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ON INDUCTIVE LIMITS OF MATRIX ALGEBRAS OVER
HIGHER DIMENSIONAL SPACES, PART II

GUIHUA GONG

Abstract.
kn
In this paper, we will prove the following result. Suppose that A = lim @ My, (C(Xy,)) is of
n—oo 1’:1

real rank zero, where the spaces X,,, are finite CW complexes with uniformly bounded dimen-
sion (or with slow dimension growth in a generalized sense for non simple C*-algebras). Then
A can be written as an inductive limit of finite direct sums of matrix algebras over 3-dimensional
finite CW complexes. (Hence it can be classified by its graded ordered K-group, if one supposes
further that A is simple.)

1. Introduction.

In [EG2], George A. Elliott and the author proved the following theorem. If
a simple C*-algebra A of real rank zero can be expressed as an inductive
limit of matrix algebras over 3-dimensional finite CW complexes, then its
isomorphism type is completely determined by its graded ordered K-group
(with dimension range). Also we proved that the above classification theo-
rem still holds if one replaces the condition of simplicity by the condition
that K, (A4) is torsion free (see also [G1]). In [G2], this result for the case that
K.(A) is torsion free was generalized to include inductive limits of matrix-
algebras over arbitrary finite CW complexes with uniformly bounded di-
mension (rather than dimension < 3 ). In this paper, we will prove that if a
simple C*-algebra A of real rank zero can be expressed as an inductive limit

kn
form lim @ M}, ;(C(X,,;)) with
"m0 =1

lim d——lm(){"’i)
n=00  [n, i

=0

(this condition is called slow dimension growth condition; see [BDR]), then
A can be written as an inductive limit of matrix algebras over 3-dimensional
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finite CW complexes. (Hence it can be classified by its graded ordered K-
group.)

The theorem also holds without the simplicity condition. But we need to
use a slow dimension growth condition in a generalized sense (see §2), or
simply suppose that the spaces X, ; have uniformly bounded dimension. Re-
call that if we drop both the condition that 4 be simple and the condition
that K,(A4) be torsion free, then the isomorphism type of 4 is not completely
determined by their K-theory, even though they can be written as inductive
limits of matrix algebras over 3-dimension spaces (see [G1]). But one can
prove that the isomorphism type of such a C*-algebra is completely de-
termined by its unsuspended E-equivalence type (or asymptotic isomorphism
type). This is a generalization of a result in [G1] in which we suppose that
the base spaces have dimension < 2.

This is a revision of the author’s paper of the same title.The results on
dimension drop C*-algebras contained in the original version will be in-
cluded in a joint paper with George A. Elliott and Hongbing Su. (Also see
[G3].) The results in [G2] and this paper have been announced in [G3].

The material is organized as follows. In §2, we will review some known
results and give some preliminary results. In §3, we will prove our theorem
for a special inductive limit which involves only one fixed space X ( X can be
an arbitrary fixed finite CW complex). In §4, we will prove the general the-
orem. In §5, we will present some remarks. In our main result, we have ac-
tually proved that the inductive limit algebra of any system with slow di-
mension growth can be rewritten as an inductive limit of matrix algebras
over certain very special 3-dimensional CW complexes, namely, S, S?, and
the spaces Ty and Ty (defined in [EG2]). It should be pointed out that to
produce all real rank zero inductive limit C*-algebras, we need to use S or a
space with similar properties (see §5). (One does not need S? to produce all
ordered K-groups.) In §5, we give a theorem which says that the isomorph-
ism type of such an inductive limit C*-algebra (within the class of such al-
gebras) is completely determined by its unsuspended E-equivalence type (or
asymptotic isomorphism type of Dadarlat).

ACKNOWLEDGMENT. This work was done while the author was visiting
the University of Toronto during 1993-1994. The author would like to thank
Professor G. Elliott for many helpful conversations. Shortly after the proof
of the theorem was completed, the author was informed that Professor M.
Dadarlat had completed a paper with results similar to our main result,
Theorem 4.4, (and probably also Theorem 5.4 concerning classification by
unsuspended E-equivalence type).
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2. Preliminaries.

2.1. Let X and Y be path connected finite CW complexes with base points
xo and yo. (All the CW complexes in this paper are assumed to be con-
nected.) Let Cy(X) denote the collection of continuous functions on X van-
ishing at the base point. Write F(X) = Hom(Cy(X), #"), where " is the C*-
algebra of all compact operators on an infinite dimensional separable com-
plex Hilbert space. Also write

kk(Y,X) = [Co(X),Co(Y)® A],

which is the collection of homotopy classes of homomorphisms between
Co(X) and Cyp(Y) ® A". Let us use [4, B, to denote the collection of homo-
topy classes of unital homomorphisms. As a consequence of 4.2.11 of [DN],
we have,

kk(Y,X) = [Co(X),PM,Co(Y)P] = [C(X),PM,(C(Y))P],,

where P e M,(C(Y)) is a projection with rank(P) > 3dimY +1. (In
[EGLP2], Theorem 8, we gave a direct proof of the above fact from 6.4.4 of
[DN], since we didn’t realize that it is a consequence of 4.2.11 of [DN].)
There is a canonical homomorphism (see [DN] )

X kk( Y, X) — KK(C()(X), C()(Y)) .

The following result is Theorem 3.3 of [EG?2] (also see [DN] for a slightly
weaker result).

PROPOSITION 2.2. Let X be a my-dimensional connected finite CW complex
and Y be a my-connected finite CW complex. If my < my + 3, and H™*3(X) is
a finite group, then x is an isomorphism.

2.3. The following spaces were used in [EG2]:

(0) X = {point} (let us call this type 0);

(1) X = S! (call this type I);

(2) X = Ty (call this type II), which is a 2-dimensional finite CW complex
with i{*(T”,k) = HZ(T”,]() =Z/k;

3 X =Ty (call this type III), which is a 3-dimensional finite
CW complex with il*(T”Lk) = H3(T”1,k) =Z/k;

(4) X = S? (call this type IV).

In the above and in all what follows, we shall use H (X) to denote the re-

o]
duced cohomology group @ H'(X,Z) with coefficients in Z. If
i=1
X=X;VX,VXs...V X is a finite wedge of spaces of the above special
forms, then we shall say X is a CW complex of special form. By the above-
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proposition, for any space X of special form and any connected finite
CW complex Y, the map

x : kk(Y,X) = KK(Co(X), Co(Y))

is an isomorphism. (Notice that H3(X) is a finite group.)
For any finitt CW complex X, one can find a CW complex X of special
form such that

K'Xx)=K%X) and K'(X)=K'(X).

The main idea in this paper is to replace X by X which is a 3-dimensional
CW complex. (Notice that X is not unique, but it is not important which X
we choose.)

2.4. Suppose that ¢ : M (C(X)) — PM,(C(Y))P is a unital homomorph-
ism. Then ¢ induces a homomorphism ¢|2“Mk(c(x))e“ : C(X) — pM,(C(Y))p,
where ey is the matrix unit of My(C(X)) corresponding to the upper left
corner and p = ¢(ey;). Hence it induces an element [¢] € kk(Y, X). Also, ¢
induces a map

. : Ko(rMi(C(X))) — Ko(PMA(C(Y))P) = Ko(C(Y)) ,
where rM;(C(X)) = M;(C). (Notice that we use the notation that
EBMk Co(X;), and rd = 4/A°, if 4 = @Mk (C(X;)); see 1.6 of [EG2].)
The followmg proposition is 4.2.11 of [DN]

PROPOSITION 2.5. Let A = @ CX))®M,, D= @ C(Y;) ® My, where X,,
i=1

Y; are connected finite CW complexes and dim(Y, ) < nforalll <j<h Let
o, ¥ € Hom(4, D) be 3(n + 3)/2-large (see 2.1.8 of [DN] for the definition of

this ). Then ¢ is homotopic to Aduoyp for some unitary u € D if and only if
(Y] = [¥"] € kk(Y}, X;) for all i,j and
Ko(p | r(4)) = Ko(v | r(4)) .

We shall say that two such homomorphisms define the same maps at the kk
level and at the Ky level.

LEMMA 2.6. For any fixed finite set G C C(S*") and € > 0, there exist an
integer n, a unital homomorphism ¢ : C(S*") — M,(C(S*")) and a finite di-
mensional C*-algebra B C M,(C(S*™)) such that
(1) [¢] =id € kk(S?", $?m);

(2) dist(¢(g),B) < € for each g € G.
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Proor: If one allows B to be a direct sum of matrix algebras over C(S'),
then this is a special case of Theorem 8 of [EGLP2] (see also [EG1]). Since
we are dealing with an even sphere, we can change C(S') to C as follows.
First, we can construct a unital inductive limit sequence

12 923

C(S7) 25 My(C(S™)) 25 My(C(S™) — - — 4,

with the following properties:

(1) A is of real rank zero;

@[] = id € kk(s?", 57);

(3) ¢, takes trivial projections to trivial projections.

(The conditions (2) and (3) imply that
(Ko(A), Ko(A),,14) = (Z23)®Z,Z(3), ®ZU{(0,0},{(1,0)}) .)

From [EGLP2] and [EG2], we know that A4 is an AF-algebra. Therefore, for
any € > 0, and any finite G C C(S*"), there are an #; and a finite dimen-
sional C*-algebra B C M, 1(C(S?")) such that ¢, (G) is approximately
contained in B to within e.

2.7. Suppose that X is an arbitrary finite CW complex. Let 2m > dim(X).
We will prove a result which can be roughly stated as the following:
id € kk(X A S, X A §%") can be realized by a homomorphism

¢: C(X AS*™) — M,(C(X AS™™)) (for n large enough)

such that the image of a given finite set G C C(X A S?™) via ¢ is approxi-
mately contained in a sub-algebra 4 C M,(C(X A §*™)) to within an arbi-
trarily small number, where A is a direct sum of matrix algebras over C(X).

2.8. Let X be as in 2.7. Consider the following short sequence:
xvsm L o xxsm 5 xaST.
It induces a short exact sequence

™

0— Co(XAS™) I Co(X x §7) 5 Co(XvS*™) —0.

Using the Kiinneth formula, it is routine to prove that the above sequence
induces the following split exact sequences:

0 — Ki(Co(X A S?™)) — Ki(Co(X x S*™)) — K;(Co(X v S™™)) — 0.

This means that Co(X AS¥")® Co(X VS¥) is KK-equivalent to
Co(X x S?™). And there is a 6 € KK(Co(X V §2), Co(X x 5?™)) such that
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7* @ 0 induces a KK-equivalence, where 7 : Co(X A §¥") — Co(X x §?") is
induced by 7:X xS — X AS?™, and 6 xi*=id € KK(Co(X Vv §2™),
Co(X Vv 8?)), where i* : Co(X x S?™) — Co(X v §*™) is induced by the in-
clusion map X Vv ¥ — X x §?". Hence, for any C*-algebra C (in parti-
cular, we let C = Cy(Z) for a finite CW complex Z ), the two boundary maps
6o and 6; in the following six term exact sequence are zero:

KK (Co(X v 82"), Co(Z)) — KK(Co(X x §), Co(Z)) — KK(Co(X A $*"), Co(Z))
&1 1 1 o
KK, (Co(X A S¥™), Co(Z)) — KK (Co(X x §2™), Co(Z)) — KK (Co(X V §2™), Co(Z)).

We also have the following long exact sequence of kk (see 3.2.10 of [DN]):
- > KK(Z, X VS§¥) - Kk(Z, X x §?) = kk(Z, X A S¥) —
kk_1(Z, X VS — ...
Combining this with the above exact sequence of KK fone has

kk(Z,XvS8™) = kk(Z,XxS§™) - kK(Z,XAST) - kky(Z,XvS™)
| ! | |
KK(Co(X v §™), Co(Z)) = KK(Co(X x ™), Co(Z)) — KK (Co(X A S™), Co(Z)) — KK (Co(X V §™), Co(2))

Let Z=XAS"™. Then Z is (2m—1)-connected. Hence
kk_(Z, X v §7") — KK (Co(X V §2™), Co(Z)) is an isomorphism (see The-
orem 345 of [DN] and notice that 2m > dim(X)). Since
KK(Co(X A S™),Co(Z)) = KKi(Co(X V ™), Co(Z))
is the zero map, we know that the map

Kk(X A 82" X A S™™) — kk_ (X A S¥™, X v §?™)

is the zero map. Hence kk(X A S, X x §¥") — kk(X A S?™ X A S?™) is a
surjection.

2.9 There is a natural isomorphism 7 from kk(X AS? X) to
kk(X A 8?1 X A S1) (see 3.1.9 of [DN]). Let b € kk(S*™*1 S1) denote the
Bott element (see 3.3.2 of [DN]). We call T-!(id(®b) the Bott element in
kk(X A $?", X), where id € kk(X,X) and hence id® b € kk(X A S¥"+!,
X A SY). For our convenience, we denote T~!(id ® b) by b. (We avoid using
S?, since it is not connected.)

We still denote by 7 € kk(X x §¥", X A §¥") the element corresponding to
the canonical map 7: X x S — X A S¥. Also, i € kk(X V5%, X x §?")
denotes the inclusion. We use p; € kk(X x §2", X) and p, € kk(X x $?",
52™) to denote the elements induced by the projection maps from X x S to
the first factor X and to the second factor S? respectively.
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Recall that if o € kk(X,Y) and 8 € kk(Z,X), then a x 8 € kk(Z,Y).
(Notice the change of order, since kk(X,Y) corresponds to KK(Cy(Y),
Go(X)).)

LemMA 2.10. There is an o € kk(X A S?™, X x S?") such that:
(i) 7xa=idekk(X AS> X AS™™);
(i) p; x a =b € kk(X A S¥™, X) is the Bott element;
(iii) p> x @ = 0 € kk(X A S2, §2m).

ProOF. Let i € kk(X,X x $?) and i € kk(S?", X x S?") denote the
compositions X—X VS 5 X x §2m and SMmoX v S 5L X x S,
respectively. Then

p1xip = id € kk(X,X) and py xi; = id € kk(S*", §?™) .

By 2.8, there is an a; € kk(X A $7", X x §?") whose image under the ca-
nonical map kk(X A §%", X x $7") — kk(X A S?", X A §¥") is id. That is,

7 x a; =id € kk(X A S¥", X A S?™) .
Notice that
kk(Z, X v §™) = kk(Z, X) @ kk(Z, S*") .
Set
B=(p1 xa1—b)® (p2 x 1) € kk(X A S¥, X) @ kk(X A S¥", §2™)
=kk(X A S™, X v §2) .

Set o = a; — i x 8. Then

Txa=mxa —1Txixf=id—0x8 = id € kk(X A S X A S¥")

PLXa=piXxa—pXixXpiXog+p Xixb—p Xixpxa

=pixa—pyxa+b-0=>beckk(XAS* X), and
pzxa=p2xa1—0—p2xixp2xa1=0€kk(X/\S2'",S2’”).

LEMMA 2.11. For any fixed finite subset F C C(X A S*) and € > 0, there
are a unital homomorphism ¢ : C(X/\Sz’") — M,(C(X AS™)) (for n large
enough ), a C*-algebra B= @Mk( (X)), and a wunital homomorphism
U @Mk,( (X)) = M,(C(X A Sz’”)) with the following properties:

) ¢ id € kk(X A S, X A S,
(i) Each partial map ' of ¢ from My, (C(X)) to M,(C(X A S*™)) defines the
Bott element b € kk(X A S*", X);
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(iii) o'(1x,) are trivial projections in M,(C(X A S*™));
(iv) dist(¢(f), ¥(B)) < € for each f € F.

PrOOF. Let ¢ : C(X A S?™) — C(X x §*) denote the homomorphism
induced by m:X x § — X AS*. Consider F, = ¢1(F) C C(X x S?™),
€ >0, and a finite set of generators G C C(S?"). There is an 7 > 0 with the
following property. If ¢} : C(S*™) — M, (C(5*")) is a unital homomorph-
ism and B; C M, (C(S¥")) is a finite dimensional sub C*-algebra with
dist(¢%(g), B1) < 7, for each g € G, then

¢2 =idcor) ® ¢+ C(X x $2) = My, C(X x $™)(= C(X) ® My, (C(5*™)))
and B= C(X)® B C C(X) ® M, (C(S?")) satisfy the relation
dist(é(f),B) < ¢ foreach f e F;.

For such an 7, by Lemma 2.6, one can find ¢} : C(S?™) — M,, (C(S*)) (for
ny large enough) to satisfy the above condition and [¢}] = id € kk(S*", §?™).
Let ¢ : C(X x $*) — M,,(C(X A S*™)) represent o € kk(X A S?™ X x S?™)
in 2.10. And let 3 : My, C(X X S™) — My n(C(X AS™)) be defined
by s = ¢} @idy, . Finally, let ¢:C(X AS™) — My (C(X AS™) be

t
defined by ¢ =¢30dr0¢1 and ¢:B(= C(X)® By := P M, (C(X))) —
i=1
My, C(X A S?™) be defined by the composition

BM, (C(X x $)) 25 M, ,.(C(X ASP™)) .

It is obvious that (iv) holds. (i) follows from (i) of Lemma 2.10, and
[#5] = id € kk(S?", S?™). (ii) and (iii) follows from (ii) and (iii) of Lemma
2.10 respectively. (Notice that if i: B— M, C(X x S?") is the inclusion,
then (1, ) € M, C(X x S™) corresponds to a vector bundle over X x S2m
which is a pull back of a vector bundle over $2” via p; : X x $¥" — §2)

REMARK 2.12. In the above proof, one can replace C(X) by M;(C(X)). In
this case, we can also require ¢(e;) € ¥(B). Furthermore, in the proof one
can require that ¢; and ¢; are injective. Hence ¢ and 1 can be chosen to be
injective. Finally, one can require that ¢/’ takes any trivial projection to a
trivial projection.

2.13. Let us say that two homomorphisms ¢, : A — B are approximately
unitarily equivalent if for any finite set F C 4 and £ > 0, there is a unitary
u € B such that ||¢(f) — Adu-y(f)| < € for each f € F. Using the approxi-
mately intertwining argument, one can easily prove the following (see [Ell]
and [R]).



64 GUIHUA GONG

PROPOSITION 2.14. If there are sequences of homomorphisms ¢, : A — B,
and 1, : B — A such that for each n, 1, o ¢, is approximately unitarily equiva-
lent to id € Hom(A, A) and ¢n1 o, is approximately unitarily equivalent to
id € Hom(B, B), then A is isomorphic to B. Furthermore, one can find an iso-
morphism ¢ : A — B, with ¢, approximately unitarily equivalent to ¢ and 1y,
approximately unitarily equivalent to ¢~', for each n.

The following lemma will often be used to deduce the isomorphism of two
C*-algebras from a one-sided intertwining.

LeEMMA 2.15. Suppose that A and B are separable nuclear C*-algebras of
real rank zero and stable rank one. If ¢ : A — B is surjective and induces an
isomorphism from Ky(A) to Ko(B), then ¢ is an isomorphism.

To prove the above lemma, one only needs to notice that, every ideal of A4
is generated by the projections inside the ideal. Furthermore, it is known
that, for each ideal I C A4, the canonical map from Ky(I) to Ky(4) is in-
jective, since A is of real rank zero and stable rank one.

We will quote some notations from [EfK]

DeriNITION 2.16 ([EfK]). Suppose that (A4,, pn,) and (B,,¥n.) are two
inductive limit systems. A system map o : (A,) — (B,) consists of a sequence
of integers /; < /, < /3... and unital homomorphisms «, : 4, — Bj, such that
each square of the diagram

A1—>A2—->

o |

B, — B, —

commutes at the level of homotopy.

We say the two system maps a:(4,) — (B,) and 3:(4,) — (B,) are
homotopic if for each n, there is an m larger than /,(«) and /,(3) (here the
I,(a) and I,(3) denote the above I, for o and [ respectively) such that

wln(a),m oQly is homotopic to "/)l,,(ﬂ),m oﬂn.

2.17. Suppose that there are two sequences k; < ky <k; <--- and
I <l <3 <---and a sequence of homomorphisms o, : A¢, — B, such that
each square of the diagram

Ay, — A, — A
a]l (121 031
B, — B, — B,

commutes, at the level of homotopy. Then the homomorphisms «, also in-
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duce a system map o« = (&,), where &,:4, — B;, is defined by
G = 0y o P, (Notice that k, > n.)

2.18. As pointed out in [EfK], system maps can be composed in the ob-
vious way. Let id : (4,) — (4,) be given by id : 4, — 4,. We say two sys-
tems (A4,) and (B,) are shape equivalent if there are system maps
a: (4n) — (Bs) and B : (B,) — (A,) such that @o 8 =id (5, and foa =id,,).

In [EG2], George A. Elliott and the author proved that for certain in-
ductive limit systems, shape equivalence implies that the limit algebras are
isomorphic. We will quote the results here.

s t
ProprosITION 2.19. Let A =@ M (C(X;), B=@P M, (C(Y;), where
i=1 i=1

Xi, Y; are arbitrary connected finite CW complexes. Suppose that the two uni-
tal homomorphisms ¢,v : A — B are homotopic, and suppose that F C A is
weakly approximately constant to within € (see 1.4 of [EG2); for the definition
of this). There exists 6 > 0 and an integer N with the following property: For

any C = é)Mm,(C(Zi)), if a unital homomorphism o : B — C satisfies
i=1
(i) SPV(aV) < 6 for each partial map o'/ of a and
(i) rank(1p)> N(dim(Z;) + 1),
then there is a unitary U € C such that
”U*Otod)(f)U - Oto(ﬁ(f)” < 70e
forallf € F.

The above proposition did not appear in [EG2] in the above form. But it
was proved in the proof of Theorem 2.29 of [EG2]. Notice that one needs to
modify the statement and the proof of another theorem, Theorem 2.21 of
[EG2] slightly. Namely, change “there is a 6" to “‘there is a 6 and an integer

N and change “SPV(¢)<aFnQ‘7+—l” to “SPV(¢) <6, and rank(p) >

N(dimY +1)”. In the proof, one can choose N =2(L+ 1)(K +1)", and
6 = 6. (See [EG2] for details.)

2.20. In [EG2], we gave a definition of slow dimension growth as follows.
kn

We say an inductive limit system A = lim(4, = @ M}, j(C(Xp;)), dnm) is of
i=1

slow dimension growth if for each n,
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(%) lim min
M—00 rankgl, 1,4' )#0

rank @7, (14:)
{dlm SP4, :1} N

(This definition also appeared in [BE].)

However, if A is not simple, then the uniform boundedness of the dimen-
sions of the spaces X,; does not imply the above slow dimension growth
condition. In this paper, we will use the following more general slow di-
mension growth condition: for any », there exists a positive integer M such
that

{rank (L) } _

(%) lim
dim SPA’ +1

min
m—o0 dlme oM
ranch '”(IA’ )#0

Here we use the convention that the minimum of the empty set is +oc. If the
spaces X,,; have uniformly bounded dimension, then one can choose
M = supdim(X,,); then (x) automatically holds.

mj

2.21. Suppose that 4 = lim(4,, ¢nm) is an inductive limit with slow di-
n

mension growth as in (**). Suppose that 4 is of real rank zero. For each n,
there is a positive integer M with the property that for any positive integer
N, there is an m such that for each block 4. and each block 4/, either

rank ¢} m(lA.) <N-(M+1)
or
rank ¢, (14) > N - (dim of SPA4/, +1).

2.22. Let us say that a homomorphism ¢ : My (C(X)) — PM;(C(Y))P is
defined by point evaluations if there exist finitely many points xj, xs, ..., X;
such that ¢(f) = ¢(g) if and only if f(x;) = g(x;). This means that ¢(f) de-
pends only on the values of f at finitely many points. We shall say that ¢ is
defined by base point evaluation if ¢(f) = ¢(g) if and only if f(x¢) = g(x0),
where xo is the base point of X. (Notice that unital homomorphisms defined
by base point evaluation may not be unitary equivalent to each other, since
they may define different K-theory maps.) A homomorphism ¢ is defined by
point evaluations if and only if image (¢) is a finite dimensional C*-algebra.

Combining 2.21, and Lemma 2.3 of [EG2] (or more precisely, the proof of
it), one can prove

LemMMA 2.23. Suppose that A = lim(A,, ¢nm) is an inductive limit satisfying
the slow dimension growth condition (xx). Suppose that A is of real rank zero.
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For any finite subset F. C A\ C Ay, any € > 0, and any integer N, there is an
m > n such that each partial map i, satisfies either

)] rank( m(14i)) > N(dimX,,; + 1) or

(2) G is homotopic to a homomorphism ¢ defined by point evaluations and

63 (f) = SN <€
foreach f € F.

Using the above lemma, one can prove the following analogy of Theorem
2.29 of [EG2].

PROPOSITION 2.24. Let C = @Mk (C(X )) and let A be a real rank zero
=1

unital inductive limit of a sequence( A, = @M[n i ((Xn,i), Gnm) satisfying the

slow dimension growth condition (xx). Suppose that a finite set F C C is
weakly approximately constant to within € in each block of C. If two homo-
morphisms ¢, : C — A, are homotopic, then there exist m > n and a unitary
U € A, such that

lonmod(f) — Unmov(f)U*|| < 70¢
DEFINITION 2.25. Suppose that 4 = lim(4,, ¢nm) and B = lim(By, Ynm)
are inductive limit systems. Two system maps o, 3 : (4,) — (B,) defined by
Ay — Ay — Az —
a;l azl a;l
B, - B, — B, —
and

A1 — A2 — A3 d

ﬂll ﬂzl ﬂal
By, — By, — By, —

are said to be equivalent if for each A,, there exist m > max(kp,/,) and a
unitary u € B,, such that Adu oy, m o3, is homotopic to ¢, m oa,. (Compare
with 2.16.)

PROPOSITION 2.26. Suppose that A = lim(Ay, ¢nm) and B = lim(By, Ynm)
are of real rank zero and satisfy the slow dimension growth condition (xx). Any
system map o : (An) — (By) is equivalent to a system map [3: (An) — (Bn)
which makes the diagram
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A —» Ay — A3 — - — A
B l ﬂz[ ﬂsl
B, —- B, — B, — -+ — B

a one-sided approximately intertwining in the sense of [Ell}, and therefore de-
fines a homomorphism B« : A — B. Furthermore, if 8’ is another such system
with map ., then B, and (3., are approximately unitarily equivalent.

This proposition can be proved by applying 2.24.

DEerFINITION 2.27. A weak system map «:(4,) — (By) is a system of
homomorphisms «, : 4, — By, such that

(bn,nH

Ay ——  Apy1

anl 10‘n+l

w”"InH
Bln - BIn—H
commutes at the level of Ky and kk (i.e. a1 oPnpt1 and ¢y, 4., o, define the
same maps at the level of K and kk in the sense of 2.5). Two weak system
maps o and (3 are equivalent if, for each n, there is an m > (), [,(8) such
that

(]51"(0‘)‘," oty and wln(ﬂ),m oﬂn

define the same map at the level of K and kk. Note that a system map is a
weak system map.

REMARK 2.28. Combining Proposition 2.5 and §1.6 of [EG2], one can
generalize Proposition 2.26 to the case that o is only a weak system map.
Also, we can still require that 3 be a system map.

LEMMA 2.29. Let A = lim(Ay, ¢um) be an inductive limit system. Let u, € A,
(1 <n<+o00) be a sequence of unitaries. Set Py_1, = Aduyody_1,. Then
lj_r?(Am ¢n,m) g l-il‘)n(An, ’wn,m)-

PROOF. Set vy = up, v3 = us - ¢23(V2), Vg = Ug + ¢34(V3), .... In general, set
Vn = Uy Pp—1,n(Vn-1). The diagram

Ay 2, A o, A3 -
. Advy-¢12 , Advy¢3 .
ldI N Ad I N T Advy
TR P N P

commutes.

2.30. A weak system map o : (4,) — (B,) induces a system of maps on
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the K-theory which is commutative. So it induces a K-map
K.o: K.A — K.B.

3. Suspension and a special reduction.

First, we would like to prove an analogue of Theorem 2.29 of [EG2]; see also
Proposition 2.24 above.

3.1. In this section, we will reserve the notation P, Q for polynomials.
Therefore, projections will be denoted by E, e, or small letters p, g.

By a polynomial P, we mean a polynomial of n real variables which is
defined on

L = =11 x (=1L 1) x - [=1,1]

n—copies
If P is a polynomial in »n variables, and x,x»,...,x, € A are self-adjoint
elements with ||x;|| <1, we define P(x|,xs,...,x,) € A to be the corre-
sponding linear combination of
)/{‘xlz‘z X

That is, such a term as x,x; does not appear in the linear combination. (Note
that if P(1,8) = tita = trt; then P(x;,x3) = x;x; (may not be equal to
xpx1).) It is well known, for any polynomial P and ¢ > 0, that there exists
6 > 0 such that ||x; — yif| < 6= ||P(x1...x) — P(yi- ..yl <e.

3.2. Let X be a finite CW complex and let X denote the cone space CX of
X. From [DN] (see 2.11 of [EG2] for details) it following, for any finite
CW complex X, there is a homomorphism

id*: C(X) — M1 (C(X))
such that the map id @ id* : C(X) — M, (C(X)) can can be factored as

c(x) 3 My(C(X) 5 Mi(C(X)),

where ¢ denotes the map induced by the inclusion of X into X. We will fix
the notation 6, : and id" in this section.

3.3. Suppose that X is a subspace of [—1,1]". Let g1, g2, .. .,8, denote the
coordinate functions of X. That is, g; is the composition

n Dproject to the ith coordinate

X[-1,1]

[-1,1] .
Then gy,8, . . .,8, generate C(X).
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For any finite set F C M,(C(X)) and € > 0, one can find a set #5 of fi-
nitely many polynomlals in n variables gi,g2,...,8, with the following
property. Let Q”F denote the set of all a x a matrices with entries poly-
nomials of g1,8,...,8. belonging to #%. That is,

P, = {(Py)axa | Pij € P5 foreach i,j} .

The condition we require is that, for any f € F, there be an element P € @’;
such that

If (x) — P(g1(x),82(%),...,&n(x)) Il <€

for all x € X. The choice of P% is certainly not unique. If one further sup-
poses that F is weakly approximately constant to within &, then one can

choose a finite set 2% C 2% such that
@ dist(f,#%) <eforeachf € F,
(i) 2% is approximately constant to within 2e.

The following result is an analogue of Theorem 2.8 of [EGLP1] which can
be proved by the same method.

LEMMA 3.4. Suppose that X is as above and G = {g,,g2, .. .,8x} is the gen-
erating set as above. For any € > 0, there exist § > 0, and an integer N such
that if a positive linear unital map ¢ : C(X) — A satisfies

llp(gig;) — o(g:i) - (gl < 6

SJor all 1<i,j<n, then there are § € X and MeX, j=1,2,....m
k=1,2,...,1, and two sets of mutually orthogonal projections p; € My(A)
and g, € My,1(A) such that

Ypi=1y, Xgr=1yy and

m I
$e) @Y &ilG)pi— ) 8i(M)g
j=1 k=1

for1 <i<n

In Theorem 2.8 in [EGLP1], it is assumed that the map is a cut-down of a
homomorphism. But, in the proof, we did not use any special property of a
cutting down of a homomorphism. The property of p¢p used in Theorem 2.8
of [EGLP1] is that

lpd(gi)p - po(gj)p — Po(gi)p - (8P| < 6

for each 1 < i, j < n. Note that if one replaces X by [~1,1]", the above lem-
ma was stated in the proof of Theorem 2.1 of [EGLP1].
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3.5. Suppose that £ is a finite set of polynomials in n real variables. For
each P € 2, one can regard P as a function from X to C by

P(x) = P(gi1(x),82(x),...,8n(x)).

For any ¢; > 0, there are an €; > 0 and a § > 0 such that, if

llo(gi- &) — o(g:i) - d(gj)l <6 and

B(g:) ® ]}:?gi(fj)Pj - kZilgi()‘k)qk < &,
then
P(9(g1), 9(g2),- -, Hlgn)) @ j_flp(snpj - gmk)qk <e
for all P € 2.

If one further assumes that

1P(6(g1),- - -, ¢(gn) — S(P)Il
is very small for every P € 2, then one can conclude that

m

]
$(P) @Y P(&)b; — Y PNk
k=1

J=1

is very small for every P € 2.
Therefore, the following corollary holds.

COROLLARY 3.6. Let X, G={g1,82,...,8n}, and P be as above. For any
€ > 0, there exist 6 > 0 and an integer N such that if ¢ is a completely positive
contractive linear map from C(X) to an arbitrary C*-algebra A with

lo(gig;) — ¢(e)p(g)ll <6 forany 1<i, j<n,
and
l|¢(P(g17g27' .. ,gn)) - P(¢(gl)7 s )¢(gn))” <é fOI' any Pec? )

then there exist §; € X deXj=12,....mk=12...,1 and two sets of
mutually orthogonal projections p; € My(A), and g € My.1(A) such that
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Ypj=1y, Xqx=1yy1, and

m ]
' $(P)® D P& — Y P)ge|| < ¢
j=1 k=1
for all P € 2, and
m ]
$()® Y el&)pj— D g\Wak|| <e
=1 k=1

for a”g €eG= {gtha e 7gn}-
(Note that if i <j, then the property

ll¢(gigj) — d(gi)d(g)ll <6

can be considered to be a special case of the property

H¢(P(g17g2, R 7gn)) - P(d’(gl)a .. a¢(gn))“ <9,
by taking P = x;x;.)
REMARK 3.7. Consider the subset 2 C M,(C(X)) defined by
2 ={(fy) € M,(C(X))); fi €2 forall ij}.

As in the above corollary, one has that

<at-e

m 1
(p®L)(P)® > PEH" - P
j=1 k=1

for each P € 2 C M,(C(X)). (The notation p\”, 4\ will be explained in
3.8.)

LEMMA 3.8. Let € > 0. Let a finite set F C M;(C(X)) be weakly approxi-
mately constant to within €. Consider the generating set G = {g1,£2,...,81) C
C(X).Let 0 : C(X) — My(C(X)) be as in 3.2. There are a finite set of poly-
nomials ? C C(X), a § >0, and an integer N such that if ¢ : C(X) — A is a
completely positive linear contractive map with

lp(gigs) — p(gi)d(g)ll <6
forall1 <i,j<n, and

6(P(g1,82,---,8n)) — P(6(g1),- .., b(gn))ll <6,

then there is a unitary U € My 1yxi(A) such that
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. ~( « ~(l
16 ® Lia) o (8 @id1)(f) &1 (x0) Ligk — U*f (x0) - L1 Ul < 4e
forallf € F.

(Here we use the notations from 1.3.5 of [EG2], ﬁ(’) =pOpdpD---p,
| S IS —.

1
and for a = (a) € M(C), a .p" is defined by

a\p, az2p, -.. aup

a\p, azp, ... aup

See 1.3.5 and 2.6 of [EG2] for details.)

This lemma is an analogue of Lemma 2.16 of [EG2]. The proof is exactly
the same. Set F; = 0® 1,(F) C Mk,C(X’)~. One can find 2% as in 3.3. Set
P = Py, With the aid of the sets 2,2 (see Remark 3.7) and the con-
tractivity of ¢, one can use Corollary 3.6 and Remark 3.7 (instead of 1.3.5 of
[EG2)) to prove the above lemma.

The following is a weak version of Theorem 2.29 of [EG2] for a path of
almost homomorphisms, instead of a path of homomorphisms.

THEOREM 3.9. Let € > 0, and let the finite subset F C M}, (C(X)) be weakly
approximately constant to within €. Consider the generating subset
G=1{g1,82,.---,8n} of C(X). (Also, one can regard g; as gilx,s0 that
{g1,82,-..,8n} is also a generating subset of C(X).) There isa § >0, and a
finite set of polynomials # ¢ C(X) ( P € P can be regarded as P|yc C(X) )
with the following property. If ¢, : C(X) — M, (C(Y)) is a path of completely
positive contractive maps satisfying

ll6:(gi)be(gj) — ¢e(gigi)ll < 6 and

I|¢t(g1>g27' .. ,gn) - P(¢t(g1)’¢t(g2)7' . ,¢t(gn))|| < 5

for 1 <i,j<nandeachte€|0,1], then there exists N > 0 such that if 5 > N
and v : C(X) — M, (C(Y)) is defined by

Y(f) =f(x0) € Mi(C(Y)) foreach f e C(X),
where xy is the base point of X, then
(g0 ®id, ®¥@idy)(f) — U (¢1 @idy, ®@ ¢ ®@id, () Ul < 10,

Sor a certain unitary U € My 1,41,/ (C(Y)), and all f € F.
(In other words, one can write

: - " . NG
llgo ®idy, () & (x0)i — U* (1 ®idy, & f(x0)1L")U|| < 10e.)

3
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PROOF. Applying Lemma 3.8 for F, let § and 2 c C(X) and integer N; be
asin Lemma 3.8. Let 0=ty <, <t <--- < t,, = 1 be such that

164(P) = 61 (P) < 5

1
(64, ® idi—1) 0id")(P) — (B4, @ idk—1) 0id*)(P)|| < 15_2
1

for each P € 2, where id" : C(X) — M;_1(C(X)) is as in 3.2. Denote the
composed map

Si@dy_)

(¢ ®ide_1)oid" : C(X) 5 My (C(X)) 5 M1y, (C(Y))

by ¢;.
From the above, we know that

l[(¢r, ®1idy)(P) = (., ®1dy)(P)|| <& and
(67, ®id)(P) = (¢}, ®idy,)(P)| <

for all P € & (see Remark 3.7 for the definition of P ). Therefore,
(@r, ®1d1)(f) = (bn,, @1dy) ()] < 2¢ and
(67, ®idy)(f) — (¢}, ®idy) (NI < 2¢

for each f € F, since each f can be approximated by an element in 2 to
within s Denote ¢, ®id;, by &, and ¢; ®id, by &;. Set ¢, = ¢;or:

c(X) > Ccx ) 5 M, (C(Y)), where ¢ is as in 3.2. Then
(¢ ®idi,) = (0 ®@idy))(f) = ¢ ®idy(f) & ¢ ®id,,(f) ,

where 6 is as in 3.2. Therefore,

19, (F) @ ;. (F) B f (xo)Lis — U (x0)Lim 41y Uil < de

for certain U; by Lemma 3.8. Set N = k(m + 1)(N; + 1) (where m + 1 is the
cardinal of {#g,?1,...,tm} ). If 5 > N, then f (xo)ilg' is unitarily equivalent
to

(1) B,(f) ® &, () ® 8, (f) @ T, (f) @ - &
(1) ® &, () & (x0) 1\ msy

by a single unitary for all f € F (the unitary does not depend on f), to
within 4e. So & (f) ® f (x0)1 ,; is unitarily equivalent to
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2 ()P, (f) @D, (f) @O, (N B @
* (h)
2,,(f) ®; (f) @ B1(f) & (x0)1,,” k(m+1)

to within 4¢ for all f € F (by a single unitary).
On the other hand, (1) is unitarily equivalent to

%, S 2(f) T, () &2, (1) & ® () @2, (1) & (%)}, 4
(by a single unitary). Hence, &, () & f (x0)1131) is unitarily equivalent to
(3) o,(Ned (Ned,(f)od (NS &

2, (1) @2, (N) ©f (x0) 1y kgmenys
to within 4¢ (by a single unitary). But

13) - @)l <2,

Since ”¢’| (f) Q’H»I (f)“ S 28'
So we have ?roved that &, (f) ®f(x)1 ," is unitarily equivalent to
&, (f) ®f(xo 1,3 by a single unitary, to within 4¢ + 4¢ + 2¢.

REMARK 3.10. Chris Phillips [Phi] first used paths of unitaries u, and u} to
study exponential rank. The clever idea of shifting the index (i.e., changing
(3) to (2)) is due to him. This idea is also used in [GL]. The generalization of
the idea to the case of paths of homomorphisms and the “adjoints” of
homomorphisms first appeared in [EGLP1]. The idea of using the property
of being approximately constant to change all the base point evaluations to
base point evaluation first appeared in [EG2].

3.11. Let X be a finite CW complex. Let 2m > dimX. We can construct a
real rank zero inductive limit A(X) (of a sequence of algebras
A, = My, (C(X)) ) with the following properties;

(i) each connecting homomorphism ¢, ,; satisfies

[¢n,n+l} = id € kk(X, X)

and ¢, .41 takes any trivial projection in A, to a trivial projection in

An+1’
(i) (K.(4),K.(4),,14) = (Q® K (X),0, ® K (X)U{(0,0)},(10 D 0)).

Let 4 = lim(4y, ¢nm) and A’ = lim(4,, 4, ,,) be two systems satisfying the
above condition for the same X. Using §4 of [DN] (also see §3 of [EG2]), one
can prove that there is an intertwining between the two systems at the level
of homotopy, and therefore A4 = A’. (See 2.23, 2.24, 2.25, 2.26, 2.27, and
2.28.)
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In this section, we will prove that A(X A §?") (where 2m > dimX ) can be
written as an inductive limit of algebras M, (C(X)). More precisely, we will
prove A(X A §%") 2 A(X). (We will make use of 2.11.) By using this fact, we
will further prove that 4(X) is an inductive limit of direct sums of matrix
algebras over 3-dimensional finite CW complexes of special type as defined
above.

LEMMA 3.12. For any finite subset F C C(X A S*™) and any € > 0, there are
unital homomorphisms ¢ : C(X A S?") — M;(C(X A S*™)) (for I large en-
ough) and +: M, (C(X)) — M, (C(X AS*™)) and a finite subset
Fi C M, (C(X)) with the following properties;

() [¢] =id € kk(X A S, X A S¥);

(ii) [¢] = b € kk(X A S*™, X) is the Bott element;

(iii) ¥(e1) is a trivial projection in M;(C(X A S*")) for the matrix unit
e € My (C(X));

(iv) dist(¢(f), ¥(F1)) <e, for each f € F;

v) F) is approximately constant to within €.
pp y

PROOF. Let ¢ : C(X A S?) — M,(C(X A S*™)), B= @Mk (X)), and

A:B— M,(C(X AS?)) be as in Lemma 2.11 ( ¢; is in place of $ and Ais in
place of ¢ ). From the proof of the lemma, one can see that (iii) of Lemma
2.11 can be changed to the property that ¢/(e},) are trivial projections for all
matrix units ¢}; € My, (C(X)). One can find finite sets F' C B' = My, (C(X))
such that dist(¢;(f), M\(@F")) < ¢ for each f € F. Let us show that we may
choose B carefully such that the following assertion holds.

Assertion: There are finite subsets F' C B' (1 <i < k) such that each F' is
weakly approximately constant to within € in B’ and

dist(¢1 (f), AL F)) < €

for each f € F.

There is 6 > 0, such that for any f € F; (1 <i<k) and x;,x; € X with
dist(x1, x2) < 6, one has |[f(x1) —f(x2)|| <e. Set L =¢. For each
y € X AS™,

SPA, = SPA,USPXU---USPX c X [T X]]-- ][ X -

Furthermore, # SP/\ = [;, counting multiplicity.
One can choose a subset {»1,92,--.,:} dense enough in X A 2" such that

U SP)\' is — 5 dense in X (note that X is injective by Remark 2.12). Hence

ki
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one can choose {x{,x},...,x}} C SPB' = X such that {x|,x},... ,x’,'}" can be
paired with |J SP/\;Y to within &, where { }* denotes the set (or family) con-
s=1

sisting of the original set with multiplicity /;. Define a homomorphism
v:B— M, (B) by

e
Wf)(x) = s
)
Also, define 1 : M(C(X A S2%)) = Myy41)(C(X A S2)) by
)
W) = ron-
S

. . t .
One can easily prove (by using {x .. .x‘,}l' paired with |J SPX] to within ¢)
s=1

that

M, (C(X AS™) L (1) (Co(X A S™))

)\T I A®1,41
B T’ M, 1(B)
commutes approximately to within £ on @F', up to conjugating by a unitary
U € My;11)(C(X A S*™)). Note that v(F') C M,1(B) is weakly approxi-
mately constant to within . One can change ¢; to po¢;, change X\ to
AdU-(A® 1,41) and change B to M,,;(B) to prove the assertion. (Note that
one only gets dist(¢;(f), A(®F')) < 2¢ instead of dist(¢; (f), A(BF')) < e.)

It follows that we may suppose that our assertionis true for the original
A: B — M,(C(X AS?)) and OF'. .

Also, we can enlarge the size of B (replace B by M, (B) as above for
larger ¢) such that

rank(\(1y,))
ki

Hence there is a map a:B— M,(C(X)) such that rank(a(ly)) =
rank()\(1,)) and the partial map o' defines id € kk(X, X). Finally, one can
construct homomorphisms 1 : M,(C(X)) — Mu(C(X AS*™)) and ¢, :
M,(C(X)) = My (C(X A S§?)) with the properties [1,] = b € kk(X A S?",

> 3dim(X) + 1.
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X), [#2] = id € kk(X A S, X A S?™), and »(e11), $2(err) are trivial projec-
tions. Hence, we have the following diagram

CXAS™) B M(C(XAS™) B My (C(X A SP)
] e
B = M,(C(x)

and 1); o and ¢, o A are homotopic since they define the same maps at the kk
level and at the K; level. One can choose a map ¢3 : M, (C(X A $?™)) —
My, (C(X AS?™))  such that [¢3] = id € kk(X A S?", X A S?™)  and
SPV(¢3) < 6 for arbitrary given é. By Proposition 2.19, if § is small enough,
then there is a unitary u € M, C(X A $**) such that

|¢3 020 A(f) — Aduo s otha ca(f)|| < 70e

for each f € @F".
Hence one can choose ¢ = ¢30¢r 061, Fi = a(®F'), and ¢ = Aduog; oy,
to finish the proof.

We also need the following lemma.

LemMMA 3.13. Suppose that o : C(X) — My, (C(X A S*™)) is a homomorph-
ism with [a)=bekk(X AS¥,X) (Bott element). Let G C C(X),
G, C C(X A S*) be finite subsets of self-adjoint elements of C(X) and
C(X A §?™), respectively. (We may assume that Gy_and G, consist of the re-
strictions of generators of C(X) and C(X AS™) to XC X, and
X A S c X A S, respectively, where X and X A S* are cones of X and
X A 8%, respectively.) Let 1 C C(X), and P, C C(X A S*™) be finite subsets
consisting of polynomials in elements in Gy and G,, respectively. Let § > 0.
There are  homomorphisms [3: C(X) = My, (C(X)), o1:C(X)—
M, (C(X AS™)), and B : C(X A S*) — M, (C(X AS*™), a completely
positive contractive linear map v : C(X A §*") — My,(C(X)), and paths of
completely positive linear contractive maps

A C(X) = My, (C(X)) for 0<s<1 and
2 : C(X ANS™) = M, (C(X A S?™))

such that

@) 4°=6 A" = (y®idy,)oq,

(i) 2° =6, and 2 = (o ®idk2)o’y,

(iii) [|A°(gig) — A°(8:)A°(g))|| < 6 for all gi,8; € {81,82;- - -,8m } := G,
(1928 (hiy) — £ (i) 2 (By) || < 6 for all by, by € {hy, s, ...y} == G,

(iv) 1 A°(P(g1,82,- - - ,8n)) — P(A%(g1), A (82),- - -, A°(gm)) || < 6 for all
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Pe ?,, and
192 (P, by . ) = P2 (), 2 (ha), ..., 2 (o)) || < 6 for all
P e 2,.

Proor. By Lemma 3.14 of [EG2], without loss of generality, we may
suppose  that  a: C(X) — My, (C(X AS™))  satisfies  a(Co(X)) C
M (Co(X A S?™)). Let us still denote a'co(x) by a. By Theorem 4.3 of [DL],
(see also [CH], [D1], [D2]), there is an asymptotic homomorphism

7 Co(X ANS™) - Co(X) @ A

which represents the inverse of the Bott element b~' € E(Co(X A S?™),
Co(X)) = KK(Co(X A S?™),Co(X)). (Notice that -, can be chosen as
idc,(x) ® 7}, Where v, : Co(S?™) — o is the representation of the inverse of
Bott element.)

Let x: Co(X) — Co(X) ® A" @ My, be defined by sending a to a®ey;
(where e; is a minimal projection in " ® M, ). Then

X = [ ®idy, 0a] € E(Co(X), Co(X)) -

By [DL] again, there is & : Co(X) — Co(X) ® X ® My,, such that & = x
and &! =, ® idg, 0. By [D], and Lemma 1 of section 2 of [CH], one can
assume the above -y, and @] are completely positive linear contractive maps.

Similarly, let X : Co(X A S?™) — Co(X A S*™) ® My, ® A" be defined by
sending a to a ® e;;. Then

(a®idy) oy : Co(X AS?™) — Co(X) @ A
— Co(X AS™) @ My, ® A

represents the same element as that of A in E(Co(X A S™™), Co(X A S*™)).
Hence there is a path of asymptotic homomorphisms (completely positive
linear contractive maps)

T Co(X AS™) = Co(X AS™) @ My, @ X
such that
=X and ¥ =(a®idy)on .
The diagrams



80 GUIHUA GONG

My, (Co(XAS?™))
l \7‘®id"1
a o
Co(X) Co(X)@K8My,
and
Co(XAS?™) Co(XAS?™)RKQMy,
\ v a®idx
T
Co(X)®K

commutes up to homotopy via the paths @;,¥;, 0 <s < 1.

We may suppose that G; C Co(X) and G, C Co(X A $?m). (To do this, we
need to choose a special embedding of X (or X ) into I™ which takes xo into
(0,0...0), see 3.3). Let 2% C Cy(X) be defined by

P = {P-P(x) | PeP}.

That is, we delete the constant term from the polynomial. One can define
P9 C Co(X A 5?™) corresponding to 2, C C(X A S*™).
Since @] is a path of asymptotic homomorphisms, there is a #; such that

8
|®; (g:gj) — 1 (8:)P;(g)ll < 3
and

12 (Plar g2, &) — (P@(60), Bi(82), - Bilan)l| < §

for all g;,g; € G1, P € 29, s € [0,1], and > #,. Similarly, one has 1, such that
if t > t, then

6
17 (hiky) — T3 (he) ()l < ¢
and

|IW§(P(hlvh2; cee 1hnz)) - (P(Wf(hl),wf(hZ), ey W?("nz))" <

0| O

for all ;,h; € G, and P € 9.
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For each fixed s, we can choose a projection R; € 4 such that

- . )
12 (8)Rs - R (@)l <

for each g; € Gy and
. . 1)
”@()(P) “Rs — RS@O(P)” < g

for each P e #%, where R, = idk,, ® Ry € My, ® #". Choose 0 =359 < 51 <
sy < «+» < 5y = 1 such that

6
197 (&) — @, (&)l < g

for each s € [s;,5,41] and g € Gy U 9‘1’.
Finally, we choose a projection R € " which dominates R, Ry,,. .., Ry,
Hence for all s € [0, 1],

I 6
|®;,(8)R — R&; (g)I| < y

for all f € G, U, where R = 1, Re My, @ A
Similarly, one can find R’ € & such that for all s € [0, 1]

PN )
12, @)K - R} (e)ll < 7

forallge Gy U 9"2’. We can suppose that R = R'. We know that R¥ R = M,
for some k;. By cutting all the images of the maps by R or R, we have dia-
grams

M"l (Co(XAszm))

R('no ®id"l )R
a Re; R

Co(X) — o+ Co(X)®Mi, @My,
RxR
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o RAR 2
Co(XAS?*™) Co(XAS*™)@M), @M,
RY; R a®idi,
Ry R
Co(X)®Mp,

which commute up to homotopy via the paths R@OR and R&l’/foil, respec-
tively, (0 <s<1).
Let v: C(X A §?™) — C(X) ® My, be defined by

) = Ry (f = f (0)) R+ f(30)R € C(X) ® My,

which is a unitalization of Ry,R. Let A’ denote the unitalization of i(@fok,
and 8: C(X) — C(X) ® My, ® My, the unitalization of RxR. One can ob-

tain the following diagram
YQidg,
Aa

B
C(X) _ C(X)®My, ®Mj,

My, (C(XAS2™))

which commutes up to homotopy via the path A’. Similarly, one can obtain
another diagram,

C(XAS?™) L N C(XAS>™)@ M, ® My,
0 a®idk2
-
C(X)®Mk2

which commutes up to homotopy via the path (2°. (Notice that we let k3 = k;
and o = «.) This ends the proof.

Combining Lemma 3.13 and Theorem 3.9, we can prove the following
lemma.

LemMMA 3.14. Let €,e1,n be positive numbers. Suppose that o : C(X) —
M, (C(X AS*™)) is a unital homomorphism with (o] = b € kk(X A S?", X)
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(the Bott element). Let H C H' C M;(C(X)) be finite sets and suppose that H
is weakly approximately constant to within €. Let F C My, (C(X A S*™)) be
any finite set. There exists a diagram

My, (CX AS?™)) 5 My, (C(X A S27)

a®idlI '[ a)

M (C(X)) v My, (C(X)) D H;

where each of ay, ¢, is a unital homomorphism, such that:

(i) 1,0, take any trivial projection to a trivial projection, (Notice that
a ® id; takes trivial projections to trivial projections.)

(i) [ou] = b e kk(X AS¥™, X), [¢] =id € kk(X A S¥", X A §¥™),
[¢¥] =id € kk(X, X),

(iii) ||og op(f) — po(a ®id;)(f)|| < 24¢ for each f € H;

(iv) There is a finite set Hy C My,(C(X)) (see the diagram) which is ap-
proximately constant to within ey, and y(H') C Hy;

(v) dist(¢(f), a1(H1)) < &1 for each f € F C My, (C(X A S?™));

(vi) SPV(¢) <n, SPV(y) <n.

Proor. Without loss of generality, we may suppose that o ® id;(H') C F

and that F is weakly approximately constant to within mm( (other-

12’ 12)
wise we can compose a : C(X) — My, (C(X A S?™)) with a certain map from
My, (C(X A S*)) to My (C(X A $*))) with small spectral variation to make
F satisfy the condition).

Let Gy,G, be the finite sets of self-adjoint generators of C(X) and
C(X A §*), respectively. Considering G; C C(X), H C M;(C(X)) and e,
one can find §; > 0 and a set of polynomials 2; C C(X) as in Theorem 3.9.
Similarly, for G, C C(X AS?) F C My, (C(X A S?*)) and mm( 152 fz
one can find 6 >0, and a set of polynomials 2, C C(X A S*). Set
6 = min(6;,68;). Applying Lemma 3.13 to Gy,G2, 2,9, a:C(X)—
M, (C(X A S?M)), and 6 > 0, one can find the following two diagrams

My, (C(XAS?™))

TQidk;
a A

OX) e My (X))

and
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B

C(XAS?™) My, (C(XAS?™))

a a®idys
o

M,y (C(X))

satisfying the conditions (i)-(iv) of Lemma 3.13. (Notice that v is a com-
pletely positive linear contractive map.) Let x : C(X A $*) — M (C(X))
denote the homomorphism defined by point evaluation. That is,

Sn)
x(N(x) = ‘.
S k)

for certain yi,ys,...,yr € X A §¥".

Let x;:C(X)— Mk,ku(C(X)) be defined by x; =x®Iidgca and
x2: C(X A Szm) — Mkﬂkl(C(X/\ Szm)) by x2 = a®1dk" ox. Let ky = k1k2
kiky. It is obvious that both x; and x; are defined by point evaluation.
Hence x; ® id;(f) is unitarily equivalent to f (xo)lk)k to within ¢ for all
f € H by means of some single unitary (see the proof of Lemma 2.16 of
[EG2] for details, and recall that H is weakly approximately constant to
within €). By Theorem 3.9, if k) is large enough, then there is a unitary

u € My, (C(X)) (= My, +x;)(C(X))) such that

(1) (v ® idy, o) ®id)) (f) ® x1 ® ids(f)
—u((B®id)(f) ® (x1 ®id))(f))u'| < 12¢
for all f € H. At the same time, since F C My, (C(X A S*™)) is weakly ap-

proximately constant to within mm( if K is large enough, there is a

12’ 12)
unitary v € My, (C(X A S*)) such that

) [I((a ®idy, o) ® idi, ® (x2 @ idi,)) () — V(61 ® idi, ® x2 ® idw, ) (f))V"|

<12 mm( min(e, ;)

12’ 12)

forallf € F.
Using x1 = x ® idy, o and x2 = o ® idy; o x, one can easily verify that



ON INDUCTIVE LIMITS OF MATRIX ALGEBRAS OVER... 85
(a®idpk;) o (X1 ®ids) = (@ ® idpkr) o [(x @ idk, 0 ) ® id)]
=1\ ®idpxy) o (X ® idy,) o (¢ ®id))
= (A2 ®idy,) e (@ ®id)).
Also notice that
(a®idjk,) (v®idy, o) ®id)) = (@ ® idg, ov) ® idy, ) o (@ ® id)).
Direct summing the above two equations, we get
(3) (a®idg,) o ((v ® idk, o) ® id; ® X1 ®id))
= ((a®idy, 07) @ idy, ® x2 ®idy, ) o (@ @ id))

Let us define ¢ : M;(C(X)) —» My, (C(X)) by ¥ = Adu(8®id; ® x1 ® id))
and ¢ : M(C(X AS*™) = My,(C(X AS™) by ¢ =Adv(fi ®idy, @
X2 ®idy, ), and set a; = a ® idg,. Then by (1), (2), and (3), we have

lag op(f) = po(a®id))(f)|| < 126 + 126 <24 for all f € H.

Let H C My,(C(X)) be defined by H) = (y®idy, ® x ® idw, )(F) Uyp(H").
Then from the above, we see that

dist(¢(f),ou(Hy)) <& forall feF.

As in 3.12, one can make H; weakly approximately constant to within &;.
Also, if k7 is large enough, and the set {y,y2,..., ykfzr} is dense enough, one
has that SPV(¢) < n, SPV(¢¥) < .

3.15. We will use 3.12 and 3.14 to construct two inductive limits
A(X A S?™) = lim(My, (C(X A S?™)), bnns1) and  A(X) = lim(M,, (C(X)),
Ynnt+1) With the property of 3.11. At the same time, we will construct a one-
sided intertwining from A(X) to A(X A S?™) which we will show induces an
isomorphism between them. We will write 4(X A SZ"’) = lim(4,, ¢nm) and

A(X) = HKm(By, Yum) -

Let Ag = C(X A S?). And let Fy C C(X A S?™) be a set of finite gen-
erators of C(X A S?™). Let g9 > &1 > --- be a sequence of positive numbers
with X¢e; < +00. By Lemma 3.12, one can construct the following diagram

Ay 2L M, (C(X AS2))

.

M, (C(X)) O Hy

with the following properties:
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() [¢o1] =id € kk(X A S2", X A S¥7);

(ii) [o1] = b € kk(X A S?™ X);

(iii) oy takes trivial projections to trivial projections;
(iv) diSt((f)o,](f), al(Hl)) < gy, for all f € Fy;

(v) H, is approximately constant to within &.

Notice that «a; takes trivial projections to trivial projections, so that a; can
be written as a ® idy,, for a certain o : C(X) — My, (C(X A S*™)). Let H]|
be a generating subset of M;(C(X)), with H] D H;. Let Fy D ¢, (Fo)U
aj(Hj) be a finite set of generators in My, (C(X A $*)). We can construct
the following diagram (by Lemma 3.14),

Fi C M, (C(XAS™) 22 My (C(X A S?™)

ol Ta

H, C M;,(C(X)) '/’_12-) M,(C(X)) D H,,

I8

with the following properties:

(i) o9, ¢12, and 9y 5 take trivial projections to trivial projections;

(i) [og] = [b], [$1,2] =id, [¢h12] = id at the level of kk;

(i) |lazot12(f) — dr2001(f)|| < 24 for f € Hy;

(iv') 12(H]) C Ha, and H, is approximately constant to within e;;

(v") dist(¢12(f),a2(Hz)) <1 forall f € Fy;

vi') SPV(¢12) < m, SPV(¥12) < m (m is a certain given small number).

Furthermore, we can require k, and /, to be multiples of 2! = 2.
In general we can construct the diagram

FiC M (C(XAS™) 28 M, (C(X A S?))

OtiI T Qitl
H C H] C Mi(C(X)) i M,(C(X)) D His
to have the above properties (i')—(vi’) by changing the indices 0,1,2 to

i—1,i,i+ 1. Hence, we obtain the diagram

M, (C(XAS™) = Mu(C(XAS™) —  M,(C(XAS™) —

o] 3 N 3 o]

M, (C(X)) i M}, (C(X)) v My (C(X)) -

By (iii') and H;y1 D H] (notice that H] is a generating subset of M, (C(X))).
We know the above diagram is one-sided approximately intertwining. By (v')
and the fact that each F; C M}, (C(X A S*™)) is a generating subset, we know



ON INDUCTIVE LIMITS OF MATRIX ALGEBRAS OVER... 87

that the homomorphism defined by the above one-sided approximate inter-
twining is surjective. By suitable choice of 7;, we can make the two inductive
limits in the above diagram to be of real rank zero. Hence both limit alge-
bras are of real rank zero and simple. Therefore the homomorphism is also
injective. In other words, we have proved

THEOREM 3.16. There are two inductive limits and a one-sided intertwining
between them,

A% m A% A% o e A(X/\Szm)

ol o] o] ,

— —_—

A} P12 Aé 123 A}, - e — A(X)

23
N

such that:

(i) A% = M, (C(X AS™)), A} = M, (C(X)), and k;,I; are both multiples of
M=1%x2x3x---xIi

(i) The above diagram defines an isomorphism o : A(X) — A(X A §¥");

(iii) [oy] = b € kk(X A 8", X) and o; takes trivial projections to trivi projec-
tions.

REMARK 3.17. Suppose that p; < p, < ...and q; < g < ... are sequences
of positive integers and (; : Al‘,, — Aﬁ, are unital homomorphisms making the
following diagram one-sided approximately intertwining

Agl — Agz — e A(X A S2m)
ﬂlT ﬂzT T
Ay = Ay = = AX)

If we further suppose that [3;] = b and that the maps 3; take trivial projec-
tions to trivial projections, then by Proposition 2.26, 8 is approximately
unitarily equivalent to a.

3.18. Let X be any finite CW complex. Denote by A(X) the C*-algebra 4
constructed in 3.11. Then we know

(Ku(4(X)), Ku(A(X)) 4, Lagx) = (Q@ K (X),Q @ K" (X) U{(0,0)},1q,)

where K'(X) is the reduced K-theory of X. Also, we have proved that
A(X) = A(X A S*™), whenever 2m > dimX.
For any space X, let X be the 3-dimensional connected CW complex in 2.3
with K%(X) = K°(X) and K!(X) = K!(X). We will prove that 4(X) = A(X).
Note that KK(Co(X),Co(X)) =kk(X,X), and that KK(Co(X),
Co(X A 8?™)) = kk(X A S™, X). (See Proposition 2.2.) One can find a
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u € KK(Co(X), Co(X)) which induces the isomorphism from K'(X) to
K'(X). Let U e KK(Cy(X),Co(X AS*)) denote the element satisfying
ux U=>beKK(Cy(X),Co(X A S™™)), the Bott element. That is, U = u~! x
be KK(C()(X), Co(j’ A Szm))

For each n, one can construct a unital homomorphism u,: 4,(X)
(:= Mn(C(X)) — A;,(X) (for I, large enough) such that [u,] = u € kk(X, X).
This gives a diagram

Al(j’) — Az(.?) — e > A(j’)
SR |
Ay (X) - Ap(X) — - = A(X)

which defines a homomorphism ¢y : 4(X) — 4(X) (by 2.26 and 2.28). Also,
for each n, one can construct a unital homomorphism U, : 4,(X) —
Ak, (X A S*™) such that [U,] = U € kk(X A S¥", X). This gives a diagram
which defines a homomorphism 1 from A(X) to A(X A §*") = A(X). (No-
tice that the composition of weak system maps U, oy, is equivalent to the
system map b, : A,(X) — A2(C(X A §*™)) represented by the Bott element,
where we use “?” to denote any possible integer. Hence if we identify
A(X A §?™) with A(X) by 3.16, then g oo : A(X) — A(X) is approximately
unitarily equivalent to id by 3.17. Similarly there is a ul€
KK(Co(X A S?™), Co(X AS?™)) = kk(X AS™, X AS?) with Uxul =
b € KK(Co(X), Co(X A §*™)), the Bott element. Then one can construct the
homomorphism ¢; : A(X A $?") — A(X A $*™) as above by using u!. When
we identify A(X A S?") with A(X), we know that ¢; ot : A(X) — A(X) is
approximately unitarily equivalent to the identity. Furthermore, one can
choose

U' € KK(Co(X A S, Co(X A S*™)) = kk(X A S*, X A §2™),
with
u' x U' = b e KK(Co(X A S2™), Co(X A S*™))

the Bott element. Then one can construct ¥ : A(X A S$?")(= A(X)) —
A(X A 8*)(= A(X)) by using U'. Similarly 9;0¢; : 4(X) — A(X) is ap-
proximately unitarily equivalent to the identity. (Notice that if
b1 € KK(Cy(X), Co(X A §¥™)), and by € KK(Co(X A S2"), Co(X A §*™)) are
the Bott elements, then b; x b, € KK(Co(X), Co(X A S*™)) is the Bott ele-
ment.)

Hence we can construct ¢;: A(X) — A(X) and v;: A(X) — A(X) such
that ;0 ¢; are approximately unitarily equivalent to id ) and ¢, 03); are
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approximately unitarily equivalent to id,y). Therefore A(X) = A(X) by
Proposition 2.14. We have proved

THEOREM 3.19. Suppose that X is a finite CW complex, and that X is a fi-
nite CW complex of special type with K°(X)=K%X) and K'(X)=
K'(X).Suppose that A = Hm(My (C(X)), bum), B = lj_r_l}(Mng(C(X’)),;b,,m) are
of real rank zero and ¢nm, =id € kk(X,X), Yum = id € kk(X, X). Further-
more, suppose that ¢um, Ynm take trivial projections to trivial projections. Then
A and B are isomorphic. In particular, there is a system map oy, : By — A,
such that

B, - B — B —
a,l azl a;l

A[l - A[2 — A13 -

is a one-sided approximate intertwining and induces the isomorphism.

4. The General Theorem.

In the last section, for each space X, we proved that one special inductive
limit of Mj, (C(X)) can be written as an inductive limit of algebras
M, (C(X)), where X is a three-dimensional CW complex of special type. A
local version of this result says that for any F C My(C(X)), there exist
homomorphisms ¢ : My(C(X)) — M;(C(X)) and v : M}, (C(X)) — M;(C(X))
such that [¢] = id € kk(X, X) and ¢(F) is approximately contained in the
image of v to within an arbitrary given small number. We will use this local
result and some related results to reduce a general inductive limit to an in-
ductive limit of matrix algebras over three-dimensional finite CW complexes
of special type. We will make those local results more precise.

LeEMMA 4.1. For any finite CW complex X, and any finite set F C C(X) and
€ > 0, there exist a homomorphism ¢ : C(X) — My(C(X)) (for certain large k
), a unital homomorphism o : M;(C(X)) — My (C(X)) (for certain | ), and a
finite set F C M;(C(X)) with the following properties:
() [¢] =id € kk(X,X);
(i) dist(¢(f), a(F1)) <€ for each f € F;
(iii) F; is weakly approximately constant to within € in M;(C(X)).

Proor. Consider two inductive limit systems in 3.19. We can suppose
that in the diagram
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A, — A, — -+ — A
m[ azI
B » B, — - — B,

. . . e 1
(see 3.19), the nth square is approximately commutative, to within 7 on the

nth set in a sequence of increasing subsets H, C B, with union dense in B.
(This can be done by passing to a subsequence.) Consider F C C(X) = 4,
€
"4
contained in a,(B,) to within 7 That is, one can find a subset F] C B, with

. . 1 . .
and € > 0; there is an n with o < = such that ¢, (F) C A4, is approximately

dist(¢1,, (1), an(F})) < f—‘ Choose an m > n, such that 1, ,,(F]) is weakly ap-
proximately constant to within € and is also contained in the % -neighbour-

hood of H,,. And, finally, set ¢ = ¢y, : A1 — A;,, o« = ap : By — A, and
F\ = Ynm(F]) to end the proof.

One should note that the above a induces a KK-equivalence in

KK(Go(X), Co(X)).

REMARK 4.2. The above result is also true, if one replaces C(X) by
M,(C(X)) for some integer ¢, and replaces F C C(X) by F C M,(C(X)).
Namely, one can consider a generating set G C C(X) and then for any € > 0,
there is a §>0, such that if ¢: C(X)— C and o :D — C satisfy
dist(4(f),%(D)) < 6 for each f € G, then ¢ ®id, : M,(C(X)) — M,(C) and
Y ®id, : My(D) — M,(C) satisfy dist(¢ ® 1,(f), % ® 1,(M,(D))) < ¢ for each
fE€F.

LeEMMA 4.3. Let X be a connected finite CW complex. Let F C M,(C(X))
be a finite set. Let D be a direct sum of matrix algebras over 3-dimensional
CW complexes of special type. Let G| C G, be finite subsets of D. Let
a: D — M,(C(X)) be a unital homomorphism. And suppose that 1 > 0 and
g2 > 0, and that G, is approximately constant to within €.

Then it follows that there exists a diagram

FcM(C(x) > M (C(X))
aT ., I o
D v M(C(X))DF

(i.e. there exist unital homomorphisms ¢,, o’ as in the diagram for certain k
and l) such that:

@A) |lo/ov(g) — poa(g)|l < 72e1 for each g € Gy;
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(i) dist(¢(f),o/(F1)) <e2 foreachf € F;
(iii) ¥(G,) C F1, and F; is approximately constant to within e;;
@iv) [¢] =id € kk(X, X).
PrOOF. Suppose that 4 =lim(A4,, ¢nm) and B = lim(B,, ) are the in-

ductive limits in 3.19. From 3.11 and 3.19, we have the following diagram,

M,(Al)\——»M,(A;Q———»M,(Az,) — M,(A)

ﬂ‘\\xal‘[ &\\&021 7
M;(By,) — M(Bs,) — M(B).

where the o; are homomorphisms which induce an isomorphism from M,(B)
to M,(A), and the §3; are only KK elements, and each triangle commutes at
the level of KK.

Now we will use ¢, (and 1, ) to denote also the map
Gum ®1d; : M((An) = M(Am)(and Ypm Q@ id, : My(B,) — M(By,)).

As in 4.1, for F C M,(A4,) = M,(C(X)), there are k; and [; and F] C M,(Bx,)
such that:

() dist(¢1,(f),(F})) <exforallf € F;

(ii) Fj is approximately constant to within e,.

Consider [a] x 81 X [,] € KK (D, M,(By,)). If k; is large enough, then this
element can be realized by a homomorphism % : D — M,(By,), such that
(G,) is approximately constant to within ;. (Here we use the fact that D is
a direct sum of matrix algebras over a 3-dimensional finite CW complex of
special type.) Hence we have the following diagram

¢’l
M,(4) =5 M(4)

aT . Iai
D P M, (Bki )1

which is commutative at the level of homotopy. One can choose an /; and
U € M,(A;) such that

lp1 0a(f) = AdU oy 0i otp(f)|| < 70e4

for each f € G;. (Notice that G, is weakly approximately constant to within
€1.) Furthermore, there is an /, > /; such that

o1, (U) € Mi(4,,)
can be approximated by V' € M,(By,), that is,
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lap(V) = 1, (U)]| <1 -
Hence we have the following diagram:

¢ @,
Mi(4) =5 M(4) 5 M(4,)

Ja [ a [ o

— —

D w Mt(Bk,) 11);(‘;(,, M,(ka)
The larger rectangle is commutative up to Ad(a,(¥)) within 72 ¢, on G;.
One can set M (C(X))=M,(4;,), o =a, M|(C(X))=M(B,), ¢=
Ad(ay,(V))é1,,, and, importantly, F; = AdV (Y, (F))), to end the proof.

The following is the main result of this paper.

THEOREM 4.4. Suppose that a C*-algebra A of real rank zero is the in-
ductive limit of a sequence

Ay > Ay > A3 — -,

with A, = @ M, §(C(Xn;)), where each space X, is a finite CW complex, and

each [n,i] is a positive integer. Suppose that the inductive limit system satisfies
the slow dimension growth condition (xx) of 2.20. Then A can be written as an
inductive limit of direct sums of matrix algebras over 3-dimensional
CW complexes.

kn
4.5. For any A, = @M[,,,,-](C(Xn‘,»)), and integer / large enough, suppose

~ kn kn . N
that A, := EB(M,[,,,]( (X)) ® M 5(C)) :-——@C’EBD’. Define a unital

i=

homomorphism 4, Ll A, with a: 4, —»@C’ and (: A4, —>@D’ as
=1 i=1
follows: o/ =0, and 3% =0 if i #j. o satlsﬁes [@] = id € Kk(Xn, Xni)

and takes trivial projections to trivial projections, and 3" satisfies
B (f) = f(xo), where xq is the base point of X, .

LEMMA 4.6. With the above notation, if m is large enough, then there is a

v : Ay — A such that vo(a @ ) is homotopic to ¢pm.

Proor. By Lemma 2.23, there is an m >0, such that each
@Y s Mipg(C(Xni)) = Mipmjj(C(Xmj)) = AL, satisfies either of the following
conditions:
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(1) ¢¥  is homotopic to a homomorphism which can be factored as

evaluated at xg
) ——

My ) (C(Xn,i Myuy(C) — ¢ (14) ALl (14) ;

(2) rankgit (1,4) > 3dim (X + 1)(I + 1)[n, .

We can define ~/: ;Ii =C'@® D, — 4, as follows. If (1) holds, set

¥, =7 and ~Y| ¢, =0. Suppose that (2) holds. Let P = ¢,(14) and
p= J)’\’ (e1,1), where ey is the matrix unit of My, ;(C(X,,;)) corresponding to
the upper left corner. One can identify PMj,;(C(Xy,,))P with
PM i (C(Xn)))p © My, and identify ¢f,, with ¢ ® idp,,, where

¢+ C(Xni) = pPMp ) (C(Xms))p

is the restriction of ¢Y to the upper left corner. Since rank(p) >
3(dimXj,,;; + 1)(I 4 1), we can write p = po + p; with po a trivial projection,
and with

rank(pg) = 3(dim(X, + 1) -/ and

rank(p;) > 3 - (dimXj,; + 1).

Write  po=qo®qo---®qo Wwith rank(qo) =3 - (dim(Xp,j +1)). Let
Nt e

1

& C(Xni) = qoMp)(C(Xmj))go be a unital homomorphism with
[&1] = [¢7,) € Kk(Xmj, Xns). (Note that this can be done since
rank(qo) > 3(dimX,,; +1).) Let & : C — p1M,;;C(Xn;)p1 be defined by
&(f)(x) = f(xo0)p1, where xp is the base point of X,;. Finally, let v/ |C, be
defined by

& ®iduy,, : C(Xni) @ My — qoMipm (C(Xinj))qo ® My,
= oM C(Xmj)Po ® My C PMp j(C(Ximj)) P,
and let v"/|,, be defined by
& @idu,, : Myuy(C) = prMip)(C(Xm))p1 ® Mipy C PMip i (C(Xj)) P

Obviously, vo(a @ 3) and ¢, are the same at the level of kk and K-theory,
and therefore ¢y, is homotopic to Aduoy.(a® §) for a certain unitary
u € Ap. By changing v to Aduo+y, we have proved the lemma.

ProoF OF THEOREM 4.4. We will construct an inductive limit
B = lim(By, ¥nm) and a one-sided intertwining from {B,} to {4,} which de-

fines an isomorphism, where the B, are direct sums of matrix algebras over
3-dimensional finite CW complexes of special type. Let €,€2,...,€x,... be
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positive numbers with e, < +oo. Let {aj,},., be a dense subset of 4, and
let F; = {a1}. There is a k; such that ¢, (F) is approximately constant to
within €; in A4y,. For each block of 4,, M[k,',](C(thi)), regard ¢; 4, (F1) as a
subset of My, ;(C(X,)) by projecting ¢; 4, (F1) into the algebra. For €, one
can find an /, /; and homomorphisms

¢ My, jC( Xk, i) = My, 4(C(Xk,;))  and
o :My g, ) C( X, i) = M, (C( Xy )

as in Lemma 4.1 (or more precisely in Remark 4.2). Let / denote the product
of all the numbers / for the various blocks. Then there exist homomorphisms

ay : OMy, 1 (C(Xk, i) — OMip, §(C(Xk, 1)
and
&1 My, 4 (C( Xk 1) = Mo, 3 (C( Xk, i),

and a subset F| C &M, 1(C(Xx,)) weakly approximately constant to
within €, such that dist(a;(f),&1(F])) < &1 for each f € ¢4, (F). Also, as
pointed out in the proof of Lemma 4.3, there is a

m € KK (A, @My 1(C(Xk,1)))  with  m x [§] = [an] €KK .

(Notice that oy and & satisfy o/ =0 and ¢/ =0 whenever i#j, and

[Ozll" =id € kk) S?t Ak| = Ck1 (&3] Dkl = @Ml[kl,i](C(Xkl,i)) (&) M{k,,i](c) and

By = @ My, ,(C(Xk,,1)) © B M, 7(C). Define By : Ay, — Dy, by evaluation
1 1

at the base point. One can extend ¢ to
newé; =old¢; ®id: B — /~1kl .

Furthermore, define newn; € KK(4y,, Bi) by newn; = (oldn, 3;). Hence we
have the following diagram:

a1 ®p, -
A, 2B 4
~ ~ -
m> - . fl
B,

which commutes at the level of KK. There exists a subset F] C By such that
dist(c; ® B1(f),&1(F})) < e1 for each f € @14, (F1). Applying Lemma 4.6, we
obtain a homomorphism 7~y : Ay, — 4, such that ~; o(a; @ 1) is homotopic
to ¢, By Proposition 2.24, there are an m, and a unitary U € 4,,, such
that

“Adu°¢t,mz °Y1 °(al @ ﬁl)(f) - ¢k|,mz(f)” < 7061
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forallf € @14, (F1). Setnew~y; = Adu oy, m, o11; we have the following diagram:

bk , M
Fl C Al Akl L > Am2
\\ a1 @61
\ m
\ -
m o\ Akl
\
\ Ifl
4
B,

We would like to simplify the above diagram. Set 6, = [¢)x]X
m € KK(41, By) and 1, = v, -£;. Then we obtain the following diagram:

o1,m
FLcA 5% A,
\\\ T”l
01 \&
B, D F],

with the properties

(l) 01 X [Tl] = ¢1,m2 € KK,

(i) dist(¢1m,(f), 71(F])) < 7le; for each f € Fy,
(iii) Fj is approximately constant to within ¢;.

We will now construct the next diagram. Let {a;,},., be a dense subset of
Ay, and {b1,},2, be a dense subset of B;. Set G; = F| U {by,} C By, and set

F, = ¢1mfai,an} Un(G)Un{bi2} U{az,an} C 4, .
That is, F, contains all the images of {aij}:Sisg and {b11,b12}.
=

For this F; and ¢;, one can find a k; such that ¢, (F>) is approximately
constant to within ;.

Consider the map o = @mpu, o7 : By — Ay,. For each partial map
o' : Bi — A, = My, 4(C(X,;)), we can apply Lemma 4.3 to construct a
diagram

b M, iy (C(Xiy i)

i
- =~/
B v My, (C(Xk,i) D F,

having the given properties with F] in place of G, G; in place of G, and
Gk, (F2) C Aiz in place of F. Similarly, one can find a common / for each
block. So, there exists a diagram
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(6]

A, — DMy, (C(Xk,,))

o | &

— 7 /
Bl v ©M,, (C(Xk,)) D F,

with the following properties:
(i) the diagram commutes on F; to within 7251,

(ii) dist(az(f),&(F;)) < e, for eachf € bmyk, (F2);
(iii) ¥(Gy) C F; and F; is weakly approximately constant to within e;.

Set By = @ My, (C(Xi,)) D D My, ) (C), A, = D Mio,)(C(Xio, )@
@D My, (C), and new; = & & 1d® My, (o) Finally, deﬁne

Y12: By — By tobe ¢1,=9®(Broo).
Hence we have the following diagram:

Ak2 az2®B2 bt

—> A,

SN m
UI o TfZ ,
Sa

By —— B
1,2

where 7, € KK(A4y,, B2).
Write newF; = oldF; @ (32 o @myk, ) (F2). Then newF; is still approximately
constant to within e;. Furthermore,

dist((a2 @ B)(f), &2(F)) < &2 forall  f € gy, (F2).

One can construct mj3 similarly, i.e., find m3 and v, : ;1;(2 — A, such that

720 (2 ® B2)(f) = Prpmy ()|l < 70e;  for each [ € Py, (F2) -

(We put the conjugation by a unitary as part of v;.)
Set 7, = 12 0&. We have a diagram

Al —_— Amz —_—> Am,

with the following properties:
(i) The square commutes within 142¢; on Fj;
(Notice that ¢; < €1, and 71(F]) C F>.)
(i) dm,m, (F2) is approximately contained in 75(F;) to within 71es;
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(Notice that (a2 @ B2)Pmyk,(F2) is approximately contained in &(Fj) to
within ¢;.)
(iii) 112(G1) C F;, and Fj is approximately constant to within e,.

In such a way, we can construct a diagram

F1 Fz F3 F4
N N N N
A > Am2 > Ams > Am4 > A
~ N T A N T b NCH T
< | < LT £
A A {
By 1,2 B, Y28 Bs T B
U U U
Gl G2 G3
U U U
F K F;

with the following properties:

(1) Tip10%Yiip1 and ém,,, m,, oT; are approximately equal on F] to within
142¢;_y;

(i) dmm,,, (F;) is approximately contained in 7;(F) to within 71e;;

(1) F,| D ¥iit1(Gi), Fi 2 1i1(Gi1) U by ym, (Fi1);

(iv) G; contains the image of {bkj}’;g" and F; contains the image of {a"f}fi';

(v) {bi;}2, is dense in By, and {ay;};~, is dense in A,.

From (i) and (iii), one can prove that 7; defines one-sided approximately in-
tertwining (certainly we also need the properties (iv) and (v)). So it defines a
homomorphism 7: B — A.

Combining (i) and (ii), one knows that F; C A,, C A is approximately
contained in 7(F]) to within 7le; + 142(¢;_1 + &; + €41 + -+ +). This proves
that 7 is surjective. Finally, from the fact that the maps 6; and 7; form an
intertwining at the KK level, we know that 7: B — A defines an isomorph-
ism at the level of K-theory. By Lemma 2.15, 7 is an isomorphism.

REMARK 4.7. As pointed out in Remark 4.24 of [EG2], any inductive limit
of finite direct sums of algebras of the form P,; My, ;(C(X,,))Pn, is @ corner
sub-algebra of an inductive limit of finite direct sums of matrix algebras over
C(X,;). Hence Theorem 4.4 can be generalized to the case of inductive limits
of finite direct sums of algebras of the above form.
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5. Some Remarks.

5.1. In the above section, we proved that a general real rank zero inductive
limit 4 (with slow dimension growth) can be expressed as an inductive limit
of matrix algebras over XV X,V Xj...VX,, with each X; of the form
SY, 82, Tk, or Tprx. By 5.9, 5.10, and 5.11 of [EG2], we know that the
wedge is not necessary. That is, 4 can be written as an inductive limit of fi-
nite direct sums of matrix algebras over S',S?, Tnk, and Typg. In §4 of
[EGZ2], we proved that the graded scaled ordered K-groups of those inductive
limits which involve only the spaces S', T 1k, and Ty g (i.e., without S?) ex-
haust all possible graded scaled ordered K-groups of real rank zero inductive
limits with slow dimension growth. One may wonder, can we obtain all in-
ductive limit algebras without using space the $2? That is, can all all in-
ductive limit C*-algebras with slow dimension growth be written as inductive
limits of matrix algebras over S', Ty x, and Ty (without S? ). However, the
answer is negative — the use of S? is essential (see below).

5.2. In §3 of [G1], we constructed two non-isomorphic inductive limits of
finite direct sums of matrix algebras over 2-dimensional finite CW complexes
with the same scaled ordered K-groups. One can construct similar examples
by using the space Y =82V Ty, to replace X = S'v 2% = S'V Ty, (in
[G1]).That is, we can construct two inductive limits

A, — Ay —---— A
BB - B —----— B

such that (K.(A4),K.(4),,14) = (K.(B),K.(B),,15) and 4;, B; are finite di-
rect sums of matrix algebras over Y, and 4 2 B. (We can copy the whole
construction in §3 of [G1], replacing S' by S? and 2? by T, with only one
revision:we should assume that each /, in 3.6 of [G1] is a multiple of 2.)

From Proposition 4.18 of [G1] we know that, if 4 is a real rank zero in-
ductive limit of matrix algebras over 3-dimensional CW complexes X, ; with
f(O(X,,,,-) finite, and Ko(A) is torsion free, then 4 is completely determined by
its scaled ordered K-group. So if both 4 and B constructed above could be
written as inductive limits of finite direct sums of matrix algebras over
st Tyrx, and Ty, then they would be isomorphic. This proves that it is es-
sential to use S? (or a space with infinite H? group) to produce all real rank
zero AH algebras.

5.3. One can also prove that the above two examples are inductive limits
of finite direct sums of dimension drop algebras (see [G3]). Therefore, they
provide a counter example for the classification in terms of the graded or-
dered group K, of real rank zero inductive limits of dimension drop C*-al-
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gebras. This is joint work with G. A. Elliott and H. Su (see [EGS]). (Note
that G. A. Elliott proved the classification theorem for simple such C*-alge-
bras, and H. Su generalized the result to the case of graphs with dimension
drop.) In general, if we use dimension drop C*-algebras, we can remove both
T and S52. Based on this idea one can prove the following:

THEOREM 5.4. If A and B are real rank zero inductive limits satisfying the
slow dimension growth condition (xx), then A is isomorphic to B if and only if
A is unsuspended E-equivalent to B (or asymptotically isomorphic to B).

The details of this theorem will appear elsewhere. This theorem is a gen-
eralization of Theorem 2.21 of [G1]. But the proof is similar. We conjecture
that any separable nuclear C*-algebra of real rank zero and stable rank one
is determined up to isomorphism by its unsuspended E-equivalence type.

[Added Note] Theorem 4.4 is proved independently by M. Dadarlat in
Reduction to dimension three of local spectra of real rank zero C*-algebras,
J. Reine Angew. Math. 460(1995), 189-212. A generalized version of Theo-
rem 5.4 has been proved in a joint work of M. Dadarlat and the author: A
classification result for approximately homogeneous C*-algebras of real
rank zero, preprint.
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