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L?>-VERSIONS OF THE HOWE CORRESPONDENCE I
BENT ORSTED AND GENKAI ZHANG

Abstract

We calculate the explicit decomposition of the metaplectic representation for the dual pairs
SL(2,R) x O(1,1) and U(1,1) x U(1,1) by extending the idea of pluriharmonic functions due to
M. Kashiwara and M. Vergne.

§0. Introduction

Since its discovery by A. Weil in connection with number theory and by I. E.
Segal working with quantum field theory, the metaplectic representation has
played a fundamental role in these and other subjects in mathematics. This is
the representation also known as the Segal-Shale-Weil-harmonic-oscillator
representation. Inspired by classical invariant theory R. Howe [6] developed
the theory of dual reductive pairs, and since then the so-called Howe corre-
spondence has been successfully applied to several problems in representa-
tion theory of semisimple Lie groups.

In this paper we study the L?-version of the Howe correspondence in the
sense of finding the explicit measure in the decomposition of the metaplectic
representation restricted to the dual pair in question. Specifically, we find for
the dual pairs SL(2,R) x O(1,1) and U(1,1) x U(1,1),

- (&3]
(0.1) oo = / @ Fdp(m)
G

with L the metaplectic representation of the symplectic group containing
(G, @) as a reductive dual pair (strictly speaking, their double covers). The
measure dyu, the intertwining operator, and the Howe correspondence 7 — #
in (0.1) is made explicit as well as the corresponding inversion formula. We
feel that (0.1) deserves to be studied in its own right but also in view of the
role of dual pairs in problems of number theory and representation theory.
The main tool we use is a Fourier integral operator which in the case when
G’ is compact was introduced by M. Kashiwara and M. Vergne. We remark
that Rallis and Schiffmann [16] also constructed this intertwining operator
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inconnection with their study of the discrete spectrum for the dual pair
SL(2,R) x O(p,q). Another tool is the calculation of c-functions for line-
bundles over the unit disk in the complex plane in [2], [10] and [13]. This is
needed for the complex case U(1,1) x U(1,1). In a subsequent paper we deal
with the similar question for larger dual pairs.

We note here further that one of our motivations to undertake this study
is a connection and possible application to the Plancherel theorem for affine
symmetric spaces of Cayley type introduced by G. Olafsson, see the remarks
at the end of §2.

We finally also consider the related question of decomposing the tensor
product 7, ® 7, of the analytic continuation 7, of holomorphic discrete ser-
ies for the universal covering of SL(2, R) with its conjugate. By studying the
spectral resolution of the Casimir operator we find that when 0 < v < %,
there is surprisingly a complementary series representation entering into the
decomposition as a discrete part. To our knowledge, this problem has not
been studied before.

The main results are summarized in Theorems 2, 4-6. We put an appendix
in the end of the paper to clarify certain intertwining operators realizing the
discrete series of U(1,1) as subrepresentations (or quotients) of some in-
duced representation. We mention that Lemma 5 in §2 may be of special in-
terest showing the analytic continuation of a certain integral operator. This
is closely related to the study of Plancherel formulas on sections of line
bundles over the unit disk, or more generally, over an Hermitian symmetric
space. It will be interesting to make this more precise.

We would like to thank R. Stanton for pointing out the relevance of the
work of Rallis and Schiffmann [16] to the problem considered here. We are
grateful to the referee for his/her many criticisms of this paper, where some
of our earlier arguments were too sketchy, in particular concerning the con-
vergence of integrals. See the remark following the proof of Theorem 1.
Furthermore, the treatment of the intertwining operator for the discrete
series was greatly clarified through the referee’s comments and, indeed, help.

§1. Metaplectic representation of Sp(1, R)

We will follow [7] in the formulation of the metaplectic representation. The
group Sp(1, R) = SL(2, R) has the following generators:

s@=(§ L )acr
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(b) = <(1) l;),be R,

o= 0 -1
“\1 o0 /)
The metaplectic representation L of the double cover of SL(2, R) (corre-
sponding to choice of square roots) is defined as follows on L?(R):

L(g(a))f (x) = a¥f (ax),
L(t(b))f (x) = e #7f (x),

Lo = (52) [[ero)d.

We consider L given by Lf = Lf. Then the tensor product L® L is re-
alized on L*(R?):

(L® L)(g(a))f (x) = |alf (ax),
(L® L)(t(b))f (x) = e #E—Df (),

1

- > . ei(xl)’1—x2n)f(y)dy_

(LR L)(0)f (x)
On L2(R?) we have the natural unitary action of O(1,1) from the right:

hf (x) = f(xh), h € O(1,1).

It is clear that the O(1, 1) action commutes with L ® L of SL(2, R). Indeed
these two groups form a dual reductive pair in the sense of Howe [6]. We
denote L the representation of SL(2,R) x O(1,1) on L*(R?), with SL(2,R)
acting from the left by L ® L and O(1, 1) acting from the right as above.

Our problem is to find the explicit decomposition of L.

The group O(1, 1) has generators

-1 0 1 0 chs shs
(0 —1)’(0 ~1)’(shs chs)’SER‘

Consider C? with basis {( é), ((1)) } Let t > 0, § =0, 1. The following

choice determines a unitary representation 75, of O(1,1) on C*:
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‘776,it((_()1 _01))2((_01)6 (_01)5>,
w((s 5)-(0 4)
(G 30)) = (5 %)

Let t > 0, e = +1. We define the following distributions on R2,

Io(x, t, 6) = |x1 + E)Czl",

Ii(x,t,€) = sgn(x; + ex)|x1 + ex2|i',

and the C%-valued function

_ I(vt’l) _ I(at’l)
folx,1) = (10(23:1,—1)>’ hix,1) = (Ill(xft,—l))'

We consider also the representations A\, A; of R*:
Xo(a) = la|", \i(a) = sgn(a)|al",a € R\ {0}.
The following lemma is then easy to check.

LEmMMA 1. The functions Is, 56 = 0,1 have the following properties:
(]) Iﬁ(aXh—]a L 6) = 7?6,it(h)15(x’ f 6))\5(0),(1 € Rxah € O(lv 1)7
(2) Is solves the wave equation for 6§ =0,1:

* P

Let #(R?) (resp. #(R?), or #(R?),) denote the space of Schwartz (resp.
even or odd) functions. Note that & (R?); is stable under the action of L. We
now define the Fourier integral operator %5 on &(R?) by

Fif (60 = [ &I Lx, 0 ()
R .
Note that #4f = 0 if f € #(R?), and & # 6.

PROPOSITION 1. For all t>0, the operator ¥5 maps ¥ (R%), into
L*(R) ® C*

PrOOF. Let f € #(R?),, then #f = 0. Change variables 7 = x} — x3 and
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x1 — /|nlx1,x2 = {/|n|x2. We find
(1.1 5"0)’(5,!,6)=/ei"5/2F(n,t,e)dn,
R

where

(12)  Fad =" [ b+ enfr (b, Vi)
x2—x2=sgnn

and dh(x) is the invariant measure on the hyperbola x? — x3 = sgnn, induced
from our quadratic form and Lebesgue measure on R%.

We put e = 1. Let > 0. The hyperbola x? — x} = sgnn = 1 can be para-
meterized by (coshs,sinhs) and (— cosh s, sinhs) with s € R, and dh(x) = ds.
Thus

F(n,1,1) = || / &£ (/] cosh s, /[l sinh s)ds

+|77|"/2/ e"'f (—+/|n| cosh s, /|| sinh s)ds

and furthermore, since f is a Schwartz class function
o]
P D<€ [+ nie) s
0

< C/ (1 +u)—4u“ldu
|

|

< C(1+ o) In n]

by an easy calculation. Thus F(n,,1) as a function of 7 is in L*(R) N L!(R)
and therefore (1.1) is everywhere defined and % f(€,¢,1) is in L?(R). Simi-
larly we show #f (¢,t,—1) is in L2(R).

Let 75, be the principal series representation of SL(2,R) on L?*(R), i. e.

g _ —it=1 8 ag+b\ _,_ (a b
g/ (€) = et + A (et + dy (S15). ¢ = (4 ) esLn

THEOREM | The operator Fs intertwines the representation L with
s,it @ Tg i for the SL(2,R) x O(1,1) action.

ProOF Since I; transforms as in Lemma 1, the O(1,1) intertwining rela-
tion is easy to check. We now prove the SL(2, R) intertwining relation. We
will do this for &#. The & case is essentially the same.

We need to prove
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Fo(L® L)(g) = mou(g)Fo, g € SL(2,R).
It suffices to check this for the generators. We have
FoL®L)(g(a))f (& t€)
= /2 R 2 o (x, ¢, €)lalf (ax)dx
R

= /2 e"("f"‘g)“_zg/zlo(a“lx, t,e)f (x))a| " dx
R

= a7 Fo f(a72, t€)
= WO,il(g(a))'g;of(ga Z 6)'

It is easy to see that
Fo(L® L)(1(b)) = mo,u(t(b)) Fo.
We now prove the o intertwining relation. We state it as a Lemma.

Lemma 2. For f € #(R?), we have, if £ # 0,
Fo(LRL)(0)f (& t,€)
= _l_/ ei(xf—x%)ﬁ/zlo(x, t,€) (/ & "Xzyz)f(y)dy) dx
27T R? R?

=| - / f0)e € DLy, 1, €)dy
RZ
= mo,u(0)Fof (€, 1, €).

ProoF. We let € = 1 and consider the function
2 2
Ynnlx) = el nla ol

for 71, > 0. Since the dx integral in Lemma 2 is absolute convergent, we
have that the LHS in Lemma 2 is

limlim — / TR 2y (x, 1, 1)1/)n,n(X)( / ; e"("‘y'”"m’f(y)dy> dx.
R R

7—0 -0 2

Using Fubini’s theorem we get the integral above is

% zf(y) (/2 Sy (x, 1, 1)1/)n,n(x)ei("’y'"‘”’”dx)dy.
R R

Change variables

x=uS, y=1vS,
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1 1 . .
=1
where S = 7 <1 -1 ) The above integral is

(1.3) f( )/ —Znuf—212u§eiu|uz§lulIitei(u|vz+u2v1)dudv
R?

The inner integral is

/e—ZnufHulvz'ul‘il (/ e—27'2u§+iu2(u|ﬁ+v|)du2>dul
R R

2

upé+v;

— \/7‘7 /e—2nuf+iu|v;lul|ite'2"7( Zv_Lz ) duy
\/27'2 R

by the Bochner formula for the Fourier transform of the Gaussian [19].
Taking limit 3 — 0, by the dominated convergence theorem, we see that
(1.3) converges to

2W\/ZF/R2/f(vS)e’“‘"Zlu |"e
=g /R{m/’ae—ﬂ%)_</"f("s)ei§_ "'v2|§—lullitdvz>du1}dv1

Now the term in the inner parenthesis, as a function of v; is in L!(R) and
take limit 7 — O we know that the term in the outer parenthesis tends to this
term:

(“Jzﬂ) duydv

/Rf(vS)e"F'"'”If“'VII"dvz

in the space L'(R,dv;). Thus, the integral becomes
&l / JS)e e [y
R

=|-¢ / SO Oy, 1, €)dy
R
= | - é-l ‘l-Ht‘y:Of(—_g—l ) b 6)
= mo,u(0)Fo f(§ 1,€).
We have thus proved the Lemma.
Consequently we have completed the proof of Theorem 1.

ReMARK 1. Formally the LHS of Lemma 2 is
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FoL(0)f (&, 1,€)
_ 1
-5/,

=5z [ 700 [ et et e ) v
R R

2_

Pats X§)€/210(x, 1€ ( /2 X ‘xl}'Z)f(y)dy) dx
R

The inner integral is divergent. We notice that g(x) = Ip(x,¢,1) is a distribu-
tion on R? satisfying the wave equation

(55
axd ad)f T

And still formally, the inner integral is
/ il =2292) -/ 20 ()
RZ

— / ei(u|v2+u2v|)eiu|u2§g(u)du
R?

:/ei“'VZg(ul)/ei(v‘+“'5)“2du2du1

R R

_ / g () (27)60 (1 + 11 €)du
R

= @l [ gl oo + )
R
= (2m)le] " g(—€ vpe M
Thus,
970([‘ ® L)(a)f(.’j, L E)
= ¢! / )& A2 1=y, 1, €)dy
RZ
= | - g_llH—it'g;Qf(_g_lvt’ 6)
= mou(0)Fo(, t,€).

However it seems difficult to make sense out of this calculation so we have
chosen the above proof using the Gaussian kernel.
Next we present the Plancherel formula.

TueoreM 2. With the notations as above, we have, the Plancherel formula
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1 [~ L[~
2 2 2
V1P =g | 120 O ot + 555 [ 171 S Olsyocs

As representations of SL(2,R) x O(1,1) on L*(R?), we have

-~ o0 [o¢}
L%/ 7T0,n®7?0,ndt+/ T @ Ty dt.
0 0

ProOF. To simplify the argument we prove first the Plancherel formula on
the space Z5(R?)of C* even (6 = 0) or odd (6 = 1) functions with compact
supports on R%. We let 6 = 0

Let f € 9(R?), then # f = 0. We follow the proof of Proposition 1. First
we notice that the function F(7),t,¢) defined there is now having compact
support in n and moreoverF (-, ¢, ¢€) is in L?>(R) N L'(R), as is shown in the
proof of Proposition 1.

Now Z,f is the usual Fourier transform of F(n,t¢) in the L’-sense;
F(n,t,€) is essentially the Fourier transform of / along the hyperboloids. See
further [20]. It follows from the usual Plancherel formula that

[ rsbax= [ [ i s)Pandy
X —x3=n
=—1—/ / F(n,t€) 2dtdr]
2 R' €= j:l
1
-5 > / (F(n.t,0)

87r/ eil/ \Fof (&1, )P dedi
2 | IS O oot

Thus & extends uniquely to an isometric operator from LZ(RZ)O, the space
of even functions in L2(R?), to the direct integral [;° mo; ® o dt.

We now prove that & is onto. Together with Theorem 1 this will prove
Theorem 2.

Notice that the space of functions H(&,t,€) on R x R™ that are 1) C* with
compact support in ¢ and 2) their Fourier transforms

[
R

having compact support in (—o0,0) U (0,00) in n for each fixed ¢ and ¢, is
dense in fg’° mo,it ® To i dt. We define f via
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1 00 0O y(2-x2) >
f(xhx;z):gpz:/0 / e T |x1 + exa| H(E, t, €)dEat.

e=x1
Performing the same calculation as above we know that f € L?(R), and thus
Fof is defined. Moreover the calculation shows that %#(f = H. Therefore
F is onto. Similarly for the odd functions.
§2. Metaplectic representation of U(1,1)

§2.1 Intertwining operators

Let U(1,1)be the group of complex 2 x 2 matrices g such that
g'Hg=H,

here

Later we will use another realization of U(1,1). We write U(1,1), for the
above realization.
The following elements generate U(1,1),,

s@= (5 )aeccr=c\pon
{(x) = (é ;‘),xe R,

(0 -1
g = 1 0 .
The following choice of L(g) determines a representation of U(1,1), on
LX),

L(g(a))f (w) = af (aw),
L(t(x))f (w) = e M £(w),

L@ ) = 5= [ ot .

Here Rz denotes the real part of z € C and |dw|® the Lebesgue measure on C.
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We consider L ® L on L*(C) ® L*(C) = L*(C?),
(L® L)(8())f (2) = |af’ £ (az),

(L® L)) () = e 01 ), 2 = (21,22)

1 / eZl‘R(n?’I—zzi’z)f(zl)leIIZ.
CZ

(2m)?
Now on L2(C?) we have also the unitary action of U(1,1) from the right
Y f(Z) =f(ZU)7 Ue U(la 1)

Here U(1,1) is realized as the group of matrices on C? keeping |z;|* — |z2|*
invariant. We write U(1,1), to specify this realization. This action com-
mutes with the action of L®L. We denote L the representation
U(1,1), x U(1,1)g on L*(C?) with U(1,1); acting from the left by L® L
and U(1, 1), from the right as above.

Our objective in this section is to give as we did in the real case the de-
composition of L?(C?) into irreducibles under the above action of
U(1,1), x U(1,1)p.

For ¢ € C and n an integer, we denote 7, the representation of U(1,1),
on C=(T):

(L®L)(o)f(2) =

),beT,

20)  FunUY(B) = la+ by ( atby ) s

| + byl a+by

and

U= (: ?) € U1, 1),

The group U(1, 1), has the center

i6
{(e(') e?(,), 0§0<27r},

which is also the center of U(1,1);. So first we decompose L2(C?) under the
action of the center.

oo
)= L (C),,
n=—00
where
L*(C), = {f € L*(C?) : f(€’2) = e"f (2)}.
It is clear that each L*(C?), is a U(1,1), x U(1,1); module. Thus
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~ S ~
L= L,
n=-—00

where
zn - ZILZ(CZ)"'

We notice that if a subspace H of L?(C?), is an invariant subspace of L,
then its complex conjugate H = {f;f € H} is an invariant subspace of L.,
on L?(C?)_,; and that the representations appearing in H are just the dual
representations of those in H; this follows easily from the formulae of Lin
the beginning of this section. We thus need only treat the case n < 0.

From now on we assume that n < 0.

We consider now L2(C?),. Define the following function on C?,

L(z,t,b) = |21 — bz|"' (21 — bZ2)",
where b€ T and ¢t € C.

LemMA 3. I,(z,t,b) has the following properties:

(1) L(az,t,b) = |a|"""™(@)"I.(z,t,b), a € C*;

() L(zU't,)(b) = Tun(U)Lu(z,1,-)(b), U € U(1,1)p, and Tyn(U) acts
on b.

(3) I.(z,t,b) solves the ultra-hyperbolic equation

Pl L
0210z 02,0%, N

Proor. (1) follows directly. For the proof of (2) we only need to notice
that for U as in (2.0) then

a_(a -5
U‘—<_B 5).

The claim (3) above will not be used in our paper; we put it because it
might help to compare our intertwining operator (2.1) below with those in
(7]

Denote by Y(Cz)n the space of Schwartz functions in L2(Cz)n. Clearly
S (Cz)n is stable under L. We define the following operator on & (Cz)n:

(3) is easy to check.
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2.1) Fuf (€,1,5) = / e P=12Pe (2, 1 b)f (2)def?

CZ

PROPOSITION 2. For all t€ R the operator %, maps &(C?) into

L*(R?) ® L*(T), that is Ff (,t,-) € L*(R) ® L*(T), for f € #(C?),,.

n

To prove the Proposition we need the following elementary fact. We omit
the proof.

LEMMA 4. If f(x1,X;) is a Schwartz function of (x,,x;) € R™ then its par-

tial Fourier transform

Alny) = / O (x,, x2)dx
R"

is a Schwartz function of (x1,y).

Proor ProposiTION 2. We take b =1 in (2.1) and perform change of

variables wy = 232, w, = 452 We have

FEn =3 [,

n
. _ o w
MR 1 (—2—) Fo0n - wa, wy — wa)
C

|wa|
1 n-l(W2>" 2
==/ |w — wo€, wy)ldw,|”,
2/(:| 2| ol g(wa€, wa)|dw,|

where g(u, w) is the partial Fourier transform of f(w; + wa, w; — wy) in wy
g(u, W2) = / ei4m<“w')f(w1 + wy, Wy — W2)|dW1|2.
c

It follows from Lemma 4 that g(u, w,) is in the Schwartz class #(C?), since
f (w1 + wa,w; — wp) is a Schwartz function of (w;, w,). Hence,

Fuf (61, 1)] < C /C ol g w2t wa) ldwal?
<c /c ol ™11+ a2 (1 + €))7 ldwa?

for some positive constant C and some integer N > 2. Changing variables
wawy (1 + 52)_% we get
Ff (€1 1) < C(1+ )7

and the function (1 + £2) % is in L2(R).
Now we note that the integral (2.1) can be written
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ffnf(g, t, b) = /2 ei(lzllz—lzzlz)fln(z, t, l)f(zl»b22)|dz|2,
C

and f(z1,bz,) is a Schwartz function of z; the above estimates are therefore

true with f(z,z,) replaced by f(z;,bz;) and uniformly for all b € T. The
Proposition follows. '

The above Proposition also shows that for ¢ € R, and f € &#(C?), the in-
tegral (2.1) is well-defined for all (£,b) € R x T. The next Lemma shows that
the integral has an analytic continuation in ¢.

LEMMA 5. The integral (2.1) for fixed b € T and £ € R has analytic con-
tinuation in t in the half-plane

{t € C,R(it) > —(|n| + 1)}.

Moreover when t is in this half-plane F,f (§,,b) as a function of §, for every
fixed b € T, is in L*(R, (1 + €)% gg).

Proor. We follow the proof of Proposition 2 and we put b = 1 (same ar-
gument for general values). We get

1 i—1, W
Fuf(€61) =5 [ Iwal" (2 g0ty )l
2Jc w2
We write further this integral using polar coordinates wy = re®,

Fof€1,1) = %/ rh(E, r)dr,

0

where

2T
h(g, r)=/0 g(ére® re®)e™d.

It is clear that & ,f (£, ¢,1) is absolute convergent since g is a Schwartz func-
tion. Thus & ,f (&, t,1) has analytic continuation on R(i#) > —1. This proves
the Lemma for n = 0. Now let n # 0, we have

2w
6,0 = g(0,0) [ emdp 0.
0
Furthermore,

2
PED . [7 (ce015(0,0) + e 01g(0,0) + €025(0,0) + ¢ *52g(0,0)) e,
0

where 0y, is the usual partial complex derivative with respect to the first
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and the second argument, respectively. Thus

0h(£,0)

o 0

if |n| > 1. It is now not difficult to see that
FHED)

ork

for all k =0,1,,|n| — 1. It follows from the standard argument ([1], Chapter
I, §4.2, or our calculation below) that the integral % ,f(, ¢, 1) has analytic
continuation to the region {z € C,R(it) > —(1 + |n|)}.

Now, by partial integration, we have

1 (_l)lnl—l © i1 6|n|—1h(£’ r)
PG = @ D@+ 2) @ - 1)/O T g,

The function g is of Schwartz class and we thus have, using the formula for
h,

a=1h(g,r)
| olnl=1p

for some sufficient large N > 2. Thus, if it # —k, k = 1,2,,|n| — 1 we have

| < C1+ N (1 + 1P (1 + e~

\Zaf (€,1,1)] < C(1+ |e)h! / T RO (1 (14 ) e
0

<O+ D 1+ DT + (g
<+ gy

Thus F,f(£1,1) is in L2(R,(1+&)%Wdg). If it=—k for some
k=1,2,,|n| — 1 then by taking residue we have

bl fn]—1
Furtenn) = C [ o og PHE
0 oinl=1,
for some constant C. A similar estimate gives

\Fu f(& 1, D)] < C(1+log(1 + €)1 + e (1 + |25 (1 + 1g)
< C(1 +log(1 + |€R)(1 + [¢f) "5
which is still in the space L2(R, (1 + &)*d¢).

For te€C, we let m, denote the representation of U(1,1), on
L2(R, (1 + )R de) defined by:
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(2.2) ﬂ'it,n(g)f(f) = |7‘£ + 6I»"_l (,zé : ?I) f(j,g i ?) ’

where

a4 _ (o B
gu_(7 6)EU(1,1)L.

(Indeed, direct calculation shows that L2(R, (1 + |¢/)®™d¢) is invariant un-
der the above action.) Note that when ¢t € R the representation space is
L*(R).

THEOREM 3. For t € R, the operator &, intertwines the action Z,, with
Titn @ i of U(1,1), x U(1, 1)p.

PROOF. Proposition 2 shows that %, maps &(C?), into L*(R) ® L*(T) so
that the statement makes sense. The U(1, 1) right intertwining relation is an
immediate consequence of the formula (2) in Lemma 3. We now prove the
left intertwining relation on the generators g(a), t(x),o of U(1,1),.

We have

Fn(L® L)(g(@)f (& 1,b)
_ / 1206 (2. 1, b)\alf (az)|dl?
C2

= /C DR @z 1 b B (o)l
= @[ @) F S (P 1)
= Tin(8(a))F nf (§,1,).
It is also clear that
F (L ® L)(1(x)) = mien(t(x)) F n.
Now we prove the o-intertwining relation. Let f € &,(C?), then

Fo(L® L)) (€ 1,b)
= [ e e, 1, b) (L. D) o) @)
C2

1 i(|21*~|z2f? 2iR(z) 2 — 2,2, 2 2
:(27r)2/(:2e(|l| |2| )Eln(z’t,b)<A2e‘ (11 22)f(z/)|dzll )ldzl

Notice (3) of Lemma 3. We can argue similarly as in the proof of Lemma 2
to get that this integral is (we omit the details)
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) /C L RO ) ()2 P
= Tin(0)F nf (€1, D)
This finishes the proof of Theorem 3.
Now using Lemma 5, we have, by analytic continuation

PROPOSITION 3 The operator %, intertwines i,, with the representation
Titn ® Tien for all t such that |R(it)| < |n| + 1.

Let D, 3, and D,y _, be the representations of U(1,1);, and define
P21, and Py, 5, as in the Appendix. Here v = —n. (Recall that this last
operator is a certain extension from the real axis of a function there to a
holomorphic function in the lower half plane.) From Lemmas Al and A2 in
the Appendix we have the next claim, where with abuse of notation we also
denote D,y ., (resp. D,—_,) the actions of U(1,1), on the space of all
holomorphic functions in the upper half plane (resp. lower halfplane). This
will be enough for our purpose as we will later see that only the actions of
U(1,1), on the corresponding Hilbert spaces of holomorphic functions (see
Appendix) will be involved in the L?-decomposition.

PROPOSITION 4 For each fixed b€ T the operator Piy_ynF n(i(|n|—
1 —21),b) intertwines U(1,1); action L, with the representation D,_»; _,(act-
ing on the space of holomorphic functions on the upper half-plane); the op-
erator Py _3,F n(—i(|n| — 1 — 21),b) intertwines the U(1,1), action L, with
the representation D,_y _,(acting on the space of holomorphic functions in the
lower half-plane; recall that by Lemma 5 and Lemma A2 F , in this case maps
into a subspace of the principal series representation).

§2.2 Plancherel formula

Before presenting the Plancherel formula on L?(C?),, we recall some facts
about irreducible decomposition of a space of L?-sections of a line bundle
over the unit disk in the complex plane. See e. g. [2], [10] and [13].

Let D = {w € C: |w| < 1} be the unit disk in the complex plane with |dw|*
the Lebesgue measure on D and let v be a real number. Consider the weigh-
ted measure duo(w) = (1 — |w|*)*|dw|> on D, where a = v —2. Then the
universal covering group of U(1,1), acts unitarily on L?(D,du.) via
B+ éw
o+ yw

ey e @t g= (3 ) cvaing

Here we tacitly subsume the choice of logarithm corresponding to the cov-
ering group.
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When v is a nonnegative integer (or real number), the explicit irreducible
decomposition of this action is given in [2], [10] and [13]; we summarize here
briefly the result.

Define the following transform, for f a C*-function on D with compact
support,

7f (W)dpa(w), beT

2\ 5= 1
) =)

@4 Jen- [ (H%i

Then we have the inversion formula

o) =2 = [ ([Febap)icorar

+ V'_—l—i’/Tf(i(v— 1 —21), b)db,

vl ™

and the Plancherel formula

If w)Pdpa(w) = 2 > lf(t b)2db ) |C(1)|2dt+
D

+ Z %‘z’uﬂiw—l—zn,-)n% ,

v=20>1 v=2h

where C(#) is the generalized Harish-Chandra C-function

2-—u+l——itr\(it)
C(t) = r —v+1+it r v41+it)?
(FHEL(5H)

and 5,,_21,_,, are the holomorphic discrete series. Here the summation is over
all the nonnegative integers / such that v — 2/ > 1.
As representations of the universal covering of U(1, 1),

(2.5) LD du) = [ Tt Y Doaics
0 v=2I>1

where 7, are the principal series of U(1, 1) as defined in (2.0).
More explicitly, the space D,y in the above formula consists of all the
distributions f(b) = > _,f(m)b™ on T such that

T(v—1I1+m)~
Z(

(I +m)! Fm)P* < oo.

i, =2

The group action is
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Dy a1 (g)f (b) = o+ by (c + by)” f<ﬁ+ll;6> beT,

and

g= (fy’ g) € U(1, 1),

This is just the action (2.0) with ¢t = i(v — 1 — 2/) and n = —v. One can derive
those results from [13], we omit the details. (With certain normalization,
writing the complexified Lie algebra su(1,1)¢ of SU(1,1) as
CH + CX* 4 CX~, with [H, Xi] +2X* = +2H*(H)X*, then D,_y_, is a
lowest weight module of su(1,1),with lowest weight (v—20)H* and b~ is
the lowest weight vector. The map b™—w"*is a su(1, l)C-intertwining op-
erator identifying l~),,_2,,_,, with the weighted Bergman space of holomorphic
functions on the wunit disk D={weC;|w| <1} with weight
(1 = w)*%2|aw|>. We omit the routine calculation.) Similarly we in-
troduce D,,—zl.,of U(1,1)g. It consists of all the distributions of the form
f(b) = ”Em__oo (m)b™ on T such that

_y elom “"" L@ =1=m) G om)? < oo

D, -2, -v m=—00

|lf||

The group action is

T e TR b6
Doy ) = (o o0) @ oy (252 pe,

and

g= (: g) € U1, 1)y

This is just the action (2.0) with t = —i(v — 1 — 2/) and n = —v. (Infinitesi-

mally, D,y _, is realized as a quotient of the whole representation (2.0) on
smooth functions on the circle.)

Let 2° be the subspace of L?(C?), of C>-functions on
{z e C% |z1]* = |22}2 # 0} with compact supports. It is clear that 29 is dense
in L2(C),.

THEOREM 4. Let f € 9°. We have the following Plancherel formula
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[ e Plast
C

2-—2|n|——l 00 ) 5
= /0 I Fnf (3 8, )M 2 (ryer2m | C (0]~ "dt

nl—-1-=21 .
b Y P E il -1 - 20),)

hieaio1 Dyp-21n ®B|n|~21,n
|nl -1-2/ — . 2
+ Y P anFaf (=i — 1-2), ) =
In|—21>1 ™ D21 n®Dpj- 210

As representations of U(1,1); x U(1,1)g,

00
Ln & / Tit,n ® 7Afit,n dt [$) Z D|n|—21,n ® D|n|-2l,n ©® Z D|n|—21,n & D|n|—21,n-
° |n|—-21>1 In|—21>1

Proor. Step 1. Plancherel formula. We start with (2.1). Since f is in @2
we see that %,f is well-defined for all ¢ € C. By parametrizing the space C*
by the hyperboloids /|n|z, with z such that |z1]* = |z2|> = sgnm, and 5 € R,
we see that (2.1) can be written as

2.7) Fuf(€,1,5) = / E (n, 1, b)dn,
R

where
1 ip jit—1—n,/— _\n
F(n,t,b) = §|77IT |71 — b2,|" 7' (21 — bZ)

|21~ |22 =sgnn
X f(VInlz1, v/ |n|z2)dh(z)

and dh(z) is a measure on the hyperboloid |z;|* — |z5* = +1. Similar calcu-
lation as in the proof of Proposition 2 shows that F(n, ¢,b) as a function of n
is in L'(R) N L*(R) uniformly for all b € T and it vanishes near n =0 and
1 = to0. Thus the integral (2.7) makes sense.

Assume 7 > 0. Let

(2.8) G(n,w) = f(V/nz1,/nz2)21",

where

(2.9) w=2 |z~ |nf =1.
7

The map (2.9) clearly maps the hyperboloid |z|* — |z2|* = 1 onto the unit
disk D={weC:|w <1} and since the function f satisfies f(e?z) =
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e™f(z), we see that G(n,w) is well-defined. We can also invert (2.8) and get
that, if |z1]* — |z2]* > 0,

(2.10) Sl = (B =12 _§G<1z11 222, 22,
’ |1 'zl

Writing z; = ¢r we see that
(2.11) F(n,t,b) = |771M / / o = e (r — be )"
Irl*~lz2|"=1

( Inlre”, |n|22)dh(r 27)df

i il _ b3, 1-n z
ol [T [ et by
1 (Vinlr, /Tnlz2) dhr, 22)do

= alp|'F r — be 2,1 (r — bz,)"

P —lzaP=1
11, /T2 ) dh(r, 22)

where the second equality is obtained by performing the change of variables
zy—€z, and the fact that f(e?z) = e"f(z), and where dh(r,z;) = |dz,|*.
Now we use (2.9), we have that dh(r,z;) becomes the invariant measure
(1- |w|2)'2|dw|2 on D, and (2.11) can be written as

2\ 5
(2.12) T F(n,1,b) =/ iﬂz— (1 —bw)"
p\|l — bw|

x G(n, w)(1 — [w*) ™" *|dw|,

This is just the transform (2.4) with v = —n. Now since f is in 29 it is clear

that G(n,w) is a function of (n,w) € R* x D with compact support and is a
C*® in w.
By the Plancherel formula for the integral transform (2.4), we have
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[ 16w iy
D

27 [ ([ empia)icora

—1-21, i
TR S ke T B Y R 4

s
In|—21>1 n-2n

Thus,
Lo VW VR PaHC)
- o VW Dl
= [ 16, w1 = )l

~2|n| poo -
=2 ([ e spa) icor
' T 0 T

nl—-1=-21 . 5 .
I =1 =220 o i(n — 1= 20), )12

w2 D_nzin

+
In|—21>1

Similarly we get the integral formula over |z I —|z/2= -1 with
i(—n — 1 —2I) replaced by —i(—n — 1 —2/) and D_,_31, by D_,_21,

/|z]|2—|z2|2=-1v( Inlz, I’7|22>|2dh(2)

_2|n| 0 141
| ( / unrﬂ(n,r,b>|2db)|cmr2dt
™ 0 T

nl—-—1-2I _ .
by A ey e ion 1 - 2,
Inj—21>1 Don-ain

(We need only to notice that,on the hyperboloid |z, |2 — |z2)* = =1, by chan-
ging variables as in (2.8) and (2.9) with z;" replaced by z;"and w =, for-
mula (2.12) becomes instead



L*-VERSIONS OF THE HOWE CORRESPONDENCE 1 147

(1—bw)"

2\ 5
|1—bﬁ/[>

212) o'~ EF(n,1,b) =b" /D (1_—""'2

x Glm,w)(1 = [w]*) ™" |awl”.

So most calculation will follow from the previous one.)
Now we calculate the norm [[f||;2(c2). We know that

1122 = /R( /, o T lnlzl,\/WZz)lzdh(Z))dn

Dividing R into the positive and negative half lines R = (—o00,0) N [0, co) and
using our formulas (2.12) and (2.12°), we see that the above becomes

2=2ln|

/ / 1F G, £,y | C(0) 2 dedy

2|n|
5 / / IF(m, 1, )72 |C (1)) *dtdn

|n| —1-21
2

+ Z
[n|—20>1

1 _ 0
50 PR s i -1 - 20), )

|n|—21>1 |n|~2i,n

/0 A E il ~ 1 - 20), )% dn

Dipj-21n

Since F(n,t,-) is vanishing near n = 0 we see that the first two integrals are

2= 2|n|

-~/ / VF(, 1, )| CC0) [t
2- 2"'[' 2 -2
= “F(n)ta ')”L2 T)lc(t)| dtdﬂ
0 R (
2—2|n|-—1

= [ 1 menmlco s

using the Fubini theorem and Fourier Plancherel formula.Using (A.4) and
(A.6) in the Appendix we see that the last two integrals are
o0
| e - 1= 20,01 dn
= |P—aunF uf (i(n| = 1= 20),)|2

Dy 21n®Dln| Zln

and
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0
/ "2 F (1, —i(ln] — 1 21), )|~ dn
-0

|n|-21n

= “PInI—ZI,ngn/(W -i(|n| -1- 21)’ )”2 i

Dy 2 n®@Dypj—21n

Substituting these into above formula we get the formula as claimed in the
Theorem.

Step 2. The intertwining relation. For U(1,1); action, this is proved pre-
viously in Propositions 3, 4. For U(1, 1) action this is proved in Proposition
3 and in Step 1.

Step 3. Decomposition. Step 1 shows that the mapping that maps f to

f(§,1,0) @ Z PpainF n(i(|n] — 21 = 1), b)f (w)
|n|=21>1

® Y Puan Fal=iln =20 =1),6)f (w)

|n|—2in>1

can be uniquely extended to an isometric operator from LZ(Cz)n into the di-
rect integral

o0 ——
/ Tion ® Firal C(O?dt ® Y D21y ® Dipj-2n ® Y, Din—21n ® Dy 2t
0 |n|—2I>1 |n|—21>1

We prove now that it is onto.

The fact that the discrete series is in the image of %, on Lz(Cz)n can be
obtained from our proof Plancherel formula, see also Theorem 5 below. We
will not duplicate the argument.

Suppose now that there is a function H(¢,¢,b) in fo Titn ® Tien|C(2)]” 2dt
(i.e. the space L2(R x R* x T,|C(r)|"2d¢dtdb)) such that

[ [#oernmensicor e ~o
RJo Jr
for all f in 2°. Thus for almost all (¢,b) € R™ x T the function
n,t8) = [ H(E,r,bje g
R

is in L2(R,dn). Thus h(n,t,b)is in L2(R x R* x T,|C()| *dndtdb) and we

have
/ / / F(n, 1, bR, ,6)|C(0)| 2dbdrdn = 0,
R JO T

where F(n, t,b) is, as before, defined via (2.7). Let p(n) be a C*-function that
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has compact support in (0,00) and let g(w) be a C*-function of w € D that
has compactsupport on D. We define

G(n,w) = p(n)q(w)

and define f(z;, z2) via (2.10). Then f is C* and having compact support on
{(z1,22)l|21]* = |22* > 0}. Moreover (2.11) gives us

F(n,1,b) = 71T p(n)g(1, b),

where ¢(¢,b) is the transform (2.4). The above orthogonality relation now
reads

/n (/000 At b)mlc(t)l_zdbdz) o(n)dn =0

However the functions p(n) are dense in the space L' (R, dn) thus we have for
almost alln > 0

/ / n'3G(t, b)h(n, 1, 5)|C(£)| 2dbdt =

or

[0 N /T (e, BYROT.1,B)| C ()] 2dbdt =

Similarly for < 0. Now by the decomposition (2.5) we see that
h(n,t,b) =0, consequently H(&,¢,b) = 0. This completes the proof of Theo-
rem 4.

§2.3 Discrete series and decomposition of L,

The following Theorem gives the K-finite functions in the discrete series of
L,. It can be derived from Theorem 4 and its proof and the Appendix. We
present here only the results and intend to give the full details (for larger
classes of other dual pairs) in a future paper.

THEOREM 5. Each discrete series of L, is of the type Diy_3, ® b|,,|_21,,, or

—~——

D210 @ Dipj—21n- Moreover the space of K ﬁnite functions in
Dypj—21n @ D21, is the span of all functions f(z1,23) on C? of the form

Xooo) (2117 = [2P) (212 = |z e (a0 (12,2 — |2, >g(;)z';,

where X (0 00)(x) 15 the characteristic function of R*, p is a polynomial on R and
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gisa (U(1) x U(l))%-ﬁm’te vector in 5|,,|_21,,, realized as a discrete series of the
space L2(D, (1 — |w|*)™~2|dw|?)(see [13] for a calculation of basis vectors of

l~)|,,|_2,y,, ). The space of K-finite functions in Dy _3; n ® D\nj—21 is the span of all
Sunctions f on C? of the form

—1-1 — 2 17,12 z
X@o0) (122" = 121) (jz2f” = |22 )1 el =EDp (2 — |2, Iz)g(—z—;)é»

where p is a polynomial on R*, g is a (U(1) x U(1))g-finite vector in

Dy 1, realized as a discrete series of the space L*(D, (1 — | w|2)|"|_2|dw|2).

REMARK 1. From the result of Kashiwara-Vergne [7] we know that the
limit of holomorphic discrete series of U(1,1) is m = Lo, where Ly is the
subspace of functions 1 in L?(C), with U(1,1) acting on by L, satisfying

f(€%2) =£(2).

Therefore the tensor product 7 ® 7, consists of those functions in L® L
transforming according to

f(€%21,6%23) = f (21, 22),

and thus m; ® 7, is aU(1, 1), submodule of L?(C?),. From our Theorem 4 we
can then easily read off

0
7T]®77'1E/ 7T,',,0dt,
0

abstractly. This gives another proof of the result than that of [17].

REMARK 2. We consider the affine symmetric space X =
SU(1,1)/S0(1,1). See [4]. This space can be realized as T x T \ diagonal and
the space L?(X) is then SU(1, 1), -isomorphic to

LX(T) @ LA(T) = (m + 1) ® (m + 71)
=mImMm+mMOQmM +mM QT + T @m.

By [17] we know that

Using this and the decomposition in Remark 1, we now get
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[o0) o0 o0
2(X) Zmn@Zﬁzn@Z/ o ir dt.
n=1 n=1 0

§3. Tensor products of analytic continuations of the holomorphic discrete
series of SU(1,1).

As it is proved in [7], the metaplectic representation L of SL(2,R) is the di-
rect sum of m and m3, and LO() = ;. Here T, is the analytic continuation of
the discrete series and L%!) stands for the space of O(1) invariant vectors in
L. Tt then follows from our Theorem 2 that

o
™ ® (L ® L)°W=00) /m,dt,
0

as SL(2, R) representations, see also [5].

It is a natural question to study what happens in this decomposition when
we move to more singular values than 4. In this section we thus give the ir-
reducible decomposition of the tensor product m, ® 7, with 0 < v < 1. When
v > 1, m, is the holomorphic discrete series and this decomposition is done in
[17] from the representation point of view, and in [14] from the analytic
point of view. m, has analytic continuation to all v > 0. The representations
7, ® 7, are all equivalent when v > % (For v = % this is mentioned in [5] and
when % < v <1 this can acturally be done using our methods below.) When
V< %, there is surprisingly a complementary series representation in the ir-
reducible decomposition as a discrete summand.

We will first study the spectrum of the Casimir operator on K-fixed vec-
tors in 7, ® 7,.To get the desired decompostion from the knowledge of the
spectrum one needs the classical reduction theory. See for example [15].

The representation 7, can be realized on the space of holomorphic func-
tions f on the unit disk D in the complex plane such that

£ =3 T

n=0

and

2T(n+ DI'(v)
V12, = ZV( P < oo

The group action is (again, subsuming universal cover)
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£ (e )+ w) ™, g = afiné € SU(L 1)

Denote C, the complementary series of SL(2, R) with index ¢ as in [9].

THEOREM 6 Let 0 < v < 1. Then

0
7T,,®77',,’£/ i dt ® Ci_y,.
0

Proor. The representation 7, ® 7, can be realized as the space of func-
tions F(z,w) analytic in z and anti-analytic in w with orthogonal basis
{z"w"} and

[(n+ DI@)D(m + DE@)

(3.1) "anmnn.,&r, T T(n+v) T'(m+v)

The Casimir operator C on 7, ® 7, is calculated in [12]. It is

C=(1-zw)?

82(29?1) —viw(l — zw) :—w —vz(l — zw) % + vizim.

Let (m, ® 7,), be the space of K-invariant vectors in m, ® 7,. Then
(m, ® T,), consists of functions of the form F(z,w) = f(zw) in 7, ® 7,. By
writing ¢ = zw, the Casimir operator then takes the form

d> d
(3.2) Co = (1-:)(dt2 o) —w=1) t+1/2t
on (m, ® 7).
The space (7, ® 7,), has an orthonormal basis {e,,n =0,1,2---}:

" (zw)"
en(t) = — ==,
n( ) 1-\” Fn
where
r, — I'(n+1)I'(v)

I'(n+v)

The Casimir operator C; takes the following form relative to the ba-
sis{e,,n =0,1,2---}:

(3.3) Coen = aneny1 + bpey + cnen_1,
with
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ap=(n+1)(n+v), by=-n2n+2v), ¢, = ay-i.

For this, see [12], and [14].
The following function is an eigenfunction of Cy:

(p—lmr 1—id 1-iX
()= (1—1)" ZAZFI( 5 ,—-if—;l;t>

with eigenvalue
1 2
A=v— i (14 X7).

See [23]. (Note that here we are using different parameters.) It is proved in
[14] and [23] that the function ¢, has the following series expansion

where

1 MN2112v-1
Pn(A):(—anSn(“(‘j) ;'2‘,5,—'2—)-

Here S, are the continuous dual Hahn polynomials,

Sp(x*;a,b,c) = (a + b),(a+c), sFa(—n,a+ix,a—ix;a+b,a+c;1).
Furthermore, we have
(34)  Apa(A) = (n+ 1)’ puri(A) = 2n(n + v)pa(A) + (n — 1 +v)*pa_i(A).

It follows from the complex orthogonality relation of Wilson [22], p. 697
that

/CF(% + )l - 2)T'(§} +;)(ESF—(_Z_)2I;§V 14y -1-2) §,(22)Sa()dz

=2(n) T2 (v + n)bpm,

where the contour C is the imaginary axis deformed so as to separate the
sequences{v — § + k}=g, {3 — v — k};—o. Performing the residue calculation
at +(3 — v), we find out that the real orthogonality relation reads as follows:
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as [T
0

| T s (‘ @)2) Sm (" @)2)"”
e 200, (52 ) (52))

= 4m2(n)*T2 (v + n)bum.

So (3.5) is equivalent to saying that the functions

_ n! 1 A’
én(A) = an(A) = ms" (— (5) )

are orthonormal in L?(RU {+i(1 — 2v)},du),, the subspace of even func-
tions in L2(RU {+i(1 — 2v)},du) (see [11] for the proof); here dy is a mea-
sure on (R U {£i(1 — 2v)} obtained from the above orthogonality relation.
Now from (3.4), by direct calculation, we know that the multiplication
operator by A on L2(R U {£i(1 — 2v)},du), has matrix form on &,:

Aey(A) = anéni1(A) + bnén(A) + crén=i(A).

This is just the same recursion formula as (3.4). So the operator Cp is uni-
tarily equivalent to the multiplication operator by A; consequently, the
spectrum of Cj is equal to that of the multiplication operator by A on
L>(RU{+i(l1 —2v)},dun),, which by the standard argument is
(—oo,v —H U {2}

It follows that the representation 7, ® 7, is decomposed into the sum of
direct integral of the principal series m;, and the complementary series Cj_y,.
Our Theorem in this section is therefore proved.

We note that in the course of proof of Theorem 6 we actually found ex-
plicit bases and measures giving the isomorphism in the Theorem.

REMARK. We can also prove directly that the complementary series C;_,
enters as a discrete part into their reducible decomposition of 7, ® 7. It
follows from [14] that the operator

T Q Ty — COO(D)’f(Z’ W)i—bf(Z,Z)(l - |z|2)l/

intertwinle§ the m, ® 7, with the regular action on C®(D). Now the function
(1 — |27, F, (152,152 1; |2%) is an eigenfunction of the Casimir operator
on C*(D). Thus its inverse under R,

hrew) = (1= 2) "~ Pr (152 155 1w

2 )
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is an eigenfunction of the Ca51m1r operator C on 7, ® T,. Now when

A = —i(1 — 2v) then (1 — |z*) T, F (152 2’*,12 :1;|z[%) is the matrix coefficient
of the complementary series C)_,. Its inverse under R is

b_it-2)(2,w) = 2F1 (v, 15 1;2W) = Z(Oj) ) (zw)".

n=0

We calculate its norm in 7, ® 7,.

1610 200 or, = 3(22) 11 o,
(0 (@)
(73 )

=

since 2(1 —v) > 1 if v <1 Thus ¢_;4_3,(z,w) is indeed in m, ® ,, that is
Ci_2, 1s embedded into 7, ® 7, as a discrete series.
Appendix

We present here some realizations of the discrete series for U(1,1);. Again,
the parameters satisfy v — 2/ > 1 with v and / non-negative integers.

Let D,y _,be the space of holomorphic functions # on the upper-half
plane U = {w = u +iv € C;v > 0} such that

Al . =27x [ o) < oo
' U
and U(1,1), acts on it via

(Al) DV~21,—u(g)h(W) — (,Yw+ (5) (v— ZI)h (aW + ﬂ)

w4+ 6
if

et = (2 §) esva,,

and
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(A.2) Doz, (g)h(w) = e’ h(w),

if
. el 0
g = 0 ei9 '

(Here SU(1,1); = SL(2,R) consists of those g with «,3,v,6 € R and
ab—fBy=1)

The space of (U(1) x U(1)),- finite vectors in D,_ _, is spanned by the
vectors

N k
(:J) w+i) " k=01,

Recall the representation 7, introduced in (2.2) with t =i(v — 1 —2/).
The space of K-finite vectors in the representation space is spanned by (k an

integer)
£ —i\* \v-20-2
(£+ i) e+

LeEmMA Al The following operator
—2/—1)!
Pyat o ®(w) = (v—21 1)./R( (¢ de

v c—w)y 2

is an U(1,1) -intertwining operator between the representation m; __, and
D,_y _, (acting on the space of all holomorphic functions on U), where
t=i(v—1-2I). The map P,_y _, establishes a u(1,1),-unitary equivalence
between a quotient of Ty, and D,,_y; _,,.

It is clear that if ® is in 7 _, (as in Lemma 5 and the remark after (2.2))
then the integral defines a holomorphic function on U. The intertwining
formula follows from change of variables. The u(1,1);-unitary equivalence
follows from explicit calculation of P,_; _,® when ® is a (U(1) x U(1)),-
finite vector.

We will use another realization of D,_y _,. Each function A(w) can be ex-
pressed as

o0
h(w) = / P12 (1) d,
0

where F(n) is a function on R*, and that
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Al , . = [ PP 2y

Thus the map F—h is a unitary operator from L*(R* 7*~1=%dp) onto
D,y -, and the group U(1,1), is acting on L2(R*,*~'=?/dn). The space of
(U(1) x U(1)), -finite functions in L?>(R*,n*~1-%dp) is spanned by
p(n)e™,
where p is a polynomial on R*.
Now, if F(n) is a C*-function with compact support on R, we take

B(¢) = /R ¢"EE (n)dn,

Then

(A.3) Py, ®(w) = /OOC =12 F ()
and

(A4) P2 @I, , = /000 \F () [P 2.

(Note we take only integrals of F over the half line R*.) All this can be cal-
culated directly. See [13].

Let D,y _, be the space of holomorphic functions 4(w) on the lower half
plane U = {w = u +iv € C;v < 0} such that

U = 27 [ ouP i 2 < .

The group U(1,1), is acting on it via the same formulae as in (A.1) and
(A.2).
When ¢t = —i(v — 2 — 1) the representation m; _, defined in (2.2) is dual to
7_ir,—,. There is a u(1, 1)-invariant subspace of m;, _, isomorphic to D, _,.
We make this explicit as follows. We define the operator

P () = o / 20 4

_% RW—£

for a function ®(£) on R. Note that when we have the decay as in Lemma 5
corresponding to the present value of t, then the integral converges, and it
gives a certain extension of a function to a holomorphic function in the
lower halfplane. Similar to Lemma A1l (except now the principal series has
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infinite dimensional subrepresentations and a finite dimensional quotient) we
have now

LEMMA A2. The operator P,_y _, is an U(1,1),-intertwining operator be-
tween an invariant subspace of the representation 7 _, and D,_y _, (acting on
the space of all holomorphic functions on U), where —t = i(v — 1 — 2I). The
map P,y _, establishes a u(1,1),-unitary equivalence between an invariant
subspace of my_, and D,_y; _, (by the extension).

We can also realize D, 5 _, on L2(—R+,|n|'(”“'2’)dn). Each function
h(w) can be expressed as

0
hw) = [ emFan,

00

where F(n) is a function on —R™, and that

0
WA, = / () P~ .

Thus the group U(1,1), is acting on L*(—R*, |n|"“"""*)dp). The space of
(U(1) x U(1)),-finite functions in L2(—R*, |n|"“"'~*dn) is spanned by

p(n)e’,

where p is a polynomial on —R™.
If F(n) is a C™-function with compact support on R, we take

B(e) = fR ¢"EF ().

Then
— 0 .
(85) P, g, ®(w) = / ™ F(n)dn
—0Q0
and
P, 2| ° 2 1-21
(Aﬁ) ”PV“ZI’“"Q“D-,,_TL_—,,— = / IF(n)l I,”I—(V— - )d,'7

(The representation D,_p ., can also be realized on the space of all the
distributions ® on R with Fourier transform

B(n) = /R e (¢)de

supported on —R*, and such that
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0
2 = —(v—1-
9l = [ Bl Py < oo.

—00

The group action is

—_— _ i EHENT (af+ P
DV—2I,—V(g)¢(§) - |7€ + 6' (I'Y& + 5[) Q('Yf + 5)

and

gl = (: f) € U(1,1),.

See, e.g. [18] where a generalization of D,_y _, for higher rank groups is
studied.)
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