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ON THE C*-ENVELOPE OF APPROXIMATELY
FINITE-DIMENSIONAL OPERATOR ALGEBRAS

C. LAURIE' and S. C. POWER

Abstract.

The C*-envelope of the limit algebra (or limit space) of a contractive regular system of digraph
algebras (or digraph spaces) is shown to be an approximately finite C*-algebra and the direct system
for the C*-envelope is determined explicitly.

A number of recent studies of non-self-adjoint operator algebras have been
concerned with the Banach algebra direct limits of direct systems

A 254,22, . A

in which the building block algebras are finite-dimensional digraph algebras.
The most accessible of these arise when the algebra homomorphisms ¢, are
regular in the sense that (partial) matrix unit systems can be chosen for A, A4,,...
so that each ¢, maps matrix units to sums of matrix units. Under these conditions
the maps ¢, need not be star-extendible or isometric and the C*-envelope of the
limit algebra, in the sense of Hamana, need not be an approximately
finite-dimensional C*-algebra. (See [6].)

In what follows we show that if the homomorphisms are regular and contrac-
tive then the C*-envelope C¥ ,(A) of the limit algebra 4 is an AF C*-algebra.
Furthermore we identify explicitly a direct system of finite-dimensional C*-alge-
bras for C¥% ,(A). In particular, this generalizes the result for the triangular
compression limit algebras lim (T,,, ¢) considered by Hopenwaser and Laurie
[5] and answers the problem posed there. The relationship between A and
C¥* .(A)is rather subtle; even after a natural telescoping of the given direct system
to an essentially isometric system (Lemma 9) it need not be the case that C¥  (A) is
an isometric direct limit of the algebras C*(¢,(A4x)).

In the first section we consider only finite-dimensional matters. In particular
the contractive regular morphisms are characterised as the regular bi-
modulemaps of compression type. In the second section we obtain the main result
and discuss a variety of examples.

* Partially supported by an NSF-EPSCoR travel grant.
Received October 24, 1994; in revised form February 22, 1995.
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1. Regular contractive morphisms.

Let G be a finite directed graph with no multiple edges and with vertices labelled
1,2,...,n Let {e;:1 <i,j < n} be a matrix unit system for the full complex
matrix algebra M,. Define A(G) to be the linear span of those matrix units e;; for
which (i,j) is an edge of G. If G is a reflexive digraph then we refer to A(G) as
a digraph space. If G is reflexive and transitive (as a binary relation) then we refer
to A(G) as a digraph algebra. In intrinsic terms a digraph algebra (alias
finite-dimensional CSL algebra/poset algebra/incidence algebra) is a subalgebra
of M, containing a maximal abelian self-adjoint subalgebra. Usually we consider
the digraph algebras that are associated with the standard matrix unit system for
M,.

DEerFINITION 1. Let A(G), A(H) be digraph spaces with associated (standard)
matrix unit systems. Then a Inear map ¢: A(G) — A(H) is said to be a regular
bimodule map, with respect to the given matrix unit systems, if ¢ maps matrix
units to orthogonal sums of matrix units and ¢ is a bimodule map with respect to
the standard diagonal subalgebras. That is, if C(G) and C(H) are these diagonals,
then ¢(C(G)) = C(H) and

P(cracy) = ¢lcy)pla)p(cz)
for all ¢y, ¢, in C(G) and a in A(G).

More generally a linear map between digraph spaces is said to be a regular
bimodule map if matrix unit systems can be chosen so that the map is of the form
above.

The terminology above should be compared with the following more general
terminology (which is not needed in this paper). A map o between digraph algebrs
is said to be regular if partial matrix unit systems can be chosen so that for the
associated diagonals, say C and D respectively,aisa C — D bimodule map and is
regular in the sense that « maps the normaliser of C into the normaliser of D. In
the case of contractive maps it can be shown that this notion coincides with that
which is given in the definition above. That this notion is more general ¢an be
seen by considering the (Schur) automorphisms of the 4-cycle digraph algebra
which leave the diagonal invariant.

If ¢ isas in Definition 1 then the image ¢(e;;) of each matrix unit e;;in A(G)is, by
assumption, a partial isometry which is an orthogonal sum of matrix units. Note
also that the initial and final projections of ¢(e;;) are dominated (perhaps
properly) by the diagonal projections ¢(e;;) and ¢(e;;) respectively.

DEFINITION 2. A diagonal projection Q in A(G) is said to be A(G)-irreducible if
CHQA(G)Q) = OM,Q = B(QC").
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Plainly Q is A(G)-irreducible if the graph of the digraph algebra QA(G)Q on
QC" is connected as an undirected graph. Also, if Q is a diagonal projection of
A(G), then, by considering connected components of the graph of Q A(G)Q, we can
write Q = ) Q;, with Q; diagonal and A(G)-irreducible, such that

Q40 = ¥ ®Q;40,

DEFINITION 3. The map ¢: A(G) — A(H) is a (standard) elementary compression
type map associated with diagonal projections (Q°, PH) if

(i) Q¢ and PH are diagonal projections in A(G) and A(H), respectively, with
rank QY = rank P¥ = r, and

(ii) QF is A(G)-irreducible, and

(iii) ¢ is a linear map of the form ¢ = f o« where a: A(G) —» M, is compression
by Q¢ and B: M, — C*(A(H)) is a C*-algebra injection, with f(I) = P¥, which is
a linear extension of a correspondence e;; — f,,, of standard matrix units.

A (standard) elementary compression type map is simply the regular bimodule
map associated with an identification of a connected full subgraph of G with an
isomorphic subgraph of H. The minimal diagonal subprojections of P# are
associated with the vertices of the subgraph of H. Note that ¢ depends not only
on the pair (Q° PH) and the matrix unit system but also on the the particular
identification f§ chosen for the pair. This dependence is often suppressed in the
subsequent discussions.

A map ¢: A(G) — A(H) is a (standard) compression type map if it is a direct sum
of elementary compression type maps.

More generally, ¢ is a compression type map if matrix unit systems can be
chosen so that ¢ is of compression type with respect to these systems. Compres-
sion type maps feature in the linear topological aspects of limit algebras discussed
in [8].

LEMMA 4. Let ¢ be the Schur product projection map which is defined on the
digraph space of an m-cycle by deleting an entry corresponding to a proper edge.
That is, consider the map

Ae - ¢(A)e

* * * *

* * 0 *

where the entry a,,, of A is replaced by zero. Then the norm of the linear map
¢ dominates the quotient
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cos(n/(2m + 1))
cos(n/2m)
In particular, this sparse triangular truncation map is not contractive.

Proor. Consider the following matrix A4 where, as usual, unspecified entries
are zero:

A= (m x m).

Let D = diag{1,w,w?,...,w™ !} where w = exp(ni/m). Since —w™ ! = w we
have

D*AD =1 + wS =
1 w
w 1

where S is the cyclic backward shift. Spectral theory then yields that

I+ wS| = |1 +w| = 2cos<i>.
2m

On the other hand the truncate of A has norm equal to 2 cos ( 2mn+ 1). For
details of this see, for example, Example 1.2.5 in [3].

THEOREM 5. Let ¢: A(G) — A(H) be a regular bimodule map between digraph
spaces. Then ¢ is contractive if and only if ¢ is of compression type.

ProOF. Let ¢ be a regular bimodule map with respect to the matrix unit
systems {e;;} for A(G) and {fy} for A(H). Choose fi in A(H) such that f, is
a summand of ¢(e;;) for some j. Let p; = fi. Let O = {py, pa,...,ps} be the set of
distinct minimal diagonal projections in A(H) which is the orbit of p; under
{#(ei;): (i,j) € E(G)}. This is the smallest set of projections which contains p, and is
such that if p is in the set and ¢(e;;)p % O (or p(e;;) + 0) then ¢(e;;)p(¢d(e;;))* (or
@(e;;)*poe;;) also belongs to the set. Each p; is a summand of ¢(ey ) for some k;.

We claim that k; # k; for i # j.

Suppose k; = k;for some i # j. Then there is a subset {q;, ..., ;- } of the orbit
with ¢, = p; and ¢;,, = p; which corresponds to a cycle in G consisting of



ON THE C*-envelope of approximately finite-dimensional . .. 111

vertices {n,,...,n;} (with n; = k;) and (directed) edges E,, connecting n,, and n,, , ;
form = 1,...,1 — 1, and edge E,, connecting n; and n, such that ¢(E,,) maps g,, to
Gm+1 (OT ¢+ to g,, depending on the direction of E,,), for m = 1,...,1. Here we
write E,, for the matrix unit determined by the edge E,,.

By relabelling the vertices of G appropriately we can assume that {n,...,n} is
{1,...,1} and that the edge E, runs from 1 to I. For example, the cycle might look
like

In the graph G In the algebra A(H)

E'z ¢(E2)

¢(Es)

a ds H(Ea)
)
Let
a= lil E, + Zen—ell
m=1 teT
where

T = {m: E,, and E,,_, run in the same direction, where E, = E,}.
In the illustrated example,
a=¢ej; +e3;+e43+e4s +eset e+ €33+ €55+ e — €o1-

Then, after deleting rows of zeros and columns of zeros, a has a submatrix of the
form

-1 1

Let p=gq, + ... + q;. Since ¢(e;;) maps q,+, into q;, pd(e;;)p = 0 and hence
pd(a)p has the same norm as the associated matrix
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0

By Lemma 3, ||la|| < ||pé(a)p] which contradicts the hypothesis that ¢ is contrac-
tive. Thus the claim is proven. That is, for each p;in the orbit ¢ with p; a summand
in ¢(e;x,), we have that k; % k; if p; + p;.

Let P =) p;, the sum taken over all p; in @. Then P is a diagonal projection in
A(H). Let Q = Z e x,» the sum taken over all k; such that p; is in ¢. By the claim,
Q is a diagonal projection in A(G) with rank Q = rank P. Note that the graph of
QA(G)Q is connected so Q is A(G)-irreducible. Note also, from the definition of P,
that (I — P)¢(A(G))P = 0 and Pp(A(G))(I — P) = 0.

Thus we can write ¢ = y @ ¢’ where y = P¢ and ¢’ = P*¢.

There are two possibilities for y. Either y is an elementary compression type
map of multiplicity one or y fails to be injective. In the latter case there is
a non-self-adjoint matrix unit, e;; say, which is mapped to zero by y (and ¢) and
which corresponds to an edge E of G, which is not one of the edges E, .. ., E;, but
which nevertheless has its two vertices in common with two of the vertices of
E,,...,E,. This means that E, together with some of the edges E;,..., E;, form
a cycle. The argument above applies and once again we obtain the contradiction
Iyl > 1.

Induction completes the proof.

COROLLARY 6. If ¢: A(G) - A(H) is a contractive regular bimodule map, then
¢ is completely contractive.

ProoF. For ¢ of compression type, ¢™: A(G) ® M, - A(H) ® M, is also of
compression type.

We now examine further properties of compression type maps. Let B(.#)
denote all bounded operators on the Hilbert space .# and write =~ for C*-algebra
isomorphism.

ProposITION 7. Let A(G) < B(C") and A(H) < B(C™) be digraph algebras and
let ¢: A(G) — A(H) be a compression type map. Thus ¢ = z @y; where eachy; is an
elementary compression type map associated with the pair (QF, P?) (and an implicit
identification) with each QF being A(G)-irreducible. Then

CHP(AQ) = ¥, ®BQLC") = 3 ®B(PIC)

keK kek

where {Q¢: ke K} includes exactly one copy of each distinct QF.
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PROOF. We have y; = ;o a; where a;: A(G) —» B(QFC") is the compression map
a— QfaQf and B;: B(QFC") —» B(PHC™)is a (standard) C*-algebra isomorphism.
Define

o A(G) > ), @B(Q{'C")

and
B:Y. ®B(QFC") » Y @ B(P{'C™)
by ofa) = Y, @oy(a) and B(Y, ®b;) = Y ®Bi(by). Thus C*(P(A(G))) is isomorphic
to C*a(A(G)) which in turn is isomorphic to C*(a(A(G)) where
d(a) = Ziel( Da(a).
Thus C*(¢(A(G)) is identified with a C*-subalgebra, E say, of

F=Y ®BQfC").
keK
The compression of E to each summand of F is equal to the summand, so it
remains to show only that no summand of E appears will multiplicity in the
summands of F. This is elementary. For example if QF and G are distinct, with
k,le K, and rank (QF) = rank(Qf) then consider a self-adjoint matrix unit e of
A(G) with Q% = eand QFfe = e and We = 0. Then ¢(e) differs in the summands
for QF and QF being nonzero in one summand and zero in the other, as desired.

ProrosITION 8. Let y: A(G) - A(H) be an elementary compression type map
with projection pair(Q¢, P¥) and let n: A(H) - A(F) be an elementary compression
type map with projection pair (Q¥, PF). Then noy: A(G) — A(F) is of compression
type with noy = Z @9; where d; is an elementary compression type map with
projection pair (q°, pf) where the q¢ are orthogonal subprojections of Q€ and the
pf are orthogonal subprojections of PF.

PROOF. Suppose P¥ =Y,k fix s that PHQH =Y, , f;. for some subset J of
K. Each f};, jeJ, corresponds via y with a minimal diagonal projection e,
which is a summand of Q€. Let ¢% = } ., 4, and write ¢ = )" qf as a direct
sum of A(G)-irreducible projections. Each g° corresponds under y to a diagonal
subprojection, pf, of PYQH, which in turn corresponds under 7 to a diagonal
subprojection pf of P¥. Thus oy = ) J; where J; is an elementary compression
type map associated with (g%, pfF).

2. Regular direct systems of diagraph spaces.
We turn our attention now to systems

A -9y A, -2,

where each A; is a digraph space A(G;) for some digraph G; and each ¢; is
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a contractive regular bimodule map. We refer to such a system as a contractive
regular direct system of digraph spaces.
Define

A% = {(ay): ax € Ay, di(a) = ai+, for all large k}

and let 4, be the set of equivalence classes of eventually equal sequences. Let
¢,  denote the natural map from A, into A, and define the seminorm || || on A,
by || @k, o(@)| = limsup, ||p;o...o ¢ (a)|l for ae A,. Then the quotient of 4, by
the subspace of elements with zero seminorm becomes a normed space. The
direct limit, A, of the system is defined to be the completion of this normed space.
In fact the Banach space is matricially normed in the obvious way and the maps
¢« » are completely contractive.

If the A;’s are algebras then A, has a natural algebra structure, the induced
(operator) norm is an algebra norm, and the direct limit is a Banach algebra. In
this case (see [6]) A is completely isomorphic to a Hilbert space operator algebra.
If the A;’s are C*-algebras and the ¢;’s are contractive star homomorphisms (not
necessarily injective), then A inherits a natural star algebra structure, the norm
defined above is a C*-norm, and the direct limit is a C*-algebra.

LEMMA 9. The system above can be replaced by a subsystem
oy 2y ofy 2,

such that

(i) each w; is of compression type.

(ii) the set of < -irreducible projections associated oyo. ..oy for each | > k is
the same as the set of sd~irreducible projections associated with oy,

(iii) the restriction of each map oy + | to oy (24 is isometric.

PROOF. A composition o « of compression type maps is of compression type.
Furthermore, the compression projections for the compositions are subprojec-
tions of the compression projections for a (by Proposition 8). In view of this we
may choose k so that the compression projections for the composition

Gro...op,

is constant for all [ > k. It is now clear how to similarly choose the maps o, to
satisfy the conditions (i) and (ii). Property (iii) now follows.

THEOREM 10. Let {A,, ¢,} be a contractive regular direct system of digraph
spaces and let {4, o, } be an essentially isometric subsystem with the properties of
Lemma 9. Then there exists isomeetric star homomorphisms \, such that the
diagrams
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o (o) =kl O+ 1 (1)

CHou( ) —Lo CHoter 1(His 1))

commute.

Proor. By Theorem 5 we may assume that the maps are of compression type.
Let o = M,, be the natural inclusion. Let o, =y = ) ;_, @7, where each y, is
an elementary compression type map associated with diagonal projections
(QF, PF*Y),andletoy 4, = Y @n, where 7, is associated with diagonal projections
(Q**1, Pk*2). Let I be a subset of indices such that {Q¥ ie I} contains exactly one
copy of each Q¥ that appears in the description of a,. Let J be a subset of indices
such that {Q%*": je J} contains exactly one copy of each Q% * ! that appears in the
description of o .

By Proposition 7, we have the isomorphisms

C*ou(s4)) = ), ®B(QEC™)

iel
and

CHats (s 1)) = Y, @B(QSTIC™ ) = . @B(PE*2C™2)
jedJ JjeJ
We shall define y,: C*(o(4)) = C*(aty + 1(F + 1)) in accordance with the multi-
plicity and the identification of the embedding of each Q%*-summand into each
P}*2 -summand.

By Proposition 8, n;0y = Y @6, where §; is an elementary compression type
map associated with projections (q;, p;) where {p,} consists of mutually orthog-
onal subprojections of P} * 2. By the hypotheses (that of Lemma 9 (ii) in this case),
each ¢; belongs to {Q}:ieI}. Note that if Q5*' = Q%" ! then the {g,} associated
with 7; 0 y are identical (counting multiple copies).

We are now ready to define Y. Forie I and j € J, let n;; be the number of copies
of Q% that occur in the set of {g,} in the description above of 7 -y. Then there is
a natural embedding of multiplicity n;; of the Q¥-summand of C*(o(.%4)) into the
P]’-‘”-summand of C*(ot+ (% +4)). This map is just the star extension of the
restriction of 770 y.

By assumption on the maps o, given i€ I, there exists jeJ such that n;; & 0.
(Otherwise oy 4 | o y; = 0implying that Q¥ does not appear in the set of projections
associated with oy 44 o ). Thus , is isometric.

To see that the diagram commutes one can argue as follows. Consider an
element b = ay(a) with ae <. Then b splits as a direct sum b; + ... + b, with
b, = Pk*1p Pk*! where P¥*1,..., P**! is the enumeration of all the projections
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in the definition of a,. Furthermore, we can group the summands according to
the equivalence relation r ~ s on indices with Q¥*! = Q**! to obtain

b=z@(z@b,).

iel rei

Here we view the indices in I also as the equivalence classes. Each summand b, for
rei is the copy 7,(Q%aQ%) of Q%aQ¥, and the map i, is the natural map which
identifies these copies. That is, i(b) = Y ;c; ®b;.

Similarly, each element d of o ; (% + 1) has a direct sum representation

. d=2®<2@ds).

jeJ sej

and i+ ; is the map with i, , (d) = Z jes @d; which identifies multiple copies as
before.

Consider the representation of o4 (b) in the form Y ;.; ®() ,c; ®d,). Then
each summand dg, coming from (, o y)(b), is itself a direct sum of copies of b; in the
expression for d;. The implication of this is that there is a commuting diagram

o) e T (-"/ 1)

d
{dic1 ®bi} Yurs, {3jes®d;}

The map y ,  is simply the star-extension of the map /, , ; and so the diagram in
the statement of the theorem commutes.

COROLLARY 11. The direct limit of a contractive regular system of digraph
spaces is completely isometric to a subspace of an AF C*-algebra.

PROOF. In the notation above consider the following commuting diagram for
such a direct limit A.

al(gﬂl) ';."%—’ az(ﬂz) —_— ... A
CHay(oy) —L> CHoy(sty) — ... B

Since the inclusion maps i, are completely isometric we conclude that the induced
map i: A — B is a complete isometry.
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PROPOSITION 12. Given the systems

oy (Ay) — 2(A2) — ... A

CHoy(Ay) —2> C*op(A4,) — ... B

as in Theorem 10, define f, = o, (1) where I, is the identity in .</,. Then
(a) the sequence e, = i(f,) forms a norm approximate identity for B.
(b) the following statements are equivalent.
1) Y is unital for all large i.
ii) B has a unit e.
ili) e, converges in norm to an element e in B.
V) fi converges in norm to an element g in A.

Under any of the assumptions in (b) we have that i(g) = e.

PrOOF. The statements follow directly once it is observed that i (o(I})) is the
identity in B, and that icog 41, o = Y.

DEFINITION 13. Let
A 254,22, A

be a direct system of digraph spaces where each @; is a contractive regular
bimodule map. This system is said to be essentially unital if the telescoped system
given by Lemma 9 satisfies any of the equivalent properties in (b) of Proposition
12.

Before going further we provide a brief review of the idea of a C*-envelope.

The appropriate setting, considered by Hamana ([14]),is the category of unital
operator spaces (that is, self-adjoint unital subspaces of C*-algebras), together
with unital complete order injections. If 4 is an operator space, then
a C*-extension of A is a C*-algebra B together with a unital complete order
injection p of 4 into B such that C*(p(4)) = B. A C*-extension B is a C*-envelope
of A provided that, given any operator system, C, and any unital completely
positive map t: B — C, t is a complete order injection whenever 7 o p is. Hamana
proves the existence and uniqueness (up to a suitable notion of equivalence) of
C*-envelopes. Furthermore, he shows that the C*-envelope of A is a minimal
C*-extension in the family of all C*-extensions of A.

After proving the existence of C*-envelopes, Hamana then uses this to prove
the existence of a Silov boundary for 4, a theme first developed by Arveson [1].
The Silov boundary is a generalization to operator spaces, of the usual notion of
Silov boundary from function spaces.
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Let B be a C*-algebra and let A be a unital sub-operator-space such that
B = C*(A). An ideal J in B is called a boundary ideal for A if the canonical
quotient map B — B/J is completely isometric on A. A boundary ideal exists
which contains every other boundary ideal and this maximal boundary ideal is
called the Silov boundary for A. Hamana shows that if B is a C*-extension for 4,
then the C*-envelope for A is isomorphic to B/J, where J is the Silov boundary
for A. It is this form of the definition of the C*-envelope that will be used below.

If A is merely a unital subspace of a C*-algebra, rather than an operator space,
then we define the C*-envelope of A4 to be the C*-envelope of the operator space
A+ A*

PROPOSITION 14. Let A be the direct limit of an essentially unital contractive
regular direct system of digraph spaces. Then A is completely isometrically isomor-
phic to a unital subspace of an AF C*-algebra. Furthermore the C*-envelope of A is
an AF C*-algebra.

Proor. Consider the telescoped system and the associated commuting dia-
gram

a(Ay) — ay(4;) — ... A4
B, - B, — ... B

where B; = C*(«;(o#)) is a finite-dimensional C*-algebra, each y; is an isometric
star homomorophism and iis a complete isometry. Since the telescoped system is
unital, we see from the definition of y; that each y; is unital. Thus, by Proposition
12 there exists g € A such that i(g) = e, the unit in B and the first assertion of the
theorem follows.

Let A also denote the image of A in B. Then A = A + A* is an operator space
and, since i is a complete isometry on A it extends to a unital complete order
injection i: A — B. Thus B is a C*-extension of 4 and C¥ (A) is (completely

isometric to) the quotient B/J where J is the Silov boundary of 4 in B.

The direct system for C¥, (A4).

We shall now identify the direct system for C¥,,(4). This requires an identification
of the Silov ideal J above, which, as we see in Example 16 below, may be nonzero.
This example shows that we cannot expect C¥ ,(A) to be an isometric limit of the
C*-algebras C*(o(Ay)) of the isometric telescoped system for A. Nevertheless,
because of the nature of ideals in direct systems it follows that the C*-envelope is
a direct limit of these building blocks with respect to not necessarily injective

embeddings.
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View B, as the isometric image of B, in B and let J;, = J n B,. Then we have
J = UJy and isometric *-homomorphisms ; exist such that the following dia-
gram commutes. (See Bratteli [2] for example.)

Bl L’ BZ —— ... B

B

B,/J, - B,/J, —— ... B/J

Since J is a boundary ideal of 4 in B, the map n: B — B/J is completely isometric
on A. Hence n,: B, — B,/J, is completely isometric on i (o (A4,)). We thus have the
commuting system

a(A) — op(dy) — . A4

y ]

B,J, %, By, —— ... B/J=Ck/(A)

env

where i, = m, o i, is a complete isometry and i = 7o i is a complete isometry.

Furthermore, as Ken Davidson has noted, the identifications of Theorem 10
allow the Silov boundary J to be identified in the following specific intrinsic
manner.

Consider the summands of C*(oy(A)) which are not maximal in the sense that
they correspond to proper compressions of larger summands of C*(oy(A4y)).
Otherwise refer to a summand as maximal. If a summand of C*(«(4,)) is never
mapped into a maximal summand of C*(a;(4;)) for any j > k then (the image of)
this summand is clearly contained in the Silov ideal. (In fact such a summand
generates a boundary ideal.) Moreover, the Silov boundary J is precisely the
ideal, K say, that is generated by all such summands.

To see this suppose, by way of contradiction, that J contains K strictly. Then
there is a summand, S say, of C*(«,(A,)) for some k, which is contained in J and
which has (partial) embeddings into maximal summands M, < C*(a,,j(A,,j)), for
some increasing sequence n;. Let aeo(A4,) be an element such that
li(@) + S| < ||lal|. For example, pick a = o, (b) where b is supported by a single
compression projection (for the domain of a;) corresponding to S and all proper
subcompressions of b have strictly smaller norm. Plainly | aj .+ Lw(f(a)) +J|| £
lik(@) + S|l £ |la||. But the existence of embeddings into maximal summands
implies that ||o 1 ;. (i(a))| = |lall. Thisis contrary to the fact that J is a boundary
ideal and so the assertion follows.

In summary then we have the following theorem.

THEOREM 15. Let A be the direct limit of an essentially unital contractive regular
direct system of digraph spaces A,. Then
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(i) A is completely isometrically isomorphic to a unital subspace of an AF
C*-algebra.

(i) C¥*.(A)is an AF C*-algebra.

(ii)) If B = lim C*(o(s#)) is the C*-algebra of the telescoped system for A (as in
Theorem 10) then C¥, (A) = B/J where J is the ideal generated by those summands

of C¥(a(#)), for i =1,2,..., which have no partial embedding into a maximal
summand of C*(a;(=Z;)) for all j > i.

REMARK. Note that if &: A(G) — A(H) is a contractive regular bimodule map,
then since ¢ is of compression type, ¢ can be extended to @: A(G) + A(G)* —
A(H) + A(H)* where @ is of compression type associated with the same projec-
tions as ¢. It follows that the commuting diagram above can be interpolated to
yield

O‘x(Al) — o(A5) A
a(A; + AY) —25 o,(A, + AY) - .. > A
CHay(A )T, —E CHay(Ay) ], — —— BJJ = CX,(4)

Consequently the operator space A = i(A) + i(4)* is completely isometric to the
limit of the middle system.

ExAMPLE 16. The following example illustates how the ideal J of Theorem 15
(iii) may be proper, even when the system {C*(x;(#)), ¥} is isometric.
Consider

Ty—2i, Ts—22, ... A

where T, is the algebra of n x n upper trianglar matrices and where
a(a) = a,, @ pap @ pap where a,, is the compression of a to the second minimal
diagonal projection and p is compression to the last n — 1 minimal diagonal
projections.

For example,

a1 12 Qg3 azz a a
2

s A3 | ™ C = a(T3) where C = [ 22 3:|,

asjz C
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Ay Q2 Ay3 Adyg Ags

Az Qz3 Qz4 Q3s az;
a3z Q34 d3s (™ D = o(T5)
As4 QAas D
ass

Az; Qz3 A4z4 dzs
a3z d3s QA3s

where D = , and thus
as3 Q4as
ass
az;
‘—au aj; ag3 C
Az; dz3 | C = (3004 )(T3)
L ass C

C

where C is as above.

Note that the system satisfies the properties of Lemma 9. Let Q, be the second
minimal diagonal projection in T3 and let @, be the sum of the last two minimal
diagonal projections in Tj. Let P; be the first minimal diagonal projection in Ty,
P, the sum of the second through the fifth minimal diagonal projections in Ty,
and P5 the sum of the sixth through the ninth minimal diagonal projectionsin Ts.
We can view a, o o, as embedding B(Q,C?) into B(P,C®) with multiplicity 1 and
embedding B(Q,C?) into B(P,C®) with multiplicity 2 (as well as B(Q,C?) into
B(P5C®) with multiplicity 2).

Letting M; denote the i x i matrices, we have

C*(o;(T3)) = B(Q:C*) @ B(Q,C*) = M, ® M,
and
C*ay(Ts)) = B(P,C°) @ B(P,C°) = M, @ M,.

The embedding yr,: C*(ay(T3)) = C*(ot5(Ts)) induced by o, o« is represented by
the Bratteli diagram

M, ® M,

| ||
M, ® M,

This Bratteli diagram format continues for
31 —w—lb Bz -ﬂ-) e B

where B, =~ M; ® M,..
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Let J be the ideal in B = lim (B, §;) that corresponds to the subdiagram of
embeddings of M; @ Ointo M; @ 0. Then n: B — B/J is completely isometric on
A (deleting the corner entry a,, does not affect the norm of any of the images) and
so J is a boundary ideal for A, and B is not the C*-envelope of A.

Infact, as we see from the general discussion below, we can make the identifica-
tions C,,,(4) = B/J = lim (B;/J;, Y;)where J; = M; ® 0 = B;and so C*, (A)is the
UHF(2*) Glimm algebra.

Final remarks.

We conclude with comments on various contractive regular systems.
Consider the system

M, M, 2% ... B
with embeddings ¢; such that
pja) =a®da,, I,

where a, , is the last diagonal entry of the matrix a. Here k; is a sequence of
positive integers and p; =n + k; + ... + k;—;. These embeddings restrict to
algebra injections of the upper triangular matrix subalgebras, giving a triangular
limit algebra, the limit algebra 4 of Example B in [5].

In a sense this example is not properly of compression type because the limit
space B can be viewed as a limit of a subsystem for which the embeddings restrict
to star algebra homomorphisms. Indeed, let B; = M, be the block diagonal
subspace M, ® C. Then the maps ¢;: B;_, — B; are C*-algebra embeddings,
and, furthermore, the subsystem {B;_,, $;} has the same limit, B. In particular
the triangular operator algebra A is a regular subalgebra of an AF C*-algebra in
the usual sense ([7]). Here B = C*(A) is the C*-envelope of 4 and, furthermore,
themasa A N A*in Aisamasain C¥  (A). Similar remarks apply to the Examples
D, E, F of [5].

On the other hand (as noted in [S]) the system T, - T, = T,.,... with
algebra homomorphisms a — a @ a;;, where 1 < i < n is fixed, is properly of
compression type; the containing system M, - M, . - M, ., ... does not have
an algebra subsystem (in the sense above) with the same limit. Indeed in this case
the image of the masa A N A* in A under the inclusion A —» C¥ ,(A) is not
maximal abelian. For this example one readily identifies the C*-envelope as the
AF C*-algebra with Bratteli diagram
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n 1
v

n+1 1
| /]
n+2 1

In principle, the enveloping C*-algebra of a given (proper) compression type
system of digraph spaces can be identified by explicating the Bratteli diagram
from the process described in the Lemma 9, Theorem 14 and the related dis-
cussions. Nevertheless, combinatorial counting arguments may be necessary for
this which make this difficult in practice, as is the case, for example, with the
system T, - Ty — Ty — ..., with unital embedding homomorphisms that have
exactly one copy of every proper interval compression.

It should be apparent from our discussions that the major aspect determining
the C*-envelope is the nature and the number of the compressions appearing in
the morphisms of the given direct system. The identity of the building blocks
themselves plays a minor role. In fact, for any given AF C*-algebra B one can
construct a regular contractive system T,~, = To~, = ' with algebra homo-
morphisms, such that the triangular limit algebra has C*-envelope equal to B.

To see this let ¢"M, ®...®M, > M, &...® M, be any standard
C*-algebra homomorphism and let 8,: A, — A, be the restriction of ¢ to the
upper triangular subalgebras. Choose N,, N, with 2% >n; + ... +n,,
2V >my + ... + myand let k;: Ty, > A; be the natural block diagonal compres-
sion maps. Then the map o, = k; ' 00,0k, is a contractive regular algebra
homomorphism from A4, to A,. Iterating this construction one can express
lim (4, 6,) as lim (Ty~x, o) and the assertion follows.
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