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COASSOCIATED PRIMES OF MODULES OVER
A COMMUTATIVE RING

SIAMAK YASSEMI

Abstract.

In this paper the concept of the coassociated prime of modules over (not necessarily Noetherian)
commutative rings is introduced.

0. Introduction.

The theory of associated primes is very important in the study of modules
over commutative Noetherian rings. For modules over non-Noetherian rings
however, the classical associated primes do not behave so well, for example
there exist non-trivial modules without associated primes. In [1] Bourbaki
has introduced the notion of weakly associated primes of M over a (not ne-
cessarily Noetherian) commutative ring R: the prime ideal p is weakly asso-
ciated to M if there exists an element x € M such that p is a minimal among
the prime ideals contaning the annihilator Ann x. In this paper the set of
weakly associated primes of M is denoted by Ass M. In [2] Iroz and Rush
have studied further the associated primes of modules over a (not necessarily
Noetherian) commutative ring R. They have shown that the set Ass M of
weakly associated primes of R-module M is -- in some sense -- the best
choice for a notion of associated primes over a (not necessarily Noetherian)
commutative ring.

The aim of this paper is to develop a theory dual to that of weakly asso-
ciated primes.

Let D,,(—) denote the functor Hom(—, E(R/m)) for m € Max R, the max-
imal spectrum of R, and the injective envelope E(R/m) of R/m.

In [10] we have introduced the notion of a cocyclic module (that is, a
submodule of D, (R) for some m € Max R) and it is used to define the notion
of coassociated primes of modules over Noetherian rings (and this is dual to
the classical associated primes). In this paper we use the notion of cocyclic
modules to introduce the notion of weakly coassociated prime of modules
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(dual notion to that of weakly associated prime). We define the set Coass M
of weakly coassociated primes of an R-module M to be the set of prime
ideals p such that there exists a cocyclic homomorphic image L of M with p
is a minimal element in V(Ann L).

We show that p € Coass M if and only if there exists a maximal ideal m
such that p € Ass D,,(M), and this result will play an important role in the
rest of the paper.

Also we show that if p € Ass M, then p € Coass D,,(M) for all ideal
m € Max RN V(p) (but the inverse is not true).

It turns out that weakly coassociated primes have properties similar -- or
rather dual -- to those of weakly associated primes. For example, Coass M #
& whenever M is non-trivial, and that the set of coassociated primes of M is
a subset of the set of weakly coassociated primes of M. In addition,
Coass M = Coass M when R is Noetherian. Finally, if 0— M' —
M — M" — 0 is an exact sequence of R-modules and R-homomorphisms,
then it turns out that there are inclusions:

Coass M" C Coass M C Coass M' U Coass M".

In [3] Macdonald defined the set of attached primes of an R-module M.
The theory of attached primes is particularly well-behaved when M has a
secondary representation (which is the dual notion to primary decomposi-
tion). However, in general this theory is not completely satisfactory. In this
paper we prove that the set of weakly coassociated primes of M is equal to
the set of attached primes of M when M has a secondary representation.

Assume that R is a Noetherian ring and the zero submodule of M has
primary decomposition. We find the set of coassociated primes of
Hom(M, E) for any injective module E. This result is a sharpening of [8, 2.6]
and [9, 2.1].

We define the cosupport of module M over commutative rings (this defi-
nition is the same as definition of the cosupport over Noetherian rings, cf.
[10]). It follows that the set of weakly coassociated primes is a subset of the
cosupport. On the other hand every minimal element of the cosupport be-
longs to the set of weakly coassociated primes.

In the last section we bring some functorial results. Let 2 be the class of
all modules M such that the zero submodule has a primary decomposition in
M (or M =0), and let & be the class of all modules having secondary re-
presentation (or being zero). If M € # then Hom(L, M) € # for any R-
module L, M ® F € 2 for any flat module F, and Hom(M, E) € & for any
injective module E. If N € & then NQ L € &, Hom(N, L) € 2 for any R-
module L, and Hom(P, N) € & for any projective module P.

Throughout this paper the ring R is commutative with a non-zero identity
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element. We write “finite”” for “finitely generated”. Also, we shall use Max R
to denote the set of all maximal ideals of R. For an R-module M its injective
envelope is denoted by E(M).

The author would like to express his gratitude to professor H.-B. Foxby
for all his support, helpfulness, and in particular for suggesting many of the
topics considered in this paper.

The author would also like to thank the University of Copenhagen and in
particular the Mathematics Institute for its hospitality and the facilities of-
fered during the preparation of this paper.

1. Weakly associated primes.

Let M be an R-module. The set of weakly associated prime ideals of M is
denoted by Ass M and it is the set of prime ideals p such that there exists
x € M with p a minimal element in V(Ann x), that is, the set of prime
ideals p of R such that there exists a cyclic submodule N of M with p a
minimal element in V(Ann N).

1.1. THEOREM. Let M be an R-module. Then the following hold
(a) Ass M C Ass M C Supp M.

(b) Ass M = Ass M if R is a Noetherian ring.

() ASSM £Qif M #0.

@ IfO0—-M —>M— M'— 0 is an exact sequence, then

ASSM' CAsSM C Ass M'UAss M.

© 2(M) = U,z P
(f) If S is a multiplicative closed system of R, then

ASsg-ig STIM = {pST'R | p € ASsg M withpN S = O}.
Proor. See [1, page 289--290] and [2, 6.1--6.2].
1.2. CorROLLARY Let M be a Noetherian R-module. Then
ASsSp M = Assg M.

PrROOF. Set R = R/Ann M, which is a Noetherian ring, and then use (1.1)
(b).

It follows from (1.1) (a) that Ass M C Ass M and equality holds when M
is a Noetherian by (1.2). The next example shows that equality does not hold
in general.

EXAMPLE. Let k be a field and consider the ring R = kN (direct product).
Set a = k(N) (direct sum) which is an ideal of R. Set M = R/a. We claim that
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Ass M = (. Assume that p € Ass M. Thena C p = (a: r) for some r¢ a. It
is easy to find two elements s and ¢ of R such that sr,tr ¢ a and st = 0. Since
str =0 we have st € p. But s¢ p and ¢ ¢ p and this is a contradiction.

An R-module M # 0 is said to be coprimary if for each a € R the homo-
thety M > M is either injective or nilpotent. This implies that nil M = p is
a prime ideal of R (note that nil M = v Ann M), and M is said to be p-co-
primary.

If there exist a finite number of primary submodules N; (in other word
M/N; is coprimary) for 1 <i < n such that 0 = NN NN ---N N, then we
say that the zero submodule of M has primary decomposition. In this case
M is isomorphic to a submodule of M/Ny & M/N, & ---® M/N,.

1.3. LEMMA. Let the zero submodule of M have a primary decomposition
and let 0 = Ny NN, N ---N N, be a minimal primary decomposition of 0 where
N; is p;-primary submodule of M for i = 1,2,...,n. Then

AS’\éR M= {Pl7p2’ s 7pn}‘

PrOOF. “C” First assume that the zero submodule of M is p--primary (in
the other words, M is p-coprimary). Let ¢ € Ass M. Then there exists a cyc-
lic submodule N of M such that g is a minimal element in V(Ann N). Since
N is also p-coprimary we have nil N = p. Therefore g = p.

Now let the zero submodule of M have primary decomposition. Then
there exist the exact sequence 0 — M — ®(M/N;). We have Ass M C
Ass (®M/N;) = UAss(M/N;) by (1.1) (d) and Ass(M/N;) = {p;} (as already
proved). Now the assertion follows.

“2” Set Kj = NixiN;. Then K; # 0 by the minimality of the primary de-
composition, and K; = K;/(K; N N;) = (Kj+ N;)/N; € M/N;. Now choose
by (1.1) (c) g € Ass K;. Since Ass K; C Ass(M/N;) C {p;} by (1.1) (d) and the
already established inclusion, we get p; = g € Ass K; C Ass M as desired.

1.4. COROLLARY. If the zero submodule of M has a primary decomposition
then Ass M is a finite set. In particular, if M in a Noetherian R-module then
Ass M is a finite set.

1.5. THEOREM. Let the zero submodule of M have primary decomposition.
Then the following hold.

(a) The minimal elements of the set V(Ann M) belong to Ass M.

(b) Ass (R/Ann M) C Ass M.

(c) The sets V(Ann M), Ass (R/Ann M) and Ass M have the same minimal
elements.

PrOOF. Let 0 =N;NN,N---NN, be a minimal primary decomposition
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of the zero submodule of M where N; is a p;-primary submodule of M for
i=12,...,n

(a) There exists an exact sequence 0— M — &;(M/N;). Thus
N;Ann (M/N;) = Ann M (since the inclusion D is obvious). Let p be a mini-
mal element of the set V(Ann M). Then p is a minimal element of the set
V(Ann (M/Nj;)) for some 1 <i<n. Since nil(M/N;) = p; we have p=p,.
Now the assertion follows from (1.3).

(b) Let p € Ass(R/Ann M). Then p is a minimal element of the set
V(Ann (a + Ann M)) for some a € R. Thus p is a minimal element of
V(Ann aM). Therefore p € Ass(aM). Now the assersion follows from (1.1)
(d).

(c) We know that V(Ann M) and Ass M have the same minimal elements
by (a) and the fact that Ass M C V(Ann M). For any p € Ass(R/Ann M) we
know that Ann M C p. Now the assertion follows from (b).

1.6. THEOREM. Let R be a Noetherian ring and let F be a flat R-module. Let
p be a prime ideal of R. Then the following are equivalent

(i) There exists a p-coprimary module M such that M ® F # 0.

(ii) For any p-coprimary module M we have M ® F # 0.

(iii)) R/p®F #0.

ProoF. Let M be a p-coprimary. Since R is a Noetherian ring and M has
primary decomposition we have Ass M = {p}.

“(i) = (iil)” Since Ass M = {p} we have Ass(M ® F) = Ass(R/p ® F) by
[1, page 154]. Since M ® F #0 we have Ass(M ® F) # () and hence
Ass(R/p ® F) # . Now the desired implication has been established.

“(iii) = (i1)” The exact sequence 0 — R/p — M induces the exact se-
quence 0 — (R/p) ® F — M ® F. Now the assertion holds.

“(ii) = (i) This is clear.

1.7. LeMMA. Let M, N be R-modules. If Hom(M,N) # O then there exists
p € ASS M such that p C q for some q € Ass N.

PrOOF. Let ¢ : M — N be a non-zero map. Choose q € Ass ¢(M). Then
q € Ass N. Since g € Ass (M), we can choose x € M such that ¢ is a mini-
mal element in V(Ann(p(x))). Thus g € V(Ann x). We can choose p as a
minimal element of V(Ann x) such that p C ¢q. Thus p € Ass M.

1.8. THEOREM. Let E be an injective R-module such that Ass E = Ass E.
Let p be a prime ideal of R. Then the following are equivalent

(i) There exists a p-coprimary module M such that Hom(M, E) # 0.

(ii) For any p-coprimary module M we have Hom(M, E) # 0.

(iii)) Hom(R/p,E) # 0.
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ProoF. “(iii) = (ii)”’ Since p € Ass M we have x € M such that p is mini-
mal in V(Ann(Rx)). The sequence Rx — R/p — 0 is exact and induces the
exact sequence 0 — Hom(R/p, E) — Hom(Rx, E). Thus Hom(Rx, E) # 0. In
addition, the exact sequence 0 — Rx — M induces the exact sequence
Hom(M, E) — Hom(Rx, E) — 0. Therefore Hom(M, E) # 0.

“(ii) = (1)” This is clear.

“@i) = (ii1)” Since Ass M = {p} by (1.3), and Hom(M, E) # 0 we have
p C g for some g € Ass E = Ass E by (1.7). Thus Hom(R/q, E) # 0. Now the
exact sequence R/p — R/q— 0 induce the exact sequence 0 —
Hom(R/q, E) — Hom(R/p, E). Thus Hom(R/p, E) # 0.

1.9. REMARK. If R is a Noetherian ring then (i), (ii) and (iii) are equiva-
lent for any injective R-module E.

Let R be a Noetherian ring and let N be a finite R-module. It is well-
known that for any R-module M we have Hom(N, M) # 0 if and only if
2 2 Ann N for some p € Ass M, cf. [1, page 267]. In the next example we
show that this result does not hold for Ass M when R is not Noetherian.

ExAMPLE. Let R and M be the same as in the example after (1.2). Assume
that m € Ass M so m € Max R since that ring R is von Neumann regular.
Since m ¢ Ass M we have Hom(R/m, M) = 0.

2. Weakly coassociated primes.

In this section we introduce the notion of weakly coassociated primes (dual
notion to that of weakly associated prime). First we bring some definitions
and results of [10].

In [10] we have introduced the notion of cocyclic module, and it is used to
define the coassociated prime ideals and cosupport of modules over Noe-
therian rings. Now note that the next definitions are over (not necessarily
Noetherian) commutative rings. For any maximal ideal m of R the functor
Hom(—, E(R/m)) is denoted by D,,(—).

2.1. DerFINITION. An R-module L is said to be cocyclic if L is a submodule
of D,,(R) for some m € Max R.

2.2. REMARK. The module M is cocyclic if there exists an ideal a of R
such that M = D,,(R/a). This follows from the fact that D,,(R/a) C D, (R).

2.3. DEerINITION. Let M be an R-module. A prime ideal p of R is said to
be a coassociated prime of M if there exists a cocyclic homomorphic image L
of M such that p = Ann L. The set of coassociated prime ideals of M is de-
noted by Coass M.
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The next theorem was proved in [10, 1.7] with the Noetherian condition on
R, but the proof in the non-Noetherian case is the same.

2.4. THEOREM. Let M be an R-module. The following are equivalent
(i) p € Coass M
(ii) There exists m € Max RNV (p) such that p € Ass D,,(M).

2.5. DerINITION. For an R-module M the subset w(M) of R is defined by
w(M) ={ae R| M 5 M is not surjective}.

2.6. DErFINITION. Let M be an R-module. The cosupport of M, written
Cosupp M, is the set of prime ideals p such that there exists a cocyclic
homomorphic image L of M with p € V(Ann L).

2.7. DEfFINITION. Let M be an R-module. A prime ideal p of R is said to
be a weakly coassociated prime of M if there exists a cocyclic homomorphic
image L of M such that p is a minimal element in V(Ann L). The set of
weakly coassociated prime ideals of M is denoted by Coass M.

2.8. LEMMA For any R-module M, Coass M C Cosupp M and every mini-
mal element of the set Cosupp M belongs to Coass M.

Proor. It follows directly from (2.6) and (2.7).

2.9. THEOREM. Let M be an R-module. The following are equivalent
(i) p € Coass M
(ii) There exists m € Max RN V(p) such that p € Ass D,,(M).

ProoF. (i) = (ii). If p € Coass M, then there exists a cocyclic homo-
morphic image L of M such that p is a minimal element in V(Ann L). Let
@ : M — L be the surjective homomorphism. Thus Ann ¢ = Ann L. There-
fore p is a minimal element in V(Ann ¢) and hence p € Ass Hom(M, L).
Since L is a submodule of D,(R) for some m € Max R, we have
p € Ass D,,(M) for the same m € Max R by (1.1) (d).

(ii) = (i). If p € Ass D,,(M), then there exists ¢ € D,,(M) such that p is a
minimal element in V(Ann ). Let L = p(M) (submodule of D,,(R)). Thus L
is a cocyclic and Ann L = Ann . Hence we have p € Coass(M).

2.10. THEOREM. For any R-module M the following hold.
(a) Coass M C Coass M.

(b) If R is a Noetherian ring then Coass M = Coass M.

(c) If M is an Artinian R-module then Coass M = Coass M.
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PrOOF. (a) It is clear.
(b) Let p € Coass M. There exists m € Max R with p € Ass D,,(M) and
hence p € Ass D,,(M) by (1.1) (b). Therefore we have p € Coass M by (2.4).
(c) Let peCoassM. Then peAssD,(M) for some ideal
m € Max RNV(p). We have Ass (D,,(M)) = Ass (D,,(M)), since M is an
Artinian R-module, cf. [7, 2.9]. Therefore p € Ass D,,(M) and hence
p € Coass M by (2.4). Now the assertion follows from (a).

2.11. THEOREM. Let M be an R-module. Then Coass M # @ if M # 0.

PrOOF. Assume M # 0. Since D,,(M) = Homg, (M, E(R/m)) we have
then D,,(M) # 0 for some m € Max R (namely for m € Supp M N Max R).
Thus Ass D,,(M) # @. Hence Coass M # @ by (2.9).

2.12. THEOREM. If 0 - M' - M — M" — 0 is an exact sequence, then
Coass M" C Coass M C Coass M’ U Coass M".

Proor. If p € Coass M”, then there exists m € Max RN V(p) such that
p € Ass Dp,,(M") by (2.9). We have an exact sequence

(%) 0 - Dpu(M") = Dp(M) — Dp(M') — 0.

Thus p € Ass D,,(M). Hence p € Coass M by (2.9).

If now pe€ Coass M then there exists m € Max RNV(p) such that
p € Ass D, (M) by (2.9). Consider once more the exact sequence (). It fol-
lows that p € Ass D,,(M") or p € Ass D,,(M’), and hence p € Coass M" or
p € Coass M’ by (2.9).

2.13. CorOLLARY. For R-modules M, ..., M, we have
Coass(M, & - -- ® M,,) = Coass(M;) U - - - U Coass(M,,).

Proof. “C” It is clear from (2.12) by induction.
“2” It follows from the fact that M; is a homomorphic image of
M @ - -®M, for all i.

2.14. LEMMA. Let M be an R-module. If p € Ass M, then p € Coass D,,(M)
Sfor allm € Max RN'V(p).

PROOF. Let p € Ass M and let m € Max RN V(p). Then there exists x € M
such that p is a minimal element in V(Ann x). The exact sequence
Rx — R/p — 0 induced the exact sequence 0 — D,,(R/p) — D, (Rx). Since
Ann (D,,(R/p)) =p and Ann x C Ann (D,,(Rx)), we have p is a minimal
element in V(Ann(D,,(Rx))). On the other hand, Since Rx = R/Ann x, we
have that D,,(Rx) is a cocyclic by (2.2). Thus p € Coass D,,(Rx) and hence
p € Coass D,,(M) by (2.12).



COASSOCIATED PRIMES OF MODULES OVER... 183

2.15. THEOREM. For any R-module M there is an equality

w(M) = U p-

peCoass M

ProoF. If a € U,, cCons p P> then there exists p € Coass M with a € p. By
(2.9) there exists m € Max R with p € Ass D,,(M) and hence a € z(D,,(M)).
Thus aM # M and hence a € w(M).

On the other hand let ae (M) Since M/aM #0, we have
Coass(M /aM) # @ by (2.11). Let p € Coass(M/aM). Then a€p and
p € Coass M by (2.12). Therefore a € Upecg;ssMp,
3. Attached primes.

In [3] I. G. Macdonald has developed the theory of attached prime ideals
and secondary representation of a module, which is (in a certain sense) a
dual to the theory of associated prime ideals and primary decompositions.
Now we want to prove that if M has a secondary representation then
Att(M) = Coass(M). We use the notation of [3]. An R-module M # 0 is
called secondary if for each a € R multiplication by a on M is either surjec-
tive or nilpotent. Then nil M = p is a prime ideal and M is called p-second-
ary. We say that M has a secondary representation if there is a finite number
of secondary submodules M, M,,..., M, such that M = M+ M) +---+
M,. One may assume that the prime ideals nil M; = p;, i =1,2,...,n, are all
distinct and, by omitting redundant summands, that the representation is
minimal. Then the set of prime ideals {p,,...,p,} does not depend on the
representation, and it is called the set of attached prime ideals and denoted
by Att(M). In [3] Macdonald showed that Artinian modules have secondary
representation.

3.1. THEOREM. If M have a secondary representation and M =S|+
Sy + -+ -+ S, is a minimal secondary representation of M where S; is a p;-sec-
ondary submodule of M for i =1,2,...,n, then

C(;a\S/SM:{pl,pz,...,pn}:AttM.

ProoF. First assume that M is a p-secondary. Then AttM = {p}. Let
q € Coass M. There exists then a cocyclic homomorphic image L of M such
that ¢ is a minimal element in V(Ann L). Since L is also p-secondary we have
nil L = p and hence g = p.

Now let M have secondary representation. Then there exists an exact se-
quence ®S; — M — 0. Since Coass M C U; Coass S; by (2.12) and (2.13), we
have Coass M C Att M (since it has already been proved that
Coass S; = Att S; for any i = 1,2,...,n).



184 SIAMAK YASSEMI

Set K; = »,; Ni. Then M/K; # 0 by the minimality of the representation,
and M/K; = (K;+ S;)/K; = S;/(K;N S;) is a homomorphic image of ;.
Choose by (2.11) g € Coass(M/K;). Since Coass(M/K;) C Coass S; C {p;}
by (2.12) and the already established equality, we get p,=q¢€
Coass(M/K;) C Coass M as desired.

3.2. COROLLARY. If M have a secondary representation then Coass M is
a finite set. In particular, if M is an Artinian R-module then Coass M is a finite
set.

3.3. THEOREM. Let M have a secondary representation. Then the following
hold

(@) The minimal elements of the set V(Ann M) belong to Coass M.

(b) AsS(R/Ann M) C Coass M.

(c) The sets V(Ann M), Ass(R/Ann M) and Coass M have the same mini-
mal elements.

ProoF. (a) Let M =S +S+---+S, be a minimal secondary re-
presentation of M where S; is a p;-secondary for i = 1,2,...,n. We have the
sequence @&S; — M — 0 is exact. Thus NAnn S; = Ann M. Let p be a mini-
mal element of the set V(Ann M). Then p is a minimal element of the set
V(Ann §;) for some 1 <i<n. Since nil S; = p; we have p = p;, and hence
p € Att S;. Now the assertion follows from (3.1).

(b) Since Ann M =NAnn S; and Ann S; is a p; primary ideal we have
R/Ann M has primary decomposition and Ass(R/Ann M) C Att M.

(c) We know that Coassg M = {p,,p,,...,p,} by (3.1), and that
Ann M C Ann S; for any 1 < i < n. Therefore V(Ann M) and Coass M have
the same minimal elements by (a). Since Ann M Cp for any
D € Ass(R/Ann M) the assertion follows from (b).

3.4. THEOREM. Let M be a Noetherian R-module. For an injective R-mod-
ule E we have

Coass Hom(M,E) = {p € Ass M | p C q for some g € Ass E}.
Proor. It follows from [5, Lemma 4] and (3.1).

3.5. REMARK. Let M be an R-module and let E be an injective R-module.
Then

{p € Ass M | p C q for some q € Ass E} C Coass Hom(M, E),

cf. [10, Remark after (1.17)] and (2.10) (a). But equality does not hold in
general, cf. [10, Example after (1.8)].

Assume R is a Noetherian ring. In [8] Sharp has found the set of attached
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primes of injective modules E and in [9] Toroghy and Sharp have found the
set of attached primes of Hom(M, E) for any finite module M and injective
module E. These results are particular cases of the following.

3.6. THEOREM. Assume R is a Noetherian ring. Let the zero submodule of
R-module M have a primary decomposition and let 0 = NN N, N ---N N, be
a minimal primary decomposition of the zero submodule of M where N is a p;-
primary submodule of M for i =1,2,... n. For an injective R-module E,

Coass Hom(M,E) = {p € Ass M | p C q for some q € ASs E}

Proor. First note that ASSM = {p;,ps,...,p,} =ASM by (1.2)
and (1.3). There exists an exact sequence 0 - M — @M /N;. Thus the
sequence ®Hom(M/N;,E) - Hom(M,E) -0 is exact. Therefore
Coass Hom(M, E) C UCoass Hom(M/N;, E). Since for any a€ R the
homothety M/N; =5 M/N; is either injective or nilpotent we have
Hom(M/N;, E) =5 Hom(M/N;,E) is either surjective or nilpotent for
1 <i < n. Thus Hom(M/N;, E) is either p-secondary or zero. On the other
hand if Hom(M/N;,E) #0 then Hom(R/p;,E) #0 by (1.8), and hence
p;Cq for some ge€AssE by (1.7). Thus Coass Hom(M,E)C
{p € Ass M | p C g for some q € Ass E}. Now the assertion follows from
(3.5).

4. Conilradical.

In this section we introduce the notion of conilradical (dual notion to that of
nilradical).

4.1. DerFINITION. For an R-module M we denote the conilradical of M by
conil (M) defined as the set of all elements a € R such that for each cocyclic
homomorphic image L of M there exists n € N with a"L = 0.

4.2. THEOREM. For any R-module M we have

conil(M) = ﬂ p.

peCoass M

PROOF. Let a € conil(M) and let p € Coass M. It follows that there exists
a cocyclic homomorphic image L of M such that p is a minimal element in
V(Ann L). Thus there exists ¢ € N such that a’L = 0 by the definition. Since
Ann L C p, we have a' € p, and hence a € p.

Now leta € npeco’gs 2P and let L be a cocyclic homomorphic image of M.
Assume that a' ¢ Ann L for all + € N. Thus a ¢ nil L. It follows that there
exists g € Spec(R) such that Ann L C g and a ¢ g. Therefore g € Cosupp M
and a ¢ q. Now the contradiction follows from (3.7).
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4.3. COROLLARY. Let M be an R-module. Then the following areequivalent
(i) Coass M has exactly one element.
(ii) conil(M) = w(M).

PrROOF. “(i) = (ii)” It follows from (4.2) and (2.15).
“(@ii) = (i)” For any p € Coass M we have (M) C p C w(M) by (4.2) and
(2.15). Now the assertion follows.

5. Functorial results.

Let 2 be the class of all R-modules M such that the zero submodule has
primary decomposition (or M = 0), and let & be the class of all R-modules
having secondary representation (or being zero). In this section we show
some functorial relation between these two classes.

5.1. THEOREM. Let F be a linear functor over the category of R-modules.
Then the following hold

(a) If F is left exact and covariant and if M € P then F(M) € 2. In parti-
cular, If F is a flat R-module and M € P then M ® F € P, and if M € P then
Hom(N, M) € ? for any R-module N.

(b) If F is right exact and contravariant and if M € P then F(M) € &. In
particular, If E is an injective R-module and M € P then Hom(M,E) € &.

(c) If'F is right exact and covariant and if M € & then F(M) € &. In par-
ticular, If M € & then M ® N € &. In addition, If P is a projective R-module
and M € & then Hom(P,M) € &.

(d) If F is left exact and contravariant and if M € & then F(M) € 2. In
particular, If M € & then Hom(M,N) € 2 for any N.

ProoF. First let M € 2 and let 0 = Ny NN, N---N N, be a minimal pri-
mary decomposition of the zero submodule of M where N; is a p;-coprimary
submodule of M fori=1,2,...,n.

(a) Since for any a € R the homothety M/N; —— M/N; is either injective
or nilpotent we have F(M/N;) = F(M/N;) is either injective or nilpotent
for 1 <i<n. Thus F(M/N;) is either p,-coprimary or zero. On the other
hand the exact sequence 0 — M — @;(M/N;) induce the exact sequence

(b) Since for any a € R the homothety M/N; — M /N is either injective
or nilpotent we have F(M/N;) — F(M/N;) is either surjective or nilpotent
for 1 <i<n. Thus F(M/N;) is either p;-secondary or zero. On the other
hand the exact sequence 0 — M — &;(M/N;) induce the exact sequence
EB,'F(M/N,‘) d F(M) — 0.

Now let M have a secondary representationand M = S; + S, + -+ Sy, is



COASSOCIATED PRIMES OF MODULES OVER... 187

a minimal secondary representation of M where S; is a p,-secondary sub-
module of M fori=1,2,... n.

The proof of (c) is similar to the proof (a), and the proof of (d) is similar
to the proof (b) using the exact sequence ®S; — M — 0.
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