x0y =0V y € HC,(4).

Consider the following two tables:
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(3.2.7)
®2 ®3 ®4 ®5 ®6 ®7
HC.(A) V v V V v V ver- oo
ImSz ImS; ImS4 Iis ImS6 Im87
deg 0 1 2 3 4 5 6 -
dim 2 1 4 4 8 10 20 -
(3.2.8)

HJ"(Y(S‘\/S“),k) 1V 1®KerS; 1®KerS; 1®KerSy 1®KerSs 1®KerSg 1®KerS; -

deg 3 6 9 12 15 18 21
dim 2 1 4 4 8 10 20

and the product:

V®n+l V®m+l V®n+m+2
(3.2.9) ® - —
ImS,;;  ImS,4 Im Sy my2
Let z be an element in the image of this product (e was defined in (3.2.2)),
V®n+l V®m+1
i.e., z= x ey for some x € ImS,; and y € IS,

z=xey=xx%B(y).
By Lemma 3.2.7:
B(z) = B(xey) = B(xx B(y)) = B(x) * B(y).
This shows that B(z) is in the image of the product:
(3.2.10) (1 @ KerSp1) ® (1 @ KerSyp1) * — (1 @ KerSyymi2),

where * is the shuffle product. Conversely if B(z) is an element in the image
of the product in (3.2.10), then z is in the image of the product in (3.2.9).
This shows that

HC,(4)andH™(2(8*\/8%),k)
have the same ring structure.

3.2.2. Explicit low-dimensional calculations.

THEOREM 3.2.8. The ring R = H*(£(S*\/ S*),k) is isomorphic in degrees
less than 14 to the ring
_ k[aa ba c, d7 eafvg]
)

where dega = degb = 4,degc =degd =dege=degf =9 and degg =12,

(3.2.11)



ON THE COHOMOLOGY RING OF THE FREE LOOP... 231

and where I is generated by the following 11 elements:

a? b, 2, d? & [ ac, bf, (ad — be), (ae — bd), (af — be).
ProoF. Recall that H*(#(S*\/ S*), k) has the following table

®2 ®3 ®4

V
H(¥X,k) kK 1@V V 18K [
(ZX, k) ® ® Ker S, Ims, 1 ®KerS; TS, 1 ® KerSy Tms,
deg 0 3 4 6 7 9 10 12 13 ..e.e
dim 1 2 2 1 1 4 4 4 4 ...

In the above table H(S*\/S* k) =k+ V, where ¥V =< x,y > is a vector
space of dimension 2 and both x and y are in degree 4. We consider
H(S4\/S4,k) in dimensions 3, 6, 9, 12.

H?x H? — HS

2
(3.2.12) (Ix)«x(1®x)=0 (I1®y)x(1®y)=0
(I1x)*x(1®y)=103xRy—-1Qy®x
In (3.2.12) we have used the shuffle product
(I®a)*(1®a)=19a1am -1®a,®a.

The product is onto and no generator in degree six is needed.

1 +1 RXRXXx+1x®yR®x
H9=<c=1®x®x®x,d= BrXOXBY ®y3 4 )

1
e:1®x®y®y+1®y?X®y+ ®y®y®x,f=1®y®y®y>-

The fact that a® = (1 ® x)* =0 and b* = (1 ® y)* = 0, implies that
HxH =H«H*«H> =0

and hence no element of degree 9 is obtained by the elements of previous
degrees. So we need four generators a,b,c, and d in degree 9. By an easy
calculation the shuffle product
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(1®a®aa)*x(1®as®as ® ag)

= Z Sign(a)l Qs-1(1) @ Ag-1(2) @+ -+ ® as-1(12)
(3,3)—shuffles(o)

implies that:

(3.2.13) C=d®==f1=0

and the shuffle product:

(3.2.14) (IQa)*x(1@a;®a3@a4) =1 Qa1 QayRaz R ay
-1m®a@an®au+10aa®a; Qas
-1®@m®@as®aQa

implies that

(3.2.15) ac=bf =0, ad = bc, ae = bd, and af = be.

Put
H? = (g =

IRx@xQxRy—1QyRx®XxQx+1RxQy@XxQIXx—-10XQxQy®x
4

82 =

IxRx®yRy—10y0x0x8y+10yQy®x0x—103xQyQy®x
4

g IRx®y®xy—-10y03x0yQx
3:
2

84 =
1®x®y®y®y—1®y®x®y®y+l®y®y®x®y—1®y®y®y®x>

4

By using the shuffle product (3.2.14), it can easily be proved that the image
of the product

HxH’ — H"

has dimension 3 and hence one generator in degree 12 is needed. We call this
generator g.

ReMARK 3.2.9. The above calculations can be also carried out by using
the model of Sullivan and Vigué. See [26].
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DEFINITION 3.2.10. We say that a local ring (R, m) satisfies the condition
M; if
(3.2.16) Pr(z)™" = (1+1/2)/A(z) — Hg(~2)/z,

where k= R/m,A is the subalgebra of Exty(k,k) generated by
Exth(k, k), Pr(z), is the Poincare-Betti series, 4(z) is the Hilbert series of A
and Hg(z) is the Hilbert series of R.

In the graded case, i.e., when R is a quotient of a polynomial ring

(where the generators X; have degree 1) by an ideal generated by homo-
geneous elements, it is clear that the vector space Exty(k,k) has an extra
grading so that we can introduce a Poincare-Betti series in two variables

(3.2.17) Pr(x,y) = Y dimy Exti(k, k)'xy.

i>0,>i

It follows easily that if (R,m) satisfies M3 then we have the even more pre-
cise two-variable version of (3.2.16):

(3:2.18) Pr(x,»)™" = (14 1/x)/A(xy) — Ha(=xy)/x.
We refer the reader to [22] for more details about the condition M3.

THEOREM 3.2.11. If the finitely generated ring R satisfies the condition M3,
then the trivial extension ring R ® R also satisfies the condition Mj.

PRrOOF. In the proof of Theorem 2.2.13 we proved that
(3.2.19) Hgor(t) = Hp(t) + (Hr(t) —1) and
Pror(x,y) = Pr(x,)/(1 = (Pr(x,y) — 1)).

Let A4 be the subalgebra of Ext(k, k) generated by Exty(k,k) and 4’ be the
subalgebra of Ext%_.(k,k) generated by Extk_(k,k). Theorem 2.2.13 im-

RGR ROR
plies that
(3.2.20) A =A@)/(1 - (A(r) - 1))
and hence
(3.2.21) A(t) =24'(1)/(1 + A'(1)).

Moreover since R satisfies the condition M3 we have

(3.2.22) Pr(x,y)"" = (14 1/x)/A(xy) — Hr(—xy)/x.
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Now

Pror(%,3)”" = (Pr(x,»)/(1 = (Pr(x,y) = 1))
=2Pr(x,y)"' =1
=2((1+1/x)/A(xy) — Hr(—xy)/x) — 1

/4
(14 4'(xy))/ (24 (xy))) — 2(Hror(—xy) + 1)/(2x) — 1

= 2(1 + 1/x)(
= (14+1/x)/(4'(xy)) + 1+ 1/x — Hpgr(=xy)/x —1/x — 1
= (1+1/x)/(4'(xy)) — Hrgr(—xy)/x.

This shows that R @ R satisfies the condition Ms3.

We devote the last part of this section to prove that the ring
H*(#(S*\/ $%), k) in low dimensions satisfies the condition M3. In Theorem
3.2.2 we proved that the ring H*(Z(S*\/ $%),k) is the trivial extension of
R =H*(#(S*V8%),k) and in Theorem 3.2.11 we proved that the trivial
extension ring R @ R satisfies the condition M3 If the finitely generated ring
R satisfies the condition M3. So in order to show that the whole ring
H*(Z(S*V\ $%),k) in low dimensions satisfies the condition Mj it is enough
to show that the ring R = H*(£(S*\/ S8*), k) in low dimensions satisfies the
condition Mj.

THEOREM 3.2.12. the ring H3* (£ (S*\ $*),k) in low dimensions satisfies the
condition M3 if all generators are considered to be in degree 1.

In order to do prove Theorem 3.2.12, we take R; = H¥*(£(S*\/ $*),k) in
low dimensions as

kla,b,c,d|

R, =
! (a2,b2,c¢%,d?, ac, (ad — bc))

The Hilbert series of Ry is
Hg, (1) = 1 4 4t + 47

This shows that M> = 0 (M is the maximal ideal of R;) and hence the ring
R, satisfies automatically the condition Mj3.

In this case the Poincare-Betti series of R; can be computed as follows. We
first use MACAULAY to make a prediction. Introduce R; to MACAULAY
(more details in [22]), issue the command:
nres R; t 8
and then break the computations after a while and issue the new command:
betti t.
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MACAULAY produces the following table of graded Betti numbers for R :
(3.2.23)

total: 1 4 12 33 89 240 649 1758 4765
0: 1 4 12 32 81 200 483 1184 2865
1 — — — 1 8 40 160 562 1816
2: - - - - - - 1 12 84

Moreover MACAULAY determines the Hilbert series of R; as
Hp, (t) = 1 4 4t + 4¢%.
Now let
f=1+44r+ 126 + 3263 + 81* 42006 + 488/ + 1184+ + 28654°.
By using two succesive commands:
" "

convert(”, series); and convert(", ratpoly);

we convert f into
1
(t— 122 +2t-1)
where A is the subalgebra of Ext} (k,k) generated by Ext}el (k, k). Substitu-
tion of A(f) and Hg,(t) in (3.2.18) (t = xy), we obtain

1
—1 +dxy — 4x2? + X3yt + x4yH)

(3.2.24) A(l) = —

(3.225)  Pr(x,y)=-— (

=1 +4yx + 1222 + (3207 +y)x* + (81" + 8y°)x*
+ (200y° + 40y°)x> + (488)° + 160y + »*)x°

+ (1184y7 + 562)° + 12)°)x

+ (2865y° + 1816)° + 84y'%)x® + O(x°)

and this determines the table (3.2.23) completely. This was a prediction by
Macaulay. The only thing that is needed to be proved is why the subalgebra
A generated by Ext}el (k,k) has the Hilbert series as asserted in (3.2.24). We
prove this as follows:

The subalgebra 4 = U(n)(n is the Lie subalgebra of the homotopy Lie al-
gebra of R;) has according to the recipe of Lofwall [15] the presentation:

k(T\, T, T3, Ts)
([Tla TZ]’ [Tz, T4]7 [T3, T4]7 [T17 T4] + [T27 T3])

where k < Ty, T», T3, T4 > is the free associative k-algebra in variables
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Ty, T, T3, Ty of degree 1 and where [T}, Tj] = T;T; + T;T; is the graded com-
mutator.

LEMMA 3.2.13. The Lie algebra ( generated by T\, Ts,[T1, T4] is an ideal in

7.
Here n is

L<Tlv TZ, T37 T4>
([Th, T2), (T2, T4}, [T3, Ta), [T, T4} + [T, T3])

where L < Ty, Ty, T3, Ty > is the free lie-algebra.

PrOOF. We prove the Lemma by induction. Using the Jacobi identity, i.e.,

(=) a, B, c]) + (=1)W[B, [e,a]] + (=1)!WI[c, [a,6]) = 0
we have

(7o, W] = [T, Ta),  [Ts, T3] =0,  [T4,[Th,Ts]] = —[T4, (T2, T3]) = 0.
Now assume for w in ¢ we have [T,w] and [T4,w] is in ¢, then

(T2, [T3,w]] = ([T2, T3], 0] + T3, (T2, w]] = [=[T1, Ta], 0] + [T3, [T, 0] € €
(T2, [Th, )] = [T, [T, 0] + [[T2, Th], 0] = [T, [T, w]] € ¢
(T2, ([T, Ta}, w]] = ([T, Ta], [T2,w]] € €
(T4, (T3, 0]} = [T, [Ta, )] €
[Ta, [T, )] = [T, [T, o] + ([Ta, Th],w] € €

(T4, [[T1, Ta], w]] = ([T, T4}, [Ts,w]] € C.

Now the exact sequence

(3.2.26) 0—(—n— L(T», T4)/[T2, T4] — 0
shows that

2
(3.2.27) A( ! 1+

I)S(1—2t—t2).(1_t2)2'
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Because

(1+1)? 1
(1- t2)2 and U(¢)(¢) < ——————(1 %= py

Equality in (3.2.27) holds if the ideal ¢ in (3.2.26) is free. To prove that this
ideal is really free let L(T5, T4)/[T>, T4] acts on ¢ = L(Ty, T3, [T1, T4)) by

(T, Th] =0, (T2, T3] = —[T), T4, (T2, [T, T4]] = 0,

U(L(T», T4)/[T2, Ta])(2) =

(T4, Th] = [T, Tu), (T4, T3] = 0, (T4,[T1, Ta]] = 0.
Take the semi-direct product. This semi-direct product is a quotient of

n= L<T1»T27 T37T4>
([T, T1), [T, T4), [T3, Ta), [Th, Ta) + [T, T3])

and has the series

1 (1+1)°
(1-20=2) (1- )"
Hence
(3.2.28) P S B )

(1=-2t-2) (1-p)*

The relations (3.2.27) and (3.2.28) show that 4(¢) has the desired Hilbert
series.

Now we take another sample namely

kla,b,c,d,e,f]

(azv bZ, szdza ezaf2>acabf) (ad - bC), (ae - bd)? (af - be)) '
MACAULAY produces the following table of graded Betti numbers for R; :
(3.2.29)

Ry =

total: 1 6 26 101 376 1376 5001 18126 65626
0: 1 6 26 100 364 1288 4488 15504 53296
1: - - - 1 12 88 512 2604 12144
2: - - - - - - 1 18 1186

Moreover MACAULAY determines the Hilbert series of R, as
Hg,(1) = 1 46t + 108 + 47 + 1*.
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Now let

f =146t+260% 4+ 1006 + 3641* + 1288¢° + 4488(° 4 1550417 + 5329648

By using two succesive commands:

convert(”, series) ; and convert(”, ratpoly);

we convert f into
(3.2.30) A(t) = —1/2t = )22 — 4t + 1)

where A4 be the subalgebra of Exty (k, k) generated by Ext}(z (k, k). Substitu-
tion of A(¢) and Hpg,(—1?) in (3.2.18) (t = xy), we obtain
1

3.2.31 P = -
( 3 ) (x,y) (_1 + 6xy — loxzyz +4x3y3 + x3y4)

=1+ 6yx + 26y°x> + (100p® + y*)x*> + (364y* + 12)°)x*
+(1288y° + 88%)x° + (4488)° + 512y7 + »*)xb
+(15504y" 4 2604y® + 18y°)x”

+(53296y% + 12144)° + 186y'%)x® 4+ O(x°)

and this determines the table (3.2.29) completely. This was a prediction by
Macaulay. We prove that the subalgebra 4 generated by Ext}{2 (k, k) has the
Hilbert series as asserted in (3.2.30). We prove this as follows:

The subalgebra 4 = U(n)(n is the Lie sub algebra of the homotopy Lie
algebra of R;) has according to the recipe of Lofwall [15] the presentation:

k(T1, T2, T3, Ta, Ts, Ts)

A=
1

I = ([T, T}, (T3, T4), | T3, Ts), T3, T6), [T4, Ts), (T4, Ts), [T, Ts),

(T, T4] + [T, T3), [Th, Ts] + [T, Tu), [Th, Ts] + [T, T5s)),

where k(T1, T, T3, T4, Ts, Ts) is the free associative k-algebra in variables
T\,T5,T3,T4, Ts, T of degree 1 and where (T}, T;] = T;T; + T;T; is the gra-
ded commutator. By changing the orders we rewrite 4 as

k(Ty, T2, T3, Ta, Ts, Te)

(3.2.32) A= ;

where
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(3.233) I =([Th,T5),[Th, T4}, (T3, Ta), [T2, T, [T}, Te), [T3, T}, [ T4, Te],

[T], T5] + [Tz, T3], [T3, T5] + [Tz, T4], [Tz, T6] + [T4, T5])‘

In order to compute the Hilbert series of 4, we use the program BERG-
MAN of Jorgen Backelin to compute the associated monomial ring of A4,
i.e., gr(4) because 4 and gr(4) have the same Hilbert series. To use
BERGMAN first create with a text editor the following file:

(setq embdim 6)

(LISPFORMINPUT)
(11313 1)
(1141 41))
(116)(161))
((125)(152)
((134)(143)
((136)(163))
((146)(164)
((123)(132)(115)(15 1))
(12414213515 3))

((145)(154)(126)(162)
(LISPFORMINPUTEND)

Give a name to this file (e.g. TEXT). Then start BERGMAN and write:
(ncpbhgroebner ¢ ‘TEXT’? ‘‘rl’’ <1277 ““4377),
The file ¢1 gives the Grobner basis for the ideal I in (3.2.33) as follows:
(3.2.34) G = ([T3, Th), [Ts, Th), |Ts, T3, [Ts, Th] + [T3, Ta), [T's, Ta), [Ts, T3)
+ (T4, T2), [Ts, Th), [ T6, T2] + [T's, Ta), [T6, T3], [T6, T4l, ([ T4, T2], Th]]
+[T5%, Ta))
and hence the associated monomial ring of 4 has the form:

k<T17 T2a T31 T4> T57 TG)

gr(4) = In(1)

where
(3.2.35) In(I) =(T3T, T4Ty, T4T3, TsTy, Ts T, Ts T3,
TeT\, T¢T>, T6T3, T Ta, T4T> TH)
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The file 12 gives the Poincaré-Betti series of gr(4) (up to degree 4) as
(3.2.36)  Pya(x,y) =14 6xy+ 10x%)? + x*% 4533 + 3yt + x4

But by [4] page 843 THEOREME 1 the following is an gr(4)—free re-
solution of k.

0 — gr(A)ssazt — gr(A4)saz1 ® gr(A)ss31 @ gr(4)se31 © gr(A4)ses
@ gr(A)ses3 ® gr(A)sesr — gr(A)ss & gr(A)sa
@ gr(A4)sa; © gr(A4)ss1 © gr(4)ssz © gr(4)ss3
@ gr(4)se1 @ gr(A4)se2 @ gr(4)ses @ gr(4)ses
@ gr(A)say — gr(A4)s) & gr(A)s; @ gr(A4)s;
@ gr(A)ss ® gr(A)ss @ gr(A4)se — R—k,

where gr(A4)s;, i,,.;, is the free gr(4)—module generated by s;, ;... ;, and where
gr(A)si, j,,.;, is sent to gr(A)T;si,..;. This shows that gr(4) has Global-di-
mension 4 and hence (3.2.36) is the whole Poincare-Betti series of gr(4). This
gives

1 _ 1
Pgriay(—=1,1) 1 —6t+102 — 413"

A(1) = gr(4)(1) =

since gr(4) has monomial relations.

To prove that R, has really the Poincare-Betti series as asserted in
(3.2.31), it is enough to prove that this ring satisfies the condition Mj3. In
order to do this we rewrite R, and 4 here and replace R, by R and the gen-
erators 71,15, T3, T4, Ts, Te of Aby X, Y,Z, U, V, W for simplicity. So:

kla,b,c,d,e,f]

R= @ 5.2, ,2.1% ac,bf , (ad - bo), (ae — bd), (af — be))
and
k(X,Y,Z,U,V,W)
A=
I
where

I=(x,2),[x,0),(z,U),[Y,V],[X, W], [Z, W],[U, W], [X, V]
+[Y,2),1Z, V] +[Y,U],[Y, W] + (U, V]).

The complex R* ® A (for more details look at [22] page 306) is the fol-
lowing (X,Y,Z, U, V, W is the basis for A' dual to a,b,c,d, e, f):
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u w o0
zZ 0 W
0 Z U
0 0 O
I
“x 0 o0
w 0 0 o0
d4=U 0 X O
Z 0 0 o
X 0 0 X
O—"R4*®A——->R3*®A —_
Z U w VvV 0 0 0 0 0 O
0o 0 0 Z Vv 0 U 0 W 0
dz_XOOYOUVWOO
O X 0 0 0 Z Y O Vv W
0O 0 0 X Y O Z 0 U O
O 0 X 0 0 0 0 Z Y U
—_ R|‘®A

Let a be in the Ker of dy, i.e., d4y(a) = 0. We have:
Wa=0

Ua=0
Za=0
Xa=0.

Then Lemma B.7 ([22] page 310) gives a =0 and this shows that the
homology is zero in degree 4. Now let (a;, @z, a3, a4) be in the Ker of dj, i.e.,

di(ai, a2, a3, as) = 0. We have:

Ua+ Way =0
Zo + Was =0
Zay+ Uas =0
Xay +Was=0
Xay +Uas=0
Xaz+Zay =0

Lemma B.8 ([22] page 310) gives

NoQoIooooo

R*®A—

d.:(XYZUVW)A

—
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(o1, 02) = (W, U)ty
(a1, 03) = (W, Z)t
(2, 03) = (U,2Z)t5
(a1,04) = (W, X)ts
(a2, a4) = (U, X)ts

(a3, a4) = (Z, X)t6.

Using once more Lemma B.7 ([22] page 310) we get t)y =tr =t3 =t4 =
ts = t¢ and this implies that

(al’a27a3aa4) = (Wth Ut],Zt[,Xt[)

and hence the homology is zero in degree 3 too. Next we prove that the
homology is not zero in degree 2. In order to do this, we compute the
Poincare-Betti series of 4. In (3.2.36) we computed the Poincaré-Betti series

of gr(A) as
Pgriay(x,y) = 1+ 6xy + 10x%y? 4+ x3% + 5233 + X*y* + xHt,
The Hilbert series of R determines the |Tor i(k, k)| as
[Torf (k,k)l = 6, [Tordy(k, k)| = 10, [Tords(k,k)| = 4, [Torfy(k, k)] = 1.

To determine the Poincare-Betti series of 4 completely, we use the spectral
sequence starting with Tor®",(4)(k,k) and converging to Tor? (k,k) (cf. [2]).
Now by (3.2.36) we have only two nonzero element off the dlagonal namely

Tof{(k,k), and  Tor{"(k,k).
The complex
0= Torffy)(k’k) —>Tor§"§A)(k, k) d Torg’(”‘ (k, k) _4T0rgr(A (k, k) =

where d is the differential in the spectral sequence shows that the map d is
the inclusion map, because we know that Torgr(A (k, k) has dimension 5 and
Tor3 ;(k, k) has dimension 4, and hence Tor2 3(k k) =0.

To compute Torj 4(k,k) we use the complex

0 = Torf\" (k, k) — Tor§s® (k,k) / — Tor§y™ (k, k) — Torfy" (k, k) =

Here the map f is zero because both Torgr(A (k,k) and Tor3 £ ) (k, k) has di-
mension 1. This shows that lTor34(k k)| =1 and hence the Poincaré-Betti
series of A is
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P4(x,y) = 1 4 6xy + 10x%)% + 4x>y® + x3p* + x4,

Now we go back to the complex R* ® A. The existence of a nonzero ele-
ment, i.e., Torg“‘,(k,k) off the diagonal shows that Hy(R* ® A) is different
from zero. Theorem B.3 ([22] page 306) now implies that R satisfies M3. As a
consequence, we obtain the following result.

THEOREM 3.2.14. The whole ring H*(#(S*\) $*),k) in low dimensions sa-
tisfies the condition M if all generators are considered to be in degree 1.

ProOF. Consider the generators X;s of H¥*(#(S*\/S%),k) and the gen-
erators Yps of H¥**+(#(S*\/S*), k) as bigraded elements with bidegree
(1,deg X;ys) and (1,deg Y;'s) respectively. Then using the notation of defini-
tion 2.2.13, we have (by Theorem 3.2.2)

H'(2(S'\/8Y),k) = H*(£(S'\/8), k) @ "' B (2(8'\/ §°). k)

In other words the ring structure of H*(£(S*\/ 8%),k) is the trivial ex-
tension of the ring H** (£ (S*\/ S*), k) by the modules®~'H3*(£(S* \/ 8*), k).
Now if we only consider this new degree 1 (the first degree), then
H*(#(S*V S*), k) is nothing but R ® R where R = H**(£(S*\/ 8*), k). Now
the proof follows of Theorem 3.2.11.

4. S* S° and the EMSS of the path fibration.

Recall (cf. introduction) that

(4.1) E?,, = Extf, ox (k. k) = (H(2LX, k)

and if this spectral sequence degenerates, then

(4.2) dimy (H, (QLX, k) = > dimy Extfy. x5 (K, k) o
p>0

where the sum is finite.

THEOREM 4.1. The Eilenberg-Moore spectral sequence (4.1) does not de-
generate when X = S*.

ProoF. (cf. [28]) The series U(L) (universal enveloping algebra of L),
where L is a graded lie algebra

L=L;+Ly+Lg4--- | L |=1; i=1,2,3

can be written as
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_ ()t et
(4.3) UL)(2) = (=225 (1= 4" :

Now set H,(QX, k) = U(L), then
H.(Q#X,k) = U(L @ SL).

»where (SL), =Ly1. In other words if g=L&SL=g+g +g+
...... s then

Igl |=ll+12a |g2 |=12+l3, |g3 |=l3+l4, ...... .

This last equality can be easily seen in cohomology case (cf. [28] page 183
and [26]). We have replaced cohomology with homology because here & is a
field of characteristic zero. This implies

(1 + Z)1|+12 (l + 23)la+14
(44) H.(QZX,k)(z) = UL ®SL)(z) = T ,

Now let X = S*, then

1 _l-i-z3

(4.5) HOX K@) =1—F5=17"%

and hence

_(1+2)(1+2%)
T-A 0=
=142+ 4+ 428 425427 438+ .

(4.6) H.(QLX k)(z)

We have the following table for H*(#S* k) as a particular case of the ta-
ble (3.1.1).

H*(ZSYk) k 1®@x x 1@x® x® 1@x® x®

deg 0 3 4 9 10 15 16
dim 1 1 1 1 1 1 1

To complete the proof of Theorem 4.1, we need
LEMMA 4.2. The product in H*(£S*, k) is 0.

Proor. Easy. Recall that x®" x x®" = 0 (where * is the shuffle product)
because the product in H*(X, k) is 0.

THEOREM 4.3. H*(#S* k) is isomorphic as a ring to

kX0 X0, Xy |

R
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Proor. Follows easily by lemma 4.2.

THEOREM 4.4. Exty. oge ) (k, k) is generated by elements of degree one, i.e.,
Ext!(k, k). It has the following explicit form

Exty. ggt 5 (k, k) = [Exty, ( (k,k)) = k(T\, T, T3, ...... ).

£s* k)
where the bidegree of T, is (1,deg X;).
PrOOF. Theorem 4.3 shows that the ring H*(#S* k) is a Koszul algebra

and hence Exty. ggiy(k,k) is generated by elements of degree one. The
second part follows by easy calculations (using Lemma 2.2.18).

Now by Theorem 4.4 we have

@n > (Z dimy Extly. ox, k) (k, k)p+,.> Z

i>0 \p>0
. 1
1= (| HH(ZX k) | 1)

=1+24+2+24 422 428437 +58 462+

Compar.ing dimy (Ha(QLX, k) and 37 dimy Extf. g 5 (k,k)p+n for n=1,
we obtain

dimk(H7(Q$X,k)) =2 (by(46))

and

D dimgExctly. oy, (ks k)

p>0

a7 = dimgExtgy. ox (K, k), =3 (by(4.7)).

Now (4.1) implies
E2; 10 = Exti (ox (k, k), ,=H3(QZLX, k)
and hence
dimE®; |y = dimy (H7(2€X,k)) =2 and  dimEZ; (=3

This implies that we have a non zero differential in the spectral sequence
(E",d"). Notice that d" has bidegree (—r,r — 1).
Comparing two complexes

2 d 2 d? _ w2
E 9 ™10 —El; ) 0 —0=EZ5

and
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_r d" r d" T _
0=E_;_, ;1 " —E, "0 — =E, , ,=0 v r>3,

we see that d? 1.9 # 0 and hence the Eilenberg—Moore spectral sequence does
not degenerate at E? though it seems to converges very quickly.

THEOREM 4.5. The Eilenberg — Moore spectral sequence (4.1) degenerates
when X = S°,

Proor. We have H, (S k)(z) = 1 _l = and hence by (4.4)
5 v (1+2°)
(48) K048 () = {7y

S TUS: S s JNTDE. S | R | S R [
Now as a particular case of Theorem 2.1.1, we have the following table

H(ZS5 k) k lox x 10x2 x82 [@x® x9 ...

deg 0 4 5 8 9 12 13 ..en
dim 1 1 1 1 1 1 I

To complete the proof of Theorem 4.5, we need:
LEMMA 4.6. The algebra H*(#S° k) is generated by 1 ® x and x.
PrOOF. Lemma 2.2.1 implies

(n+m)!

i 1®x®n+m
nim.

1Rx®x1Qx® =

and

(” +m— 1)' ®n+m

®n m __
L& X = o

where * means shuffle product.
By Lemma 4.6 above we get:

H*(#S%k)=R= k[i)‘(zﬁ] (degX) =4, degX,=75).
2
This ring is a complete intersection and
k(Ty,Ty)
Exty. gg (K, k) = [EXt;i‘(-?’Ssqk)(k’k)] B (T}, 1Ty + ToT)’

where the monomial T; generates
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1
EXtH'(YSS,k)(k’ k)4
and the monomial T, generates

1
Exty. gss ) (ks k)s'
Counting monomials in Exty. s 4 (k, k) we obtain

deg 1 2 3 4 5 6 e

Monomials T\,T» TT,T? T\T7,T; T\T5,T3 T\T3, T3 TT5TS -
The fact that the monomials T;Ty" generate Ext’}'{“f(lag,s5 k)(k,k)s ) together
with (4.8) imply that ' "

dimg(H,(QLX, k) = Y dimBxtfy. oy 4o (K, k)

+n
>0 P

and hence the Eilenberg—Moore spectral sequence (4.1) degenerates in this
case.
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