# EFFICIENT PRESENTATIONS OF THE GROUP $PSL(2, Z_n) \times PSL(2, Z_m)$ , FOR CERTAIN n, m.

### **BILAL VATANSEVER**

### Abstract.

We give deficiency -4 presentations of the groups  $PSL(2, Z_n) \times PSL(2, Z_m)$ , n, m odd numbers and  $[(n \equiv 1 \pmod{6}) \text{ and } m \equiv 1 \pmod{6})$  or  $(n \equiv -1 \pmod{6})$  and  $m \equiv -1 \pmod{6})$  or  $(n \equiv -1 \pmod{6})$ . Moreover efficient presentations are given for certain cases of the groups considered.

## 1. Introduction.

For any commutative ring R with a 1 define SL(2, R) to be the group of  $2 \times 2$  matrices with determinant 1 over R. Define  $PSL(2, R) = SL(2, R)/\{\pm I\}$  where I is the  $2 \times 2$  identity matrix.

If R is the finite field  $GF(p^n)$ , for p a prime, we write  $PSL(2,R) = PSL(2,p^n)$ . The order of PSL(2,R) is  $p^n(p^n-1)(p^n+1)/2$ . If R is the ring of integers *modulo* m, then we write.  $PSL(2,R) = PSL(2,Z_m)$ . In terms of the prime factorization  $m = \Pi p^c$ , the order of  $PSL(2,Z_m)$  is see [7],  $m^3\Pi p^c(1-1/p^2)/2$ .

Given a finite presentation  $\langle X \mid Y \rangle$  of a finite group G, the deficiency of the presentation is  $|X| - |X| \le 0$ . Let M(G) denote the Schur multiplier of G (see Beyl and Tappe [1].). Schur [6] shoved that any presentation G with n generators requires at least  $n + \operatorname{rank}(M(G))$  relations. If G has a presentation with n generators and precisely  $n + \operatorname{rank}(M(G))$  relations we say that G is efficient.

Questions concerning the efficiency of direct products have been of considerable interest for a number of years. The first questions concerning the efficiency of direct products were posed by Wiegold in [9]. In particular his questions were whether  $PSL(2,5) \times PSL(2,5)$  and  $SL(2,5) \times SL(2,5)$  are efficient. The first of these questions was answered by Kenne in [5]. He showed that  $PSL(2,5) \times PSL(2,5)$  is efficient. The second question was answered by Campbell et al [2]. In [3] C.M.Campbell, E.F.Robertson and P.D.Williams have obtained efficient presentations for certain direct products involving

fields of the same characteristic. Some work on direct products of groups  $PSL(2, p^{n_i})$  for a fixed prime p and different  $n_i$ 's is discussed and also some efficient presentations for  $PSL(2, q_1) \times PSL(2, q_2)$ ,  $q_1$ ,  $q_2$  prime powers, is given by Vatansever in [8].

In this paper we consider the problem of efficient presentation for direct product  $PSL(2, Z_n) \times PSL(2, Z_m)$ .

Given two groups  $G_1$  and  $G_2$  then the Schur-Kunneth formula [4] asserts

$$M(G_1 \times G_2) = M(G_1) \times M(G_2) \times (G_1 \otimes G_2).$$

Thus, when  $G_1$  or  $G_2$  is perfect,  $M(G_1 \times G_2) = M(G_1) \times M(G_2)$  so the multiplier of a direct product of simple groups is the direct product of multipliers of the simple groups.

The direct product  $PSL(2, Z_n) \times PSL(2, Z_m)$ .

In this section we shall investigate the direct products  $PSL(2, Z_n) \times PSL(2, Z_m), n, m \text{ odd numbers and}$ 

- (i)  $n \equiv 1 \pmod{6}$  and  $m \equiv 1 \pmod{6}$
- (ii)  $n \equiv -1 \pmod{6}$  and  $m \equiv -1 \pmod{6}$
- (iii)  $n \equiv 1 \pmod{6}$  and  $m \equiv -1 \pmod{6}$
- (iv)  $n \equiv -1 \pmod{6}$  and  $m \equiv 1 \pmod{6}$

in an attempt to prove that these groups are efficient. For a particular n, m we shall give efficient presentations which were not previously known to be efficient. We consider in details case (iii). The other cases can be deduced from case (iii).

Let  $G = \mathrm{PSL}(2, Z_n) \times \mathrm{PSL}(2, Z_m)$ . Then, using a presentation for  $\mathrm{PSL}(2, Z_p)$  given in [7].  $G = \langle a, b, c, d \mid a^2 = b^n = (ab)^3 = (ab^4ab^{(n+1)/2})^2 = 1$ ,  $c^2 = d^m = (cd)^3 = (cd^4cd^{(m+1)/2})^2 = 1$ ,  $[a, c] = [a, d] = [b, c] = [b, d] = 1\rangle$ . Put x = bcd, y = abd. Then let n = 6k + 1, m = 6t - 1. We have  $x^3 = b^3 \Rightarrow x^{n-1} = b^{-1}$  so  $b = x^{1-n}$ . Similarly  $y^3 = d^3 \Rightarrow y^{m+1} = d^{m+1} = d$  so  $d = y^{m+1}$ . Since  $x = bcd \Rightarrow c = x^ny^{-m-1}$ . Also since  $y = abd \Rightarrow a = y^{-m}x^{n-1}$ . We have proved:

LEMMA 1. If x = bcd, y = abd then  $a = y^{-m}x^{n-1}$ ,  $b = x^{1-n}$ ,  $c = x^ny^{-m-1}$ ,  $d = y^{m+1}$ .

We write down the 12 relations of G written in terms of x and y in the order they appear in the presentation above

- (1)  $(v^{-m}x^{n-1})^2 = 1$
- (2)  $(x^{1-n})^n = 1$
- (3)  $y^{-3m} = 1$

(4) 
$$(y^{-m}x^{-3n+3}y^{-m}x^r)^2 = 1$$
, where  $r = -(n-1)^2/2$   
(5)  $(x^ny^{-m-1})^2 = 1$ 

(6) 
$$(y^{m+1})^m = 1$$

(7) 
$$x^{3n} = 1$$

(8) 
$$(x^n y^{3m+3} x^n y^s)^2 = 1$$
, where  $s = (m^2 - 1)/2$ 

(9) 
$$[y^{-m}x^{n-1}, x^ny^{-m-1}] = 1$$

(10) 
$$[y^{-m}x^{n-1}, y^{m+1}] = 1$$

(11) 
$$[x^{1-n}, x^n y^{-m-1}] = 1$$

(12) 
$$[x^{1-n}, y^{m+1}] = 1$$

LEMMA 2. In Lemma 1 the relations (2), (6), (10), (11) are redundant.

PROOF. Since 3|(1-n) then  $x^{1-n}$  is a power of  $x^3$  so, since  $x^{3n} = 1$  we have  $(x^{1-n})^2 = 1$ . Since 3|(m+1) then  $y^{m+1}$  is a power of  $y^3$  so, since  $y^{3m} = 1$  we have  $(y^{m+1})^m = 1$ . Also (10) and (11) are immediate consequences of (12).

We now tidy up a little. Since  $[x^{1-n}, y^{m+1}] = 1$ , cubing these two elements we get  $[x^3, y^3] = 1$ . Also using (7) we can replace r in (4) by (n-1)/2. Using (3) we can replace s in (8) by (-m-1)/2. We now have the presentation for G as follows.

LEMMA 3. G is generated by x and y subject to the relations

(i) 
$$(y^{-m}x^{n-1})^2 = 1$$
 (v)  $[x^n, y^m] = 1$ 

(ii) 
$$(x^n y^{-m-1})^2 = 1$$
 (vi)  $[x^3, y^3] = 1$ 

(iii) 
$$(y^{-m}x^3y^{-m}x^{(n-1)/2})^2 = 1$$
 (vii)  $x^{3n} = 1$ 

(i) 
$$(y^{-m}x^{n-1})^2 = 1$$
 (v)  $[x^n, y^m] = 1$   
(ii)  $(x^ny^{-m-1})^2 = 1$  (vi)  $[x^3, y^3] = 1$   
(iii)  $(y^{-m}x^3y^{-m}x^{(n-1)/2})^2 = 1$  (vii)  $x^{3n} = 1$   
(iv)  $(x^ny^3x^ny^{-(m+1)/2})^2 = 1$  (viii)  $y^{3m} = 1$ 

Consider (i). We have  $y^{-m}x^{n-1}y^{-m}x^{n-1}=1$  and using (v) and (vii) this gives  $y^{-m}x^{-1}y^{-m}x^{-n-1} = 1$ . Hence  $x^{-n-1} = y^mxy^m$  replaces (i). Similarly consider (ii). We have  $x^n y^{-m-1} x^n y^{-m-1} = 1$  and using (v) and (viii) this gives  $x^n y^{-1} x^n y^{m-1} = 1$ . Hence  $y^{-m+1} = x^n y^{-1} x^n$  replaces (ii). But consider again  $y^{-m}x^{n-1}y^{-m}x^{n-1} = 1$  and this time use (vi) in the form  $[x^{n-1}, y^{m+1}] = 1$ . We have  $v^{-m}x^{n-1}v^{-m-1}vx^{n-1} = 1 \Rightarrow v^{-2m-1}x^{n-1}vx^{n-1} = 1 \Rightarrow v^{m-1}x^{n-1}vx^{n-1} = 1$ and substituting  $y^{m-1} = x^{1-n}y^{-1}x^{1-n}$  into this relation gives  $x^ny^{-1}x^ny^{m-1} = x^ny^{-1}x^nx^{1-n}y^{-1}x^{1-n} = xy^{-1}xy^{-1} = 1$  so  $(xy^{-1})^2 = 1$ . This now replaces  $y^{-m+1} = x^n y^{-1} x^n$ . Use this to replace  $x^{-n-1} = y^m x y^m$  by  $x^{-n-1} = v^{m+1}x^{-1}v^{m+1}$ . We have new relations (i)\* and (ii)\* to replace respectively (i) and (ii). They are

(i)\* 
$$x^{-n-1} = y^{m+1}x^{-1}y^{m+1}$$

(ii)\* 
$$(xy^{-1})^2 = 1$$
.

LEMMA 4. In Lemma 3  $[x^n, y^m] = 1$  and  $[x^3, y^3] = 1$  are redundant.

PROOF. Using the (ii)\* we can rewrite (i)\* as  $x^{-n} = y^m x y^m x$  so  $[y^m x, x^n] = 1 \Rightarrow [y^m, x^n] = 1$ . Consider (i)\* i.e.  $x^{-n-1} = y^{m+1} x^{-1} y^{m+1} \Rightarrow y^{m+1} y^{m+1} = 1$  $x^{-n-2} = (v^{m+1}x^{-1})^2 \Rightarrow [v^{m+1}, x^{n+2}] = 1$ . Cubing the first term  $[y^{m+1}, x^{n+2}] = 1$  and using (viii) we have  $[y^3, x^{n+2}] = 1$ . Cubing the second term in  $[v^3, x^{n+2}] = 1$  and using (vii) we have  $[v^3, x^6] = 1$ . Now considering  $[v^3, x^{n-1+3}] = 1$  and using the fact that 6|(n-1) and using  $[v^3, x^6] = 1$  it can be seen that  $[v^3, x^3] = 1$ .

Next we simplify (iii) and (iv). Notice that we can still use (v) and (vi) which are consequences of (i) and (ii). Write (iii) as

$$y^{-m}x^{3}y^{-m}x^{(n-1)/2}y^{-m}x^{3}y^{-m}x^{(n-1)/2} = 1$$
  

$$\Rightarrow x^{3}yx^{(n-1)/2}yx^{3}yx^{(n-1)/2}y^{-m-3} = 1 \text{ since } 3|(m+1)$$
  

$$(x^{3}yx^{(n-1)/2}y)^{2} = y^{m+4}$$

Write (iv) as

$$x^{n}y^{3}x^{n}y^{-(m+1)/2}x^{n}y^{3}x^{n}y^{-(m+1)/2} = 1$$
  

$$\Rightarrow x^{-2}y^{3}xy^{-(m+1)/2}xy^{3}xy^{-(m+1)/2}x^{n-1} = 1 \text{ since } 3|(n-1)$$
  

$$(y^{3}xy^{-(m+1)/2}x)^{2} = x^{4-n}.$$

We now write the relations of G as:

THEOREM 1. G is generated by x and y subject to the relations

$$(.1.) \quad x^{3n} = 1 \qquad (.4.) \quad (x^3 v x^{(n-1)/2} v)^2 = v^{m+4}$$

(.1.) 
$$x^{3n} = 1$$
 (.4.)  $(x^3yx^{(n-1)/2}y)^2 = y^{m+4}$  (.2.)  $y^{3m} = 1$  (.5.)  $(y^3xy^{-(m+1)/2}x)^2 = x^{4-n}$  (.6.)  $x^{-n} = (y^mx)^2$ 

$$(.3.) \quad (xy^{-1})^2 = 1 \qquad (.6.) \quad x^{-n} = (y^m x)^2$$

LEMMA 5. In G we have  $[x^n, yx^3y^{-1}] = [x^n, y^{-1}x^3y] = 1$ ,  $[y^m, xy^3x^{-1}] =$  $[v^m, x^{-1}v^3x] = 1.$ 

PROOF. Since  $y^m = x^{1-n}y^{-1}x^{1-n}y = yx^{1-n}y^{-1}x^{1-n}$  we have  $[x^n, yx^{1-n}y^{-1}] =$  $[x^n, v^{-1}x^{1-n}y] = 1$  and cubing the second term in the commutators gives the result.

From (i)\* we can deduce  $x^n = y^{-m-1}xy^{-m-1}x^{-1} = x^{-1}y^{-m-1}xy^{-m-1}$ . We have  $[y^{m}, xy^{-m-1}x^{-1}] = [y^{m}, x^{-1}y^{-m-1}x] = 1$  and cubing the second term in the commutators gives the result.

LEMMA 6. Relations (.4.) and (.5.) in Theorem 1 can be replaced by (.4.)\* 
$$(yx^{(n-1)/2}y^{-1}x^{-4})^2 = x^n$$
 (.5.)\*  $(xy^{(m+1)/2}x^{-1}y^4)^2 = y^m$ 

PROOF. To obtain the new relation to replace (.4.) start from (iii) 
$$(y^{-m}x^3y^{-m}x^{(n-1)/2})^2 = 1$$
  $(y^{-m}x^3y^{-m-1}yx^{(n-1)/2})^2 = 1$ 

$$(y^{-2m-1}x^3yx^{(n-1)/2})^2=1$$
 since  $3|(-m-1)$   
Use  $y^{-2m-1}=x^{1-n}y^{-1}x^{1-n}$  to get  $(y^{-1}x^{4-n}yx^{(-n+1)/2})^2=1$  so  $yx^{(n-1)/2}y^{-1}x^{n-4}yx^{(n-1)/2}y^{-1}x^{n-4}=1$ . But  $3|(n-1)/2$ , so using Lemma 5 we have  $yx^{(n-1)/2}y^{-1}x^{-4}yx^{(n-1)/2}y^{-1}x^{-4-n}=1$  giving  $(yx^{(n-1)/2}y^{-1}x^{-4})^2=x^n$ .

To obtain the new relation to replace (.5.) start from (iv)

$$(x^{n}y^{3}x^{n}y^{-(m+1)/2})^{2} = 1$$

$$(x^{2n-1}y^{3}xy^{-(m+1)/2})^{2} = 1$$

$$(x^{-n-1}y^{3}xy^{-(m+1)/2})^{2} = 1$$

Use  $x^{-n-1} = v^{m+1}x^{-1}v^{m+1}$  to get  $(x^{-1}y^{m+4}xy^{(m+1)/2})^2 = 1$  so  $xy^{(m+1)/2}x^{-1}y^{m+4}xy^{(m+1)/2}x^{-1}y^{m+4} = 1.$ 

But 3|(m+1)/2, so using Lemma 5 we have  $(xy^{(m+1)/2}x^{-1}y^4) = y^m$ .

Hence replacing the relations (.4.) and (.5.) respectively by (.4.)\* and (.5.)\* in Theorem 1 the presentation for G will be as in the following corollary.

## COROLLARY.

(I) 
$$x^{3n} = 1$$
 (IV)  $(yx^{(n-1)/2}y^{-1}x^{-4})^2 = x^n$   
(II)  $y^{3m} = 1$  (V)  $(xy^{(m+1)/2}x^{-1}y^4)^2 = y^m$   
(III)  $(xy^{-1})^2 = 1$  (VI)  $x^{-n} = (y^mx)^2$ 

(II) 
$$y^{3m} = 1$$
 (V)  $(xy^{(m+1)/2}x^{-1}y^4)^2 = y^m$ 

(III) 
$$(xy^{-1})^2 = 1$$
 (VI)  $x^{-n} = (y^m x)^2$ 

given in Corollary is not presentation efficient since  $M(\mathrm{PSL}(2, \mathbb{Z}_n) \times \mathrm{PSL}(2, \mathbb{Z}_m)) = C_2 \times C_2$ . The presentation given in Corollary has deficiency -4. However we conjecture:

Conjecture. For n = 6k + 1 and m = 6t - 1,  $PSL(2, Z_n) \times PSL(2, Z_m)$ has the efficient presentation

$$G = \langle x, y \mid x^{3n} = 1, (xy^{-1})^2 (yx^{(n-1)/2}y^{-1}x^{-4})^{-2} = x^{-n}, (xy^{(m+1)/2}x^{-1}y^4)^2 = y^m, x^{-n} = (y^mx)^2 \rangle$$

- (i) If  $n \equiv 1 \pmod{6}$  and  $m \equiv 1 \pmod{6}$  then replace m by -m in the above presentation.
- (ii) If  $n \equiv -1 \pmod{6}$  and  $m \equiv -1 \pmod{6}$  then replace n by -n in the above presentation.
- (iii) If  $n \equiv -1 \pmod{6}$  and  $m \equiv 1 \pmod{6}$  then replace n by -n and m by -m in the above presentation.

We have verified the conjecture for

- (a) n = 7, 13, 19, 25, 31, 37, 43, 49, 55, and <math>m = 5
- (b) n = 49 and m = 7
- (c) n = 5, 11, 23, 29, 35, 41, 47, 65 and m = 5

which for the cases n = 25, m = 5; n = 55, m = 5; n = 49, n = 7; n = 35, m = 5; n = 65, m = 5; the efficiency of G was previously not known.

- (a); Here we will verify the conjecture for case (n = 25, m = 5) the other cases can be verified by using the same method therefore they are omitted. Case n = 25, m = 5: Since  $25 \equiv 1 \pmod{6}$  and  $5 \equiv -1 \pmod{6}$ , in Corollary we have to replace n by 25 and m by 5. Using TC(A machine implementation of Todd-Coxeter.) on subgroup  $\langle x \rangle$  it can be seen that the relation (II) in Corollary is redundant and combining relations (III) and (IV) as in the conjecture and again using TC on subgroup  $\langle x \rangle$  it can be seen that the index of subgroup is 6000. So the presentation for G is efficient. We only need to verify that x has order 75. Adding respectively,  $x^3 = 1$ ,  $x^5 = 1$ ,  $x^{15} = 1$ ,  $x^{25} = 1$  we get respectively indexes 20, 12, 240, 300 for subgroup  $\langle x \rangle$ . So the order of x is 75.
- (b); Case n = 49, m = 7: Since  $49 \equiv 1 \pmod{6}$  and  $7 \equiv 1 \pmod{6}$ , in Corollary we have to replace n by 49 and m by -7. Using TC on subgroup  $\langle x \rangle$  it can be seen that the relation (II) in Corollary is redundant and combining relations (I) and (III) and again using TC on subgroup  $\langle x \rangle$  it can be seen that index of subgroup is 65856. So the presentation for G is efficient. We only need to verify that x has order 147. Adding respectively  $a^3 = 1$ ,  $a^7 = 1$ ,  $a^{21} = 1$ ,  $a^{49} = 1$ ,  $a^{147} = 1$ , we get respectively indexes 56, 24, 1344, 1176, 65856 for subgroup  $\langle x \rangle$ . So the order of x is 147.
- (c); Here we will verify the conjecture for case (n = 35, m = 5) the other cases can be verified by using the same method therefore they are omitted. Case n = 35, m = 5: Since  $35 \equiv -1 \pmod{6}$  and  $5 \equiv -1 \pmod{6}$ , in Corollary we have to replace n by -35 and m by 5. Using TC on subgroup  $\langle x \rangle$  it can be seen that the relation (II) in Corollary is redundant and combining relations (III) and (IV) as in the conjecture and again using TC on subgroup  $\langle x \rangle$  it can be seen that the index of subgroup is 11520. So the presentation for G is efficient. We only need to verify that x has order 105. Adding respectively  $x^3 = 1$ ,  $x^5 = 1$ ,  $x^7 = 1$ ,  $x^{15} = 1$ ,  $x^{21} = 1$ ,  $x^{35} = 1$ , we get respectively indexes 20, 12, 24, 240, 480, 576 for subgroup  $\langle x \rangle$ . So the order of x is 105.

## REFERENCES

- F.R. Beyl and J. Tappe, Group extensions, representations, and the Schur multiplicator. Lecture Notes in Math. 958, 1982.
- C.M. Campbell, E.F. Robertson, T. Kawamata, I. Miyamoto and P.D. Williams, Deficiency zero presentation for certain perfect groups, Proc. Roy. Soc. Edinburgh, 103 A (1986), 63--71.
- 3. C.M. Campbell, and E.F. Robertson and P.D. Williams, On presentations of PSL(2,p<sup>n</sup>), J. Austral. Math. Soc. 48 A, (1990), 333--346.

- 4. B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
- P.E. Kenne, Presentations for some direct products, Bull. Austral. Math. Soc. 28 (1983), 137--154.
- 6. I. Schur, Untersuchungen uber die Darstellungder edlichen Gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math. 132 (1907), 85--137.
- 7. J.G. Sunday, *Presentations of the groups* SL(2, m) and PSL(2, m), Canad. J. Math. 24, (1972), 1129--1131.
- 8. B. Vatansever, Certain Classes Of Group Presentations, Ph.D. Thesis, University of St. Andrews, October 1992.
- 9. J. Wiegold, *The Schur Multiplier*, in Groups-St. Andrews 1981. Edited by C.M. Campbell and E.F. Robertson, London Math. Soc. Lecture Note Ser. 71, (1982), 137--154.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CUKUROVA 01330 - ADANA TURKEY