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ADJUNCTION MAPPINGS ON NUMERICAL QUADRICS

Y. S. POON

Abstract.

Using Reider’s method, we analyse the adjunction mappings on general-type surfaces with
Pg =0,9 =0,c2 =4 and even intersection form. In particular, we prove that when the funda-
mental group of such a surface does not have any irreducible SU(2) or SO(3)-representations,
there exists a divisor numerically equivalent to the canonical divisor so that its adjunction map
is a regular bimeromorphism.

§1. Introduction.

When F is a line bundle on a compact complex surface X, the adjunction
map is the rational map associated to the line bundle KF where K is the ca-
nonical line bundle on X [16]. Applying a construction of Serre [5] [8] [15]
and Bogomolov’s criterion of determining stability of holomorphic vector
bundles on compact complex surfaces [3] [13], Reider developed his famous
method of studying adjunction maps on algebraic surfaces [14]. In parti-
cular, he re-proved and improved Bombieri’s results on pluricanonical maps
on general-type surfaces [4].

Recently, Kotschick applied Reider’s method to study pluricanonical
maps of numerical Godeaux surfaces and numerical Campedelli surfaces [9]
[10] . Among other results, he found that the space of irreducible SO(3) and
SU(2)-representations of the fundamental group of such a surface often
contains obstructions to a certain pluricanonical map from being an em-
bedding. The representations of the fundamental group appear because of
Donaldson’s Stable Bundle Theorem [7] stating that a holomorphic vector
bundle on an algebraic surface is stable if and only if there is a Hermitian-
Einstein metric.

We use Kotschick’s idea of applying Reider’s method and Donaldson’s
Stable Bundle Theorem to study adjunction maps on numerical quadric
surfaces. A numerical quadric surface is a general-type surface having the
same set of numerical topological data as the complex quadric surface. Let
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b, be the nth Betti number and x the Euler number of a compact complex
surface X. Let Q be the intersection form on the torsion-free part of the
second integral cohomology group. When the intersection form is odd, we
set ¢ = 1. When the intersection form is even, we set ¢ = 0. Let b, be the
number of positive eigenvalues of the intersection form.

DEFINITION. A general-type surface X is a numerical quadric surface if
bo(X)=1, b(X)=0, x(X)=4,  «X)=0.

Let p, be the geometric genus of a compact complex surface X, g the ir-
regularity, ¢} the self-intersection of the first Chern class and ¢, the second
Chern number. The Hodge theory yields the following identities.

by =2pg +1, b, =2q, X = C3.
Therefore, we rewrite the definition of numerical quadrics.
DEFINITION. A general-type surface X is a numerical quadric surface if
pe(X) =0, q(X)=0, c(X)=4  €X)=0.

By Qin’s answer to the Hirzebruch problem in the category of differen-
tiable manifolds [12], no numerical quadric is diffeomorphic to a quadric
surface. Whether there are fake quadrics, i.e. general-type surfaces homeo-
morphic to but not diffeomorphic to a quadric, remains a question. How-
ever, when one allows the fundamental group to be non-trivial, there are
examples of numerical quadrics constructed by Kuga and Beauville [1] [2].
These examples are discussed in detail by Dolgachev in [6]. Note that in [1],
numerical quadrics were called fake quadrics.

It is a direct consequence of Reider and Bombieri’s result that the third
canonical map on a numerical quadric is an embedding and that the second
canonical map is a regular morphism. The aim of this article is to prove the
following two theorems.

THEOREM A. Let X be a numerical quadric. If m1(X) does not have any ir-
reducible SU(2) or SO(3)-representations, then there exists a divisor F nu-
merically equivalent to the canonical divisor such that the adjunction map of F
is a regular bimeromorphism.

THEOREM B. Let F be a divisor on a numerical quadric. Suppose that it is
not numerically equivalent to the canonical class.

(1) If F — K is numerically effective, then the adjunction map of F is a reg-
ular bimeromorphism.

(2) If F — K is positive, then the adjunction map of F is an embedding.



ADJUNCTION MAPPINGS ON NUMERICAL QUADRICS... 163
Other related results are discussed in the last section of this article.

§2. Preliminary data.

To set up our investigation, we need to describe effective divisors and posi-
tive divisors on a numerical quadric. It was already done in Qin’s paper, at
least when the manifold X is simply-connected [12]. In this section, we fol-
low his techniques to describe divisors which are positive, effective and nu-
merically effective.

When X is a numerical quadric, its second betti number is equal to 2 and
its signature is equal to zero. Since the intersection form of X is even, there
exists a basis in the torsion-free part of H?(X,Z) such that the intersection
form is the hyperbolic matrix

2.1) (? ('))

LEMMA 2.2. A numerical quadric does not contain any smooth rational
curves. It is a minimal surface and its canonical bundle is ample.

ProOF. Since the intersection form of a numerical quadric X is even, X is
minimal. On a minimal general-type surface, the number of disjoint non-
singular rational curves is bounded by %(cz - %c%) [11]. Since ¢; = 4 and the
signature is equal to zero, the signature formula shows that ¢ = 8. Then the
number of disjoint rational curves on X is at most g. In other words, there
are no rational curves on X.

The canonical bundle is positive because the only obstruction to the ca-
nonical bundle being positive on any general-type surface is the presence of
smooth rational curves with self-intersection —2.

On X, two divisors 4 and B are numerically equivalent if for any divisor
D, A-D=B-D. By A =B, we mean that 4 and B are numerically equiva-
lent. Consider the induced long exact sequence of the exponential sequence

0-Z2—-0—-0"—1.
The vanishing of the geometric genus and irregularity together implies that
H'(X,0%) =~ H*(X,Z) ~ H"' (X).

The notions of holomorphic line bundles, first Chern class of line bundles
and divisor classes are equivalent. For this reason, we shall not use different
symbols to distinguish them. Warning: Given a line bundle F or its divisor,
we shall use F? to represent both the tensor product of line bundles F @ F
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and the self-intersection number of a divisor F - F. In contents, it will not be
confusing.

Let X and © be elements in H?(X,Z) such that they span the torsion-free
part of H?(X,Z) and the intersection matrix with respect to this basis is re-
presented by (2.1). Then there are integers @ and b such that K = aX + bO.
As K? = ¢ = 8, ab = 4. Moreover, for any divisor D,

K-D=wy(X) D, mod?2
=D-D, mod 2
= 0. mod 2

The integers a and b are both even. If follows that either a =b =2 or
a = b = —2. In the later case, if we choose {—X, —O} as a basis for the tor-
sion-free part of H%(X,Z), then K = 2(—6) + 2(—X). With respect to this
basis, the intersection form is again represented by the hyperbolic matrix
(2.1). To conclude, we have

LEMMA 2.3. There is a basis {O©, X} for the torsion-free part of H*(X,Z)
such that the intersection form is the hyperbolic matrix (2.1) and
K =20+25.

We choose such a basis for the torsion-free part of H*(X,Z) once and for all.

LemMA 2.4. [12] If a divisor D is effective, then there are non-negative in-
tegers a and b such that D = a© + bX anda+ b > 0.

Proor. It suffices to prove this claim for irreducible effective divisors. As
the canonical bundle is positive, 2(a + b) = DK > 0. Applying the adjunc-
tion formula, one sees that if ab < 0, then D is a smooth rational curve,
contradicting Lemma 2.2.

LEMMA 2.5. A divisor on X is positive if and only if it is numerically
equivalent to mO + nX such that m > 1 and n > 1.

Proor. This is a direct consequence of the Nakai’s criterion and the above
lemma on effective divisors.

COROLLARY 2.6. A divisor on X is numerically effective if and only if it is
numerically equivalent to mO + nX such that m > 0 and n > 0.

Proor. For any positive integers h and k, © + hX and kO + X are ample.
Therefore, if C = mO + nX is numerically effective, then

mh+n=C(O+hX) >0, m+nk=C(kO +X) >0,

for all positive integers 4 and k. It follows that m and n are non-negative.
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§3. Linear systems.

We apply the Riemann-Roch formula to find that when D = mO + nX,
1
(3.1) x(X,D) = E(me +nX)Y(m—-20+n-2)X)+1=m-1)(n—-1).

By Serre duality h*(X,D) = h°(X,—(D — K)). Therefore, if D # K and
D — K is numerically effective, then Lemma 2.4 and Lemma 2.5 together
implies that h?(X, D) is equal to zero. Then (3.1) implies that h°(X, D) > 2.
When F is a line bundle, we use &gy to denote the adjunction map. i.e. the
rational map associated to the complete linear system of |K + F|.

When F is numerically effective and non-zero, the above discussion shows
that the system |K + F| is at least a pencil. The following is a direct con-
sequence of Part (i) of Reider’s Theorem 1 [14].

PROPOSITION 3.2. Suppose that F is a numerically effective divisor on X
such that F = (mO + nX) and mn > 3. If the system |K + F| has a base point
thenm = 1orn= 1. And if p is a base point, then it is contained in an effective
divisor E such that E = © when F = mO + X, and E = X when F = O + nX.

To illustrate the involvement of the representations of the fundamental
group, we prove the following.

PROPOSITION 3.3. Suppose that the fundamental group of X does not have
any irreducible SO(3)-representations. Let F be a numerically effective divisor
on X such that F = (mO +nX) and mn = 2. If p is a base point, then it is
contained in an effective divisor E such that E = 6 when F =20+ X, and
E=X whenF=60+2%.

PrOOF. Let p be a base point of the system |K + F|. Let .#z be the ideal
sheaf of p. By a construction of Serre [5], there is a rank-2 holomorphic
bundle & defined by the extension

(3.4) 00— &— Fz(F)—>0
As ¢1(&8) = F and ¢;(€) = 1, the discriminant of & is given by
(&) — 4cy(8) =2mn — 4 =2(mn—2) = 0.

When mn =2, wy(F) # 0. Due to a generalization of Donaldson’s Stable
Bundle Theorem [7] [10], the stability of the bundle & is due to the existence
of an anti-self-dual connection on the SO(3)-bundle p := Ad(€) with Pon-
tryagin class

pi(p) = c1(€)* — 4c2(8) = 0.
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As the connection is also anti-self-dual, Chern-Weil theory implies that the
connection on g is flat. Therefore, the holonomy representation of g pro-
duces an irreducible SO(3)-representation of m;(X).

With the absence of such a representation, the bundle & is unstable with
respect to any polarization. Let M be a maximally destabilizing sheaf with
respect to the bundle F. Then there is a 0-cycle 4 and a line bundle E such
that & is contained in the following extension.

(3.5) 0— 0OM)— & — F4FE)—0.
As M is destabilizing with respect to F,
(3.6) MF > %cl(é")F = %F2 > 0.

Therefore, H*(X,0(M~")) vanishes. When (3.5) is twisted by M~! to
(3.7) 0-0—-EQM' — JFHEM™) -0,

we see that the bundle & ® M~! has non-trivial sections. When (3.4) is twis-
ted, one has the exact sequence

(3.8) 0 O0M YY) sEeM ' - F,(FM™) — 0.

Its induced long exact sequence and the vanishing of H°(X,0(M™1)) to-
gether shows that p is contained in an effective divisor E such that
E =F — M. Note that (3.6) is equivalent to (M — E)F = (2M — F)F > 0.
We have M? > E2. By Lemma 2.4, M? > E? > 0.

If M?=E?=0, then ME >0 because F?> = (M + E)*>0. If M? >0,
then by Lemma 2.5, either M is positive or —M is positive. By (3.6), M is
positive. As E is effective, then ME > 0. In conclusion, ME > 0 for all cases.

From (3.4) and (3.5), the second Chern class of & is equal to
1 = ¢;(8) = ME + degA. Therefore, ME = 1 and degd = 0. Given ME =1
and F = M + E, with Lemma 2.4 and Corollary 2.6, one deduces that either
E=O@andM=m-10+X,orE=XYand M =60+ (n—-1)%.

The following is a direct consequence of part (ii) of Reider’s Theorem 1
[14]. We give some details to the proof as it helps to understand other related
observations.

PRrROPOSITION 3.9. Suppose that F is a numerically effective divisor on X
such that F = (mO +nX) and mn > 5. If Z is a 0-cycle of degree two not sep-
arated by sections of the bundle KF, then m = 1 or n = 1. And the support of Z
is contained in an effective divisor E such that

(1) E=Oor20when F=mO + X, E= X or 2X when F = © +nX; or

2 E=Owhen F=mO+2X, E= X when F =260 + nX.
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PrOOF. Given Z, there is a rank-2 holomorphic bundle & defined by the
extension

(3.10) 0-0—-6&— Fz(F)—0
As ¢1(8) = F and ¢;(&) = degZ = 2, the discriminant of & is equal to
(3.11) ci(&) — 4ca(8) = 2mn — 8 = 2(mn — 4).

With the assumption that mn > 5, the bundle & is Bogomolov-unstable [3]
[13]. Let M be a maximally destabilizing sheaf with respect to the bundle F.
Then there is a 0-cycle 4 and a line bundle E such that & is contained in the
following extension.

0> O0M)— & — F4(E)—0.

As M is destabilizing with respect to F, MF > 1¢;(6)F =1F? > 0. In parti-
cular, H°(X,0(M™")) vanishes. Applying the argument in the second half of
the proof of Proposition 3.3, one finds an effective divisor E such that
E = F — M and support of Z is contained in E and ME > 0.

The second Chern class of & is equal to 2 = ¢(§) = ME + deg 4. Since
ME > 0, either ME =1 or ME = 2. With Lemma 2.4 and Corollary 2.6, one
deduces the following. When ME =1, then E=6, M= (m—-1)0+ %;
or E=X¥, M=6+(n-1)Y. When ME=2 then E=6,
M=m-1)0+2%;, or E=X, M=20+{n-1)X; or E=26,
M=m-2)0+ 3,0t E=2Y, M =60+ (n-2)%.

It is convenient to introduce the following definitions.

DEeFINITION 3.12. Let F be a numerically effective divisor. Let Z be any 0-
cycle with finite degree. When a rank-2 vector bundle is obtained in the exten-
sion

00— &— Fz(F)—0,
it is called an extension bundle of the divisor F with respect to Z.

Suppose that & is an extension bundle. If & is unstable with respect to a
polarization, then there is a maximally destabilizing line bundle M and a 0-
cycle A4 of finite degree such that & is contained in the following destabilizing
exact sequence.

0 OM)— & — F4(FM™") - 0.

DEFINITION 3.13. A divisor E such that E = F — M is called a degeneracy
divisor.
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Reading the proof of Proposition 3.9 again. Equality (3.11) shows that
one cannot apply Bogomolov’s theorem if mn = 4. Suppose that the exten-
sion bundle & is stable. If F has a square root F!/2 in the Picard group, then
F =& ® F~'/2 is a stable bundle with vanishing Chern classes. Then Do-
naldson’s Hermitian-Einstein metric on # is a flat SU(2)-metric. If F does
not have square root, then Ad(&) is a flat SO(3)-bundle. Therefore, the hol-
onomy representations of such bundles determine irreducible SU(2) and
SO(3)-representations of m(X) respectively. Then from the proof of Propo-
sition 3.3, we have the following.

PROPOSITION 3.14. Suppose that the fundamental group of X does not have
any irreducible SO(3)-representations. Suppose that F is a divisor such that
F=40+2X) or (6+4X). If Z is a 0-cycle of degree two not separated by
sections of the bundle KF, then Z is contained in an effective divisor E such
that E=6 or E=20 when F=40+ X; and E=X or E=2X when
F=6+4%.

PROPOSITION 3.15. Suppose that the fundamental group of X does not have
any irreducible SO(3) or SU(2)-representations. Suppose that F is a divisor
such that F = K. If Z is a O-cycle of degree two not separated by sections of
the bundle KF, then Z is contained in an effective divisor E such that E = 6,
X, or0+ %

§4. Proof of The Main Theorems.

All propositions in the last section focus our attention on effective divisors E
numerically equivalent to X, © or © + X In order to prove Theorem A and
Theorem B in the introduction, we investigate the properties of such
divisors.

LEMMA 4.1. Suppose that E is a divisor numerically equivalent to © or X.
Then dim|E| < 0.

ProOF. We prove this claim when E = X. Suppose that dim|E| > 1. Due
to Lemma 2.4, every element in this system |E| is irreducible. As
EE = 35 =0, any two elements in this system are mutually disjoint. In
particular, this system is free of base points. By Bertini’s theorem, a generic
element in this system is a non singular irreducible curve. Let D be such an
element. Then one has the exact sequence

0—0— O(E)—> Op(E) — 0.

Since EE = 0 and dim|E| > 1, Op(E) = Op. Therefore, ¢ = 0 implies that |E|
is a pencil.
Let D be any nonsingular irreducible element in the pencil |E|. By the ad-
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junction formula, the canonical divisor Kp of the curve D is the restriction of
K + E and the genus of D is equal to 2. It follows that

W(D,0p(Kp)) =2, K (D,0p(Kp)) =h(D,0p) =1.
As p, = 0 and g = 0, we deduce an isomorphism
H°(X,0(KE)) = H°(D,0p(Kp)) = C?
from the following exact sequence.
0— O(K) — O(KE) — Op(Kp) — 0.

It means that the system |K + E| is a pencil. As (K + E)* = 12, this pencil
has base points. Let p be a base point. Let G be the unique element in the
pencil |E| through p. If G is singular at p, let ¢ be any point of G different
from p. As the system |K + E| is a pencil, there is an element C in this system
passing through ¢. The intersection multiplicity of C and G is at least one at
g and two at p. Yet, (K + E) - G = 2. Since G is irreducible, G is a compo-
nent of C. Therefore, K = C — G is effective. This is a contradiction to the
vanishing of the geometric genus of X. So G is not singular at p. Similarly,
let g be any singular point of G. This point is different from p. Let C be the
unique element in the pencil |K + E| through ¢, then G and C intersect at
least once at p and twice at ¢q. Again, we deduce that G is a component of C.
Then K = C — G is effective. This contradiction to the vanishing of p, shows
that G is non-singular. When G is non-singular, the conclusion of the last
paragraph gives the following isomorphism.

H’(X,0(KE)) = H°(G, 0g(K¢)) = C%.

As p is a base point of the system |K + E| and is contained in the curve G,
the above isomorphism obtained by restriction implies that p is a base point
of the canonical system of the curve G. But G is a non-singular curve with
genus 2, its canonical systemis base-point-free. This contradiction shows that
|E| cannot be a pencil.

LEmMMA 4.2. Suppose that E\ = O + X. Suppose that the map $gg: is not an
embedding. Let E, be an effective degeneracy divisor of the system l]K +2E4|.
Then 2E, # 2E,. In particular, E, # E,.

ProoF. We only need to investigate the case when E; = © + X. In this
case, the maximally destabilizing exact sequence is

0 — O(E!E;') — & — O(E,) — 0.

Therefore, the bundle & is determined by a non-trivial element in
H'(X,EE;?). As g = 0, the bundle E?E5?2 cannot be trivial.



170 Y. S. POON

PrROOF OF THEOREM A. Let F be any divisor such that F = K. Proposition
3.2 shows that the map Pkr is regular. Suppose that & fails to be an em-
bedding. Let Z be a degree-2 0-cycle not separated by sections of the bundle
KF. Given the assumption on the fundamental group, the extension bundle
of F with respect to Z is unstable. Proposition 3.15 shows that the support
of Z is contained in an effective degeneracy divisor.

If all effective degeneracy divisors are numerically equivalent to either X
or O, then Pkr is a bimeromorphism because the regularity of X implies that
there are only finitely many such divisor classes. By Lemma 4.1, there is at
most one effective element in the complete linear system of such a divisor
class. Therefore, $kr fails to be a bimeromorphism only when there is a de-
generacy divisor E; such that E; = © + X' and dim|E;| = 1.

Given such E), define F| by E?. Consider the adjunction map of Fj. Sup-
pose that this map is not a bimeromorphism. Applying the conclusion of the
last paragraph to F}, one finds a degeneracy divisor E; such that £, =60 + X
and dim|E;| = 1.

Due to Lemma 4.2, E? # E3. Define F,:= E2. &gr, must be a bimer-
omorphism. For otherwise, there is a degeneracy divisor E3 such that
E;=60+ X and dim|E;| =1. By Lemma 4.2, E, # E; and E, # E;. If
E, = Ej3, then

H°(X,E\E,E;) = H'(X,E?E;) D S*H(X,E)) ® H* (X, Ey) = C°.
If E; # Ej, then
HY(X,E|E;E3) D HY(X,E)) ® H'(X,E;) ® H'(X, E3) = C%.

Since p, =0 and K°(X, E\E2E;) > 6, h*(X, E\EyE3) = 0. The divisors of
the bundle K(E; E2E3)"1 is numerically equivalent to —(© + X). By Lemma
2.5, it is a negative line bundle. By Kodaira’s vanishing theorem and Serre
duality, 4'(X,E\EE;) =0. By (3.1), x(X,E ExE;) =4. It follows that
(X, E|E,E3) = 4. This is a contradiction to h°(X, E| EE3) > 6. Therefore if
Pkr, is not a bimeromorphism, then ®xr, is a bimeromorphism.

The proof of Theorem A is completed.

PrROOF OF THEOREM B. When F — K is ample, then F = mO + nX such
that m > 3 and n > 3. Therefore, @xr is regular because of Proposition 3.2
and is an embedding because of Proposition 3.9.

Suppose that F is not numerically equivalent to K and F — K is numeri-
cally effective. If F — K is not ample, then F = mO + 2X such that m > 3 or
F =26 + nX such that n > 3. Therefore, ®gr is regular because of Proposi-
tion 3.2. Due to part (2) of Proposition 3.9, Lemma 4.1 and the finiteness of
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the first integral homology group, one concludes that ®xr is a bimer-
omorphism.

The proof of Theorem B is completed.

§5. Other results.

The adjunction maps of F when F = mO + ¥ and F = @ + nX are yet to be
dealt with. We study these maps with an additional topological assumption
that the first integral homology group H,(X,Z) vanishes. Under this condi-
tion, two divisors are linearly equivalent if and only if there are numerically
equivalent.

PROPOSITION 5.1. Suppose that X is a numerical quadric such that H;(X,Z).
vanishes and 7 (X) does not have any irreducible SO(3)-representations. Let F
be 20 + X or © + 2X. Then the system |K + F| has at most one base point.

PrOOF. Assume that F =20+ X. If p is a base point of the system
|K + F|. Let & be the extension bundle of F with respect to p. By Proposition
3.3, O is an effective divisor and the maximally destabilizing sequence (3.5) is
equivalent to

(5.2) 0-04+XY—>8—-60-—0.

Therefore, & is defined by a non-trivial element in H'(X, X).

As p, =0, h(X,0+ X) = 0. Then Lemma 4.1 and exact sequence (5.2)
together shows that 4°(X,&) < 1. By definition, & is obtained by the fol-
lowing extension.

0-0—-6— SF,20+%)—0.

As g = 0and K°(X, &) < 1, the above exact sequence shows that h°(X, &) = 1
and #°(X,.#,(20 + X) = 0. Therefore, i°(X,20 + X) = 1.

Since O is effective and the geometric genus of X is equal to zero,
(X, X) = 0. Then by (3.1), #*(X, X) = h'(X, X). By Serre duality, we have
W (X,20 + X) = h'(X,X). With the conclusion of the last paragraph, we
have h'(X, %) = 1.

As h%(X, &) = 1, the zeroes of any non-trivial sections of & is the point p.
As & is the only non-trivial extension given by H!(X, X), when there were
any other base points g, its extension bundle would have been the given &.
Moreover, & would have had a section vanishing at g. Yet /°(X,&) =1 and
c2(€) = 1. It shows that p = q.

PROPOSITION 5.3. Suppose that X is a numerical quadric such that H (X ,Z)
vanishes. Let F be 30 + Yor © + 3X. Then the adjunction map Pgr is a reg-
ular morphism.
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Proor. Suppose that F =360 + X. By Proposition 3.2, when p is a base
point of the system |K + F|, (3.5) is equivalent to

0-020+%)—>&—00O)—0.

Therefore, & is determined by a non-trivial element in H'(X,0 + X).

As the geometric genus of X vanishes, A°(X,0+ X)=0 and
W (X,0 + X) =0. Then by the Riemann-Roch formula, —4'(X,0 + X) =
x(X,0 + X) = 0. It shows that the extension bundle & does not exist.

PROPOSITION 5.4. Suppose that X is a numerical quadric such that H,(X,Z)
vanishes and m(X) does not have any SU(2)-representations. Let F be 46 + X
or © + 4. Then the adjunction map Pkr is a regular morphism.

PROOF. Suppose that F =460 + X. If |K + F| has a base point p, the ex-
tension bundle is contained in

(5.5) 0-0—-8—F,40+2%)—0.

The maximally destabilizing sequence is

(5.6) 0—-030+X%X)—>&— 0B)—0.

The last exact sequence shows that & is determined by a non-trivial class in
H'(X,20 + X).

As O is effective and p, =0 , h(X,X) =0. Then by Serre duality,
W(X,26 + X) = 0. By (3.1), x(X,20 + X) = 0. Therefore, h°(X,20 + X) =
h'(X,20 + X) # 0. Let s be a non-trivial element in H°(X,26 + X). Then s*
is a section of the bundle KF. In particular, s vanishes at p, a base point of

the system |K + F|.
Twisting the exact sequences (5.5) and (5.6) by —26, we have

(5.7) 0 — 0(=26) — £(=260) — F,(20 + ) — 0.
and
0—-0(6+Z%)— &(-20) > 0(-6) — 0.

The last exact sequence yields the vanishing of H°(X,&(—20)). As s is an
element in HY(X,#,(20 + X)), then exact sequence (5.7) implies that
H'(X,-26) # 0. It follows that there is a non-trivial extension.

(5.8) 0—-0—-%F —20—0.

The discriminant of the bundle & is equal to zero and the determinant
bundle of # is 6. When m;(X) does not have any irreducible SU(2)-re-
presentations, the bundle & is unstable with respect to any polarization. Let
M be a maximally destabilizing bundle with respect to © + X. One has the
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following exact sequence.

(5.9) 0= M—F — 54,020-M)—0,
with
(5.10) M©+5) 2 0(F)O+5) =5,

Therefore, the bundle M~! does not have any non-trivial sections. Due to
(5.8) and (5.9), 20 — M is effective. Let a and b be non-negative integers
such that 20 — M = a0 + bX. (5.10) implies that 2 —a — b > 1. As a® + bX
is effective, Lemma 2.3 implies that a+ b = 1. As c,(#) =0, M(20 — M)+
deg A4 = 0. Therefore, 2b(1 — a) + degd = 0. Since a+ b =1, we have b =0
and deg 4 = 0. So we re-write (5.9) as

0-0—-% —-6-—0.

Then & is also defined by a non-trivial element in H'(X, ). As the surface
is regular, such & cannot exist.
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